JPH07220723A - Manufacture of cobalt oxide lithium and lithium secondary battery - Google Patents

Manufacture of cobalt oxide lithium and lithium secondary battery

Info

Publication number
JPH07220723A
JPH07220723A JP6013515A JP1351594A JPH07220723A JP H07220723 A JPH07220723 A JP H07220723A JP 6013515 A JP6013515 A JP 6013515A JP 1351594 A JP1351594 A JP 1351594A JP H07220723 A JPH07220723 A JP H07220723A
Authority
JP
Japan
Prior art keywords
lithium
cobalt oxide
secondary battery
carbonate
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6013515A
Other languages
Japanese (ja)
Inventor
Kenichiro Kami
謙一郎 加美
Toshihisa Deguchi
敏久 出口
Kenji Nakane
堅次 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP6013515A priority Critical patent/JPH07220723A/en
Publication of JPH07220723A publication Critical patent/JPH07220723A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide a method for manufacturing cobalt oxide lithium and a lithium secondary battery using the cobalt oxide lithium, which can be used as the active material of the positive electrode of the lithium secondary battery which has such an excellent cycle characteristic that its capacity hardly decreases even if charge and discharge are repeated. CONSTITUTION:Cobalt carbonate and/or cobalt oxide, and lithium carbonate which is in excess with respect to the cobalt carbonate and/or the cobalt oxide in mole ratio, are mixed, baked at 800-1000 deg.C, crushed, and then baked at 800-1000 deg.C. A positive electrode containing cobalt oxide lithium obtained by this manufacturing method is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コバルト酸リチウムの
製造方法及び得られたコバルト酸リチウムを含有する正
極を用いるリチウム二次電池に関する。
TECHNICAL FIELD The present invention relates to a method for producing lithium cobalt oxide and a lithium secondary battery using a positive electrode containing the obtained lithium cobalt oxide.

【0002】[0002]

【従来の技術】近年、家電機器においてはポータブル化
が進み、充電機能を有する小型の電源を備えた製品が増
えてきている。特にラップトップ型パソコン、携帯電
話、ビデオカメラの需要が大きい。これらの電源とし
て、軽量で、高容量出力が可能なリチウム二次電池の開
発が盛んである。該リチウム二次電池の正極活物質には
リチウムイオンのドープ・脱ドープを行なうコバルト酸
リチウム(LiCoO2 )、ニッケル酸リチウム(Li
NiO2)等のリチウムの複合酸化物を用いたものが一
般的である。
2. Description of the Related Art In recent years, household electric appliances have become more portable, and more and more products have a small power source having a charging function. Demand for laptop computers, mobile phones, and video cameras is particularly high. As these power sources, lightweight lithium secondary batteries capable of high-capacity output have been actively developed. The positive electrode active material of the lithium secondary battery includes lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (Li
It is common to use a composite oxide of lithium such as NiO 2 ).

【0003】ここでニッケル酸リチウムを用いたもの
は、高容量・高電位が期待されるが合成法が比較的難し
い。一方、コバルト酸リチウムを用いたものは、その合
成方法が比較的簡単であり、安定的に同じ特性のものが
大量に供給できることから、現在リチウム二次電池の活
物質として多く使われている。
Here, the one using lithium nickel oxide is expected to have high capacity and high potential, but the synthesis method is relatively difficult. On the other hand, the one using lithium cobalt oxide is comparatively easy to synthesize and can stably supply a large amount of lithium cobalt oxide having the same characteristics, so that it is currently widely used as an active material of a lithium secondary battery.

【0004】コバルト酸リチウムは、通常、(A)炭酸
コバルト及び/又は酸化コバルトと(B)炭酸リチウム
とをモル比で1:(1.01〜1.1)になるよう混合
し、800℃〜1000℃で焼成することで得られてい
た。ここで、炭酸リチウムのモル比を過剰にするのは、
次の理由によると考えられる。電極製造時において、コ
バルト酸リチウムの充填密度を上げることが好ましい
が、そのためにはコバルト酸リチウムの粒径があまり小
さいと不適切であり、重量平均粒径が10μm程度の大
きさのものが好ましい。合成の際に化学量論的に過剰の
炭酸リチウムを加えることにより、反応中の液相分が増
えることで凝集粒が成長し、前記のような粒径のコバル
ト酸リチウムを得ることができるということが、炭酸リ
チウムのモル比を過剰にする理由と考えられる。
Lithium cobalt oxide is usually prepared by mixing (A) cobalt carbonate and / or cobalt oxide and (B) lithium carbonate at a molar ratio of 1: (1.01 to 1.1) and then at 800 ° C. It was obtained by firing at ˜1000 ° C. Here, when the molar ratio of lithium carbonate is made excessive,
It is thought to be due to the following reasons. At the time of manufacturing the electrode, it is preferable to increase the packing density of lithium cobalt oxide, but for that purpose, it is inappropriate that the particle diameter of lithium cobalt oxide is too small, and it is preferable that the weight average particle diameter is about 10 μm. . By adding a stoichiometrically excess amount of lithium carbonate during synthesis, aggregates grow due to an increase in the amount of liquid phase during the reaction, and lithium cobalt oxide with the above-mentioned particle size can be obtained. It is considered that this is the reason for making the molar ratio of lithium carbonate excessive.

【0005】しかしながら、ここで得られるコバルト酸
リチウムは混合時に過剰な炭酸リチウムを加えているの
でリチウムが残存し、この未反応のリチウムは通常雰囲
気では炭酸リチウムとしてコバルト酸リチウム中に残留
するので、電池として活物質の単位重量当たりの放電容
量・充電容量は少なくなってしまう。また凝集すること
で粒成長したため、リチウムイオンのドープ・脱ドープ
にともなう収縮・膨張に対して耐性は弱くサイクル性は
充分とはいえない。したがって、コバルト酸リチウムに
おいては、充放電を繰り返すとリチウムイオンのドープ
・脱ドープの際に起こる活物質の膨張収縮により、電極
にクラックが入り、リチウムイオンの拡散性が悪くな
り、過電圧が高くなるという電極自体の劣化が起こり、
充放電を繰り返す度に充放電容量の低下が起こるという
サイクル性の問題があった。
However, since the lithium cobalt oxide obtained here contains excess lithium carbonate during mixing, lithium remains, and this unreacted lithium remains in the lithium cobalt oxide as lithium carbonate in a normal atmosphere. As a battery, the discharge capacity / charge capacity per unit weight of the active material is reduced. Further, since the particles grew by coagulation, the resistance to contraction / expansion due to doping / dedoping of lithium ions was weak and the cycle property was not sufficient. Therefore, in lithium cobalt oxide, when charging / discharging is repeated, expansion / contraction of the active material that occurs during doping / dedoping of lithium ions causes cracks in the electrodes, which reduces the diffusibility of lithium ions and increases the overvoltage. Deterioration of the electrode itself occurs,
There is a problem of cycleability that the charge / discharge capacity decreases every time charge / discharge is repeated.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、充放
電を繰り返しても容量の低下が少ない、優れたサイクル
特性を有するリチウム二次電池の正極活物質として用い
ることのできるコバルト酸リチウムの製造方法及びそれ
を用いたリチウム二次電池を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium cobalt oxide which can be used as a positive electrode active material of a lithium secondary battery having excellent cycle characteristics and having a small decrease in capacity even after repeated charging and discharging. The present invention provides a manufacturing method and a lithium secondary battery using the manufacturing method.

【0007】[0007]

【課題を解決するための手段】本発明者らは、このよう
な問題を解決するためコバルト酸リチウムの種々の製造
方法の検討を行なった結果、コバルト酸リチウムを焼
成、粉砕して得られたものにさらに特定条件の焼成を行
なって得られたコバルト酸リチウムを正極活物質として
用いたリチウム二次電池は優れたサイクル性を示すこと
を見いだし、本発明に到達した。すなわち、本発明は次
に記す発明である。 (1)(A)炭酸コバルト及び/又は酸化コバルトと、
(B)該炭酸コバルト及び/又は酸化コバルトに対する
モル比が過剰の炭酸リチウムとを、混合し、800〜1
000℃で焼成し、粉砕した後、800〜1000℃で
焼成することを特徴とするコバルト酸リチウムの製造方
法。 (2)前記(1)記載のコバルト酸リチウムの製造方法
により得られたコバルト酸リチウムを含有する正極を用
いることを特徴とするリチウム二次電池。
DISCLOSURE OF THE INVENTION The inventors of the present invention have studied various manufacturing methods of lithium cobalt oxide in order to solve such problems, and as a result, obtained lithium cobalt oxide by firing and crushing. The inventors have found that a lithium secondary battery using lithium cobalt oxide obtained by further firing under specific conditions as a positive electrode active material exhibits excellent cycleability, and reached the present invention. That is, the present invention is the invention described below. (1) (A) cobalt carbonate and / or cobalt oxide,
(B) 800 to 1 by mixing with lithium carbonate in an excess molar ratio to the cobalt carbonate and / or cobalt oxide,
A method for producing lithium cobalt oxide, which comprises firing at 000 ° C., pulverizing, and then firing at 800 to 1000 ° C. (2) A lithium secondary battery comprising a positive electrode containing lithium cobalt oxide obtained by the method for producing lithium cobalt oxide according to (1) above.

【0008】以下、本発明を詳細に説明する。本発明に
おけるコバルト酸リチウムの原料は、(A)炭酸コバル
ト及び/又は酸化コバルトと(B)炭酸リチウムとであ
り、(A)炭酸コバルト及び/又は酸化コバルトに対し
て(B)炭酸リチウムのモル比が過剰である。酸化コバ
ルトとしては、四三酸化コバルトが挙げられる。まず、
(A)炭酸コバルト及び/又は酸化コバルトと(B)炭
酸リチウムとを混合する。(A)炭酸コバルト及び/又
は酸化コバルトと(B)炭酸リチウムとは、モル比で
1:(1.01〜1.1)になるよう混合することが好
ましい。次に、該混合物を焼成する。焼成温度は、80
0〜1000℃であり、好ましくは850〜950℃で
ある。該焼成に先立って、たとえば、600℃〜800
℃で仮焼成を行なうことが好ましいが、粒径を揃えるた
めに仮焼成後、解砕することが好ましい。なお、いずれ
の焼成においても酸素を20体積%以上含む雰囲気中で
行なうことが好ましい。具体的には、空気雰囲気中又は
酸素雰囲気中で行なうことが好ましい。800〜100
0℃での焼成で得られたコバルト酸リチウムの重量平均
粒径を、前記のモル比を適宜調整することにより約6〜
50μmとすることが好ましい。次に、得られたコバル
ト酸リチウムを粉砕する。粉砕は、公知の方法で行なう
ことができ、ボールミルなどにより粉砕することが好ま
しい。粉砕後のコバルト酸リチウムの重量平均粒径が5
〜15μmになるように粉砕の程度を調整することが好
ましい。
The present invention will be described in detail below. The raw materials of lithium cobalt oxide in the present invention are (A) cobalt carbonate and / or cobalt oxide and (B) lithium carbonate, and (B) lithium carbonate mol relative to (A) cobalt carbonate and / or cobalt oxide. The ratio is excessive. Examples of cobalt oxide include cobalt trioxide. First,
(A) Cobalt carbonate and / or cobalt oxide and (B) lithium carbonate are mixed. The cobalt carbonate (A) and / or cobalt oxide and the lithium carbonate (B) are preferably mixed in a molar ratio of 1: (1.01 to 1.1). Next, the mixture is fired. The firing temperature is 80
It is 0 to 1000 ° C, preferably 850 to 950 ° C. Prior to the firing, for example, 600 ° C. to 800 ° C.
It is preferable to perform calcination at ℃, but it is preferable to crush after calcination to make the particle size uniform. It should be noted that any firing is preferably performed in an atmosphere containing 20% by volume or more of oxygen. Specifically, it is preferably performed in an air atmosphere or an oxygen atmosphere. 800-100
The weight average particle size of lithium cobalt oxide obtained by firing at 0 ° C. is adjusted to about 6 to 6 by appropriately adjusting the above molar ratio.
The thickness is preferably 50 μm. Next, the obtained lithium cobalt oxide is pulverized. The pulverization can be performed by a known method, and it is preferable to pulverize with a ball mill or the like. The weight average particle size of lithium cobalt oxide after pulverization is 5
It is preferable to adjust the degree of pulverization so that the particle size becomes ˜15 μm.

【0009】本発明のコバルト酸リチウムの製造方法
は、上記で得られた炭酸リチウムの残存するコバルト酸
リチウムを、さらに焼成することを特徴とする。ここに
おける焼成としては、焼成温度は800℃〜1000℃
である。焼成時間は5〜20時間が好ましい。さらに、
焼成温度は850℃〜950℃が好ましく、焼成時間は
5〜10時間が好ましい。
The method for producing lithium cobalt oxide of the present invention is characterized in that the lithium cobalt oxide remaining in the lithium carbonate obtained above is further calcined. As the firing here, the firing temperature is 800 ° C to 1000 ° C.
Is. The firing time is preferably 5 to 20 hours. further,
The firing temperature is preferably 850 ° C to 950 ° C, and the firing time is preferably 5 to 10 hours.

【0010】該焼成処理により、層状に配向性が強くな
るためにリチウムイオンのドープ・脱ドープの際の収縮
・膨張に対して耐性をもつサイクル性の優れたコバルト
酸リチウムを得ることができると考えられる。なお、い
ずれの焼成においても酸素を20体積%以上含む雰囲気
中で行なうことが好ましい。具体的には、空気雰囲気中
又は酸素雰囲気中で行なうことが好ましい。
The firing treatment makes it possible to obtain lithium cobalt oxide excellent in cycle property having resistance to shrinkage / expansion during doping / dedoping of lithium ions because the orientation is strengthened in layers. Conceivable. It should be noted that any firing is preferably performed in an atmosphere containing 20% by volume or more of oxygen. Specifically, it is preferably performed in an air atmosphere or an oxygen atmosphere.

【0011】次に、本発明のリチウム二次電池について
詳細に説明する。本発明のリチウム二次電池の正極は、
前記の方法により得られた得られたコバルト酸リチウム
を含有するものである。該正極は、具体的には、該コバ
ルト酸リチウム、導電材としての炭素質材料、結着材と
しての熱可塑性樹脂などを含有するものが挙げられる。
炭素質材料としては、コークス、黒鉛などが挙げられ
る。熱可塑性樹脂としては、ポリフッ化ビニリデン、ポ
リエチレン、ポリプロピレンなどが挙げられ、中でもポ
リフッ化ビニリデンが好ましい。
Next, the lithium secondary battery of the present invention will be described in detail. The positive electrode of the lithium secondary battery of the present invention is
It contains the lithium cobalt oxide obtained by the above method. Specific examples of the positive electrode include those containing the lithium cobalt oxide, a carbonaceous material as a conductive material, and a thermoplastic resin as a binder.
Examples of the carbonaceous material include coke and graphite. Examples of the thermoplastic resin include polyvinylidene fluoride, polyethylene, polypropylene and the like, and among them, polyvinylidene fluoride is preferable.

【0012】本発明のリチウム二次電池の負極は、負極
活物質としての炭素質材料、結着材としての熱可塑性樹
脂などを含有するものが挙げられる。炭素質材料として
は、リチウムイオンのドープ・脱ドープが可能なコーク
ス、黒鉛などが挙げられる。熱可塑性樹脂としては、ポ
リフッ化ビニリデン、ポリエチレン、ポリプロピレンな
どが挙げられ、中でもポリフッ化ビニリデンが好まし
い。
Examples of the negative electrode of the lithium secondary battery of the present invention include those containing a carbonaceous material as a negative electrode active material and a thermoplastic resin as a binder. Examples of the carbonaceous material include coke and graphite that can be doped with lithium ions and dedoped. Examples of the thermoplastic resin include polyvinylidene fluoride, polyethylene, polypropylene and the like, and among them, polyvinylidene fluoride is preferable.

【0013】本発明のリチウム二次電池の電解液として
は、公知のものが用いられるが、プロピレンカーボネー
ト、エチレンカーボネートなどのカーボネート類、1,
2−ジメトキシエタン、1,3−ジメトキシプロパンな
どのエーテル類、ギ酸メチル、酢酸メチルなどのエステ
ル類が挙げられ、中でもプロピレンカーボネートと1,
2−ジメトキシエタンの混合溶媒が好ましい。
As the electrolytic solution of the lithium secondary battery of the present invention, known ones are used, but carbonates such as propylene carbonate and ethylene carbonate, 1,
Examples thereof include ethers such as 2-dimethoxyethane and 1,3-dimethoxypropane, and esters such as methyl formate and methyl acetate. Among them, propylene carbonate and 1,
A mixed solvent of 2-dimethoxyethane is preferred.

【0014】本発明のリチウム二次電池の製造方法とし
ては、公知の方法が用いられるが、たとえば電極活物質
をペースト化して集電体に塗布し、シート状電極を作製
し、得られたシート状電極を巻き取り、電池缶に挿入し
て、リードなどを配設して、電解液を含浸した後密閉す
るという製造方法が挙げられる。
As a method for producing the lithium secondary battery of the present invention, a known method is used. For example, the electrode active material is made into a paste and applied to a current collector to produce a sheet electrode, and the obtained sheet is obtained. A manufacturing method may be mentioned in which a strip-shaped electrode is wound up, inserted into a battery can, a lead or the like is disposed, the electrolytic solution is impregnated, and then sealed.

【0015】[0015]

【実施例】本発明を以下の実施例にてさらに詳細に説明
するが、本発明はこれらに限定されるものではない。 〔コバルト酸リチウムの重量平均粒径の測定方法〕島津
製作所製SALD1100を用いて、レーザー回折法に
より測定した。 〔充放電試験に用いた電極の作成条件〕活物質としてコ
バルト酸リチウム87重量部、導電材として人造黒鉛1
0重量部、ポリフッ化ビニリデン3重量部を1−メチル
−2−ピロリドンを溶剤として混練、ペースト化した。
このペーストを集電体であるアルミ箔上に塗布後、真空
乾燥した後、プレスを行ない、シート状電極を得た。対
極にリチウム金属、セパレータにポリプロピレン、電解
液としてプロピレンカーボネートと1,2−ジメトキシ
エタンの混合溶媒を用いた。 〔リチウム二次電池の充放電試験〕充電電流=500μ
A、充電上限電圧=4.2V、放電電流=500μA、
放電下限電圧=2.5Vとし、充放電を10サイクル行
ない、充電容量、放電容量を測定した。このとき容量は
充電容量・放電容量ともそれぞれの最大放電容量を1と
して規格化した値を示した。
EXAMPLES The present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the invention thereto. [Measurement method of weight average particle diameter of lithium cobalt oxide] SALD1100 manufactured by Shimadzu Corporation was used for measurement by a laser diffraction method. [Conditions for Preparing Electrodes Used for Charge / Discharge Test] 87 parts by weight of lithium cobalt oxide as an active material and artificial graphite 1 as a conductive material
0 parts by weight and 3 parts by weight of polyvinylidene fluoride were kneaded into a paste by using 1-methyl-2-pyrrolidone as a solvent.
This paste was applied on an aluminum foil as a current collector, dried in vacuum and then pressed to obtain a sheet electrode. Lithium metal was used as the counter electrode, polypropylene was used as the separator, and a mixed solvent of propylene carbonate and 1,2-dimethoxyethane was used as the electrolytic solution. [Lithium secondary battery charge / discharge test] Charge current = 500μ
A, charge upper limit voltage = 4.2V, discharge current = 500 μA,
The discharge lower limit voltage was set to 2.5 V, charging and discharging were performed for 10 cycles, and the charge capacity and the discharge capacity were measured. At this time, the capacities of both the charging capacities and the discharging capacities were standardized with the maximum discharging capacities being set to 1.

【0016】実施例1 炭酸コバルト(和光純薬工業株式会社製、試薬特級グレ
ード)115.58gと炭酸リチウム(和光純薬工業株
式会社製、試薬特級グレード)34.42gをボールミ
ルにて6時間混合する。このときリチウムの過剰率はモ
ル比で5%であるように調整した。この混合粉末をアル
ミナルツボに入れ、700℃で5時間の仮焼成を行なっ
た。得られた粉末を乳鉢にて解砕した。ルツボにもど
し、900℃で2時間の焼成を行なった。得られた粉末
の重量平均粒径は9.3μmであった。該粉末を乳鉢で
粉砕した。粉砕後の粉末の重量平均粒径は、8.8μm
であった。粉砕により重量平均粒径は、もとの重量平均
粒径の95%になった。得られたコバルト酸リチウム中
のリチウム残留率は、化学分析により5重量%であっ
た。
Example 1 115.58 g of cobalt carbonate (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade) and 34.42 g of lithium carbonate (Wako Pure Chemical Industries, Ltd. reagent special grade) were mixed in a ball mill for 6 hours. To do. At this time, the excess ratio of lithium was adjusted so that the molar ratio was 5%. This mixed powder was put into an alumina crucible and calcined at 700 ° C. for 5 hours. The obtained powder was crushed in a mortar. The crucible was returned to the crucible and baked at 900 ° C. for 2 hours. The weight average particle diameter of the obtained powder was 9.3 μm. The powder was ground in a mortar. The weight average particle diameter of the powder after pulverization is 8.8 μm.
Met. By pulverization, the weight average particle diameter became 95% of the original weight average particle diameter. The lithium residual rate in the obtained lithium cobalt oxide was 5% by weight by chemical analysis.

【0017】この粉砕後のコバルト酸リチウムをアルミ
ナルツボに戻し、空気中で900℃で10時間の焼成処
理を加えた。得られたコバルト酸リチウムの粉末X線回
折スペクトルを図1に示す。ここで(003)面のピー
ク強度の他のピークに対するピーク強度比を比較する
と、比較例1におけるそれよりも実施例1におけるそれ
の方が、相対的に大きいことから、実施例1における粉
末を構成する結晶子は層状に配向している傾向が大きい
と考えられる。このためリチウムイオンのドープ脱ドー
プの際、ランダムに収縮・膨張が起こらず、収縮・膨張
に対して耐性が強く、充放電のサイクル性が向上するも
のと考えられる。得られたコバルト酸リチウムを用いリ
チウム二次電池を作成した。得られたリチウム二次電池
の充放電試験の結果を表1に示す。
The pulverized lithium cobalt oxide was returned to the alumina crucible and subjected to a firing treatment in air at 900 ° C. for 10 hours. The powder X-ray diffraction spectrum of the obtained lithium cobalt oxide is shown in FIG. When the peak intensity ratio of the peak intensity of the (003) plane to other peaks is compared here, that in Example 1 is relatively larger than that in Comparative Example 1, so that the powder in Example 1 was It is considered that the constituent crystallites tend to be oriented in layers. Therefore, it is considered that shrinkage / expansion does not occur randomly at the time of lithium ion doping / doping, resistance to shrinkage / expansion is strong, and cycleability of charge / discharge is improved. A lithium secondary battery was prepared using the obtained lithium cobalt oxide. Table 1 shows the result of the charge / discharge test of the obtained lithium secondary battery.

【0018】比較例1 空気中で900℃で10時間の加熱処理を加えない以外
は実施例1と同様な条件でコバルト酸リチウムを作成し
た。得られたコバルト酸リチウムの粉末X線回折スペク
トルを図2に示す。得られたコバルト酸リチウムを用い
リチウム二次電池を作成した。得られたリチウム二次電
池の充放電試験の結果を表1に示す。
Comparative Example 1 Lithium cobalt oxide was prepared under the same conditions as in Example 1 except that the heat treatment was not performed in air at 900 ° C. for 10 hours. The powder X-ray diffraction spectrum of the obtained lithium cobalt oxide is shown in FIG. A lithium secondary battery was prepared using the obtained lithium cobalt oxide. Table 1 shows the result of the charge / discharge test of the obtained lithium secondary battery.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明のコバルト酸リチウムの製造方法
は、ニッケルやマンガン等を含む他のリチウムの複合酸
化物の合成法に比べ比較的容易な合成法であり、該製造
方法により得られたコバルト酸リチウムを活物質とする
リチウム二次電池は、サイクル性の優れた電池を得るこ
とができることから工業的価値はきわめて大きい。
Industrial Applicability The method for producing lithium cobalt oxide of the present invention is a comparatively easy synthetic method as compared with the synthetic method of other lithium composite oxides containing nickel, manganese and the like, and was obtained by the method. A lithium secondary battery using lithium cobalt oxide as an active material has an extremely large industrial value because a battery having excellent cycleability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られたコバルト酸リチウムの粉末
X線回折スペクトル。
1 is a powder X-ray diffraction spectrum of lithium cobalt oxide obtained in Example 1. FIG.

【図2】比較例1で得られたコバルト酸リチウムの粉末
X線回折スペクトル。
2 is a powder X-ray diffraction spectrum of lithium cobalt oxide obtained in Comparative Example 1. FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(A)炭酸コバルト及び/又は酸化コバル
トと、(B)該炭酸コバルト及び/又は酸化コバルトに
対するモル比が過剰の炭酸リチウムとを、混合し、80
0〜1000℃で焼成し、粉砕した後、800〜100
0℃で焼成することを特徴とするコバルト酸リチウムの
製造方法。
1. A mixture of (A) cobalt carbonate and / or cobalt oxide and (B) lithium carbonate having an excess molar ratio to the cobalt carbonate and / or cobalt oxide is mixed,
After calcination at 0 to 1000 ° C and crushing, 800 to 100
A method for producing lithium cobalt oxide, which comprises firing at 0 ° C.
【請求項2】請求項1記載のコバルト酸リチウムの製造
方法により得られたコバルト酸リチウムを含有する正極
を用いることを特徴とするリチウム二次電池。
2. A lithium secondary battery comprising a positive electrode containing lithium cobalt oxide obtained by the method for producing lithium cobalt oxide according to claim 1.
JP6013515A 1994-02-07 1994-02-07 Manufacture of cobalt oxide lithium and lithium secondary battery Pending JPH07220723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6013515A JPH07220723A (en) 1994-02-07 1994-02-07 Manufacture of cobalt oxide lithium and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6013515A JPH07220723A (en) 1994-02-07 1994-02-07 Manufacture of cobalt oxide lithium and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH07220723A true JPH07220723A (en) 1995-08-18

Family

ID=11835295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6013515A Pending JPH07220723A (en) 1994-02-07 1994-02-07 Manufacture of cobalt oxide lithium and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH07220723A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867408A1 (en) * 1997-03-25 1998-09-30 Toda Kogyo Corp. Process for producing lithium-cobalt oxide
WO2001091211A1 (en) * 2000-05-24 2001-11-29 Mitsubishi Cable Industries, Ltd. Lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them
JP2002063941A (en) * 2000-08-17 2002-02-28 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
JP2002321921A (en) * 2001-04-24 2002-11-08 Sony Corp Method for manufacturing lithium cobalt oxide
JP2003516297A (en) * 1999-12-10 2003-05-13 エフエムシー・コーポレイション Lithium cobalt oxide and method for producing the same
CN108483510A (en) * 2018-01-23 2018-09-04 格林美(无锡)能源材料有限公司 A kind of automatic production method for producing high voltage cobalt acid lithium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867408A1 (en) * 1997-03-25 1998-09-30 Toda Kogyo Corp. Process for producing lithium-cobalt oxide
US6103213A (en) * 1997-03-25 2000-08-15 Toda Kogyo Corporation Process for producing lithium-cobalt oxide
JP2003516297A (en) * 1999-12-10 2003-05-13 エフエムシー・コーポレイション Lithium cobalt oxide and method for producing the same
JP4960561B2 (en) * 1999-12-10 2012-06-27 エフエムシー・コーポレイション Lithium cobalt oxide and method for producing the same
WO2001091211A1 (en) * 2000-05-24 2001-11-29 Mitsubishi Cable Industries, Ltd. Lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them
CN1310357C (en) * 2000-05-24 2007-04-11 三菱电线工业株式会社 Lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them
JP2002063941A (en) * 2000-08-17 2002-02-28 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
JP2002321921A (en) * 2001-04-24 2002-11-08 Sony Corp Method for manufacturing lithium cobalt oxide
CN108483510A (en) * 2018-01-23 2018-09-04 格林美(无锡)能源材料有限公司 A kind of automatic production method for producing high voltage cobalt acid lithium
CN108483510B (en) * 2018-01-23 2021-01-01 格林美(江苏)钴业股份有限公司 Automatic production method for producing high-voltage lithium cobalt oxide

Similar Documents

Publication Publication Date Title
KR100677029B1 (en) Active material, production method thereof and non-aqueous electrolyte secondary battery comprising the same
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
US9379382B2 (en) Positive electrode materials for lithium-ion batteries and method for preparing the same
JP3427570B2 (en) Non-aqueous electrolyte secondary battery
JP2000277116A (en) Lithium secondary battery
JP2021114412A (en) Positive electrode active material for all-solid-state lithium-ion battery, electrode, and all-solid-state lithium-ion battery
JP2015128023A (en) Cathode active material for lithium ion battery and method of manufacturing the same
JPH0982325A (en) Manufacture of positive active material
JP2005150057A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method, and nonaqueous system lithium secondary battery using the material
JPH1092429A (en) Manufacture of non-aqueous solvent secondary battery and non-aqueous solvent secondary battery
JP3605256B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode
CN102414883A (en) Positive active material and nonaqueous secondary battery equipped with positive electrode including same
JP3951715B2 (en) Cathode active material for lithium ion secondary battery and method for producing the same
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP2011060610A (en) Silicon oxide and anode material for lithium ion secondary battery
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
Zhu et al. Li4–xMgxTi5O12 (0.05≤ x≤ 0.2) Anode Material with Improved Rate and Electrochemical Performance for Li-Ion Batteries
KR20190107502A (en) Lithium-titanium composite oxide comprising primary particle doped by aluminum
JPH07220723A (en) Manufacture of cobalt oxide lithium and lithium secondary battery
JP2014229490A (en) Method for producing solid electrolyte for battery
JP3687106B2 (en) Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery
JP2002208441A (en) Nonaqueous electrolyte secondary cell
JPH10125324A (en) Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof
WO2022219843A1 (en) Battery
JP2003187794A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and manufacturing method therefor