JPH07219310A - Electrostatic charging device - Google Patents

Electrostatic charging device

Info

Publication number
JPH07219310A
JPH07219310A JP2743594A JP2743594A JPH07219310A JP H07219310 A JPH07219310 A JP H07219310A JP 2743594 A JP2743594 A JP 2743594A JP 2743594 A JP2743594 A JP 2743594A JP H07219310 A JPH07219310 A JP H07219310A
Authority
JP
Japan
Prior art keywords
charging
magnetic
pole
sleeve
photoconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2743594A
Other languages
Japanese (ja)
Other versions
JP3240027B2 (en
Inventor
Shinji Yamane
信司 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP02743594A priority Critical patent/JP3240027B2/en
Publication of JPH07219310A publication Critical patent/JPH07219310A/en
Application granted granted Critical
Publication of JP3240027B2 publication Critical patent/JP3240027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Color Electrophotography (AREA)

Abstract

PURPOSE:To provide an invention applicable to an electrostatic charging device which makes it possible to assure stable and uniform electrostatic chargeability without generating leakage of electrostatic charge particles, etc., and without deteriorating an electrostatic charging material even in a long-term use. CONSTITUTION:In this electrostatic charging device formed by constituting a photoreceptor 1 in such a manner that the electrostatic charge thereof is made possible via magnetic particle 4 groups carried by two magnet bodies, a main pole A1 and a counter pole B1, a separating pole A4 constituted to separate the magnetic particle 4 groups existing on the upstream side in the rotating direction of the photoreceptor from the main pole A1 separating from an electrostatic charging sleeve 2 and to drop these particle groups onto the photoreceptor 1, is disposed. The average grain size of the magnetic particle 4 groups is set at about 10 to 40mum, the saturation magnetization in a magnetic field of 1KOe of the magnetic particle 4 groups at 50 to 200emu/g and the non-dielectric constant epsilonr at <=40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はいわゆるカールソンプロ
セスに基づく電子写真装置、例えば複写機、プリンタ、
ファクシミリ内に組込まれるか、若しくはこれらの機器
のプロセスカートリッジに組込まれる帯電装置として適
用される発明に係り、特に粒子帯電によりベルト状若し
くはドラム状感光体を帯電させる電子写真装置に於ける
帯電装置として適用される発明に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic apparatus based on the so-called Carlson process, such as a copying machine, a printer,
The present invention relates to an invention applied as a charging device incorporated in a facsimile or incorporated in a process cartridge of these devices, and particularly as a charging device in an electrophotographic device for charging a belt-shaped or drum-shaped photosensitive member by particle charging. It relates to the invention to be applied.

【0002】[0002]

【従来の技術】従来より感光体ドラム外周面上に、露
光、現像、転写、クリーニング(残留トナー除去)、除
電、及び帯電の各プロセス手段を配置し、所定の電子写
真プロセスにより画像形成を行なう、いわゆるカールソ
ンプロセスに基づく電子写真装置は周知である。
2. Description of the Related Art Conventionally, process means for exposing, developing, transferring, cleaning (removing residual toner), discharging, and charging are arranged on the outer peripheral surface of a photosensitive drum, and an image is formed by a predetermined electrophotographic process. Electrophotographic devices based on the so-called Carlson process are well known.

【0003】この種の装置に用いる帯電手段は一般に細
いタングステン線に高電圧を印加してコロナ放電を行な
うコロトロン方式、又導電ローラに数百ボルトの電圧を
かけて感光体ドラムと接触帯電させるもの、又導電性ブ
ラシに電圧を印加して感光体ドラムに接触させながら帯
電を行なうもの等が存在する。しかしながらコロトロン
方式は高電圧を使用し、又オゾンを発生する等安全上、
環境上の問題が多い。又帯電ローラは感光体ドラムとの
接触が線接触であるために帯電が不安定である。更にブ
ラシ帯電方式はドラムとブラシが接触して帯電を行なう
為に、ブラシの帯電劣化が生じやすい。
The charging means used in this type of apparatus is generally a corotron system in which a high voltage is applied to a thin tungsten wire to perform corona discharge, or a conductive roller is applied with a voltage of several hundreds of volts to contact and charge a photosensitive drum. In addition, there is one in which a voltage is applied to a conductive brush so that the brush is charged while being in contact with the photosensitive drum. However, the corotron method uses a high voltage, and in terms of safety such as generating ozone,
There are many environmental problems. Further, since the charging roller is in line contact with the photosensitive drum, charging is unstable. Further, in the brush charging method, since the drum and the brush contact each other to perform charging, the charging deterioration of the brush is likely to occur.

【0004】かかる欠点を解消するために、感光体ドラ
ムと磁石体を内挿した帯電スリーブに帯電バイアスを印
加した状態で、該スリーブに磁性粒子群を付着させて刷
子状の磁気穂を感光体ドラムに摺擦させてスリーブを介
して帯電バイアスを磁性粒子群に印加させて帯電を行な
う、いわゆる粒子帯電法が提案されている。(特開昭5
9ー133569、特開昭63ー187267他)
In order to solve such a drawback, in a state where a charging bias is applied to a charging sleeve having a photosensitive drum and a magnet body inserted therein, a group of magnetic particles is attached to the sleeve to form a brush-shaped magnetic brush on the photosensitive body. A so-called particle charging method has been proposed in which a drum is rubbed and a charging bias is applied to a group of magnetic particles via a sleeve to perform charging. (JP-A-5
9-133569, JP-A-63-187267, etc.)

【0005】かかる帯電法においては、固定磁石体によ
り磁気穂を形成した場合、該磁石体よりの距離の2乗に
比例して磁界が減衰し、従って感光体ドラム表面に位置
する磁性粒子の磁気保持力が最も弱い。従ってこの状態
で感光体ドラムを回転させると、該ドラム表面に遠心力
が働き、静電的に感光体ドラムに付着している磁性粒子
は固定磁石集成体よりの磁気保持力(磁界)に抗して前
記磁性粒子が帯電領域から離脱する方向に力が働き、該
感光体ドラムに付着した粒子が次工程の露光及び現像等
に悪影響を及ぼす。
In such a charging method, when a magnetic brush is formed by a fixed magnet body, the magnetic field is attenuated in proportion to the square of the distance from the magnet body, so that the magnetic particles on the surface of the photosensitive drum are magnetized. The holding power is the weakest. Therefore, when the photosensitive drum is rotated in this state, a centrifugal force acts on the surface of the photosensitive drum, and the magnetic particles electrostatically attached to the photosensitive drum resist the magnetic coercive force (magnetic field) from the fixed magnet assembly. Then, a force acts in the direction in which the magnetic particles separate from the charging area, and the particles attached to the photosensitive drum adversely affect the exposure and development in the next step.

【0006】かかる欠点を解消するために、図3に示す
ように、前記帯電スリーブを用いずに帯電バイアス電源
101を接続した電極102を被覆した固定磁石体10
3を感光体ドラム104に対向配置すると共に、該固定
磁石体103と対向させて、感光体ドラム104の背面
側に逆極性の磁石体105を配し、該磁石体105と固
定磁石体103間に形成される磁場により前記磁性粒子
群107を帯電領域に保持させながら感光体の帯電を行
なうように構成した技術が開示されている。
In order to solve such a drawback, as shown in FIG. 3, the fixed magnet body 10 is covered with the electrode 102 to which the charging bias power source 101 is connected without using the charging sleeve.
3 is arranged so as to face the photosensitive drum 104, faces the fixed magnet body 103, and a magnet body 105 of opposite polarity is arranged on the back side of the photosensitive drum 104, and between the magnet body 105 and the fixed magnet body 103. There is disclosed a technique in which the photosensitive member is charged while the magnetic particle group 107 is held in the charging region by the magnetic field formed in the above.

【0007】[0007]

【発明が解決しようとする課題】かかる技術によれば、
磁性粒子群107の磁気保持を行なう磁石体が帯電ギャ
ップ108の片側にのみ配置されているのではなく、両
側に配置されている為に、帯電ギャップ108間の磁界
の勾配(ΔH/Δt)を大きく設定出来るが、前記した
磁石体と磁性粒子の磁化力は粒子径に依存し、粒子径が
小さくなると等比級数的に磁気的拘束力が低下し、感光
体ドラム生成する遠心力や静電的保持力により該ドラム
表面に付着した粒子により粒子漏洩が生じてしまう。又
前記粒子の静電的付着を阻止するために、粒子の電気抵
抗率をむやみに下げると、感光体の絶縁破壊や感光体欠
陥のリークが生じ、帯電バイアスにより感光体ドラム側
にピンホール等が発生しやすい。この為、前記装置にお
いては固定磁石体103の側面に絶縁性シート109を
感光体ドラム側に垂下させ、磁性粒子の飛散を機械的に
防止している。
According to such a technique,
Since the magnet body for magnetically retaining the magnetic particle group 107 is not arranged only on one side of the charging gap 108 but on both sides thereof, the magnetic field gradient (ΔH / Δt) between the charging gaps 108 is Although it can be set large, the magnetizing force of the magnet body and magnetic particles described above depends on the particle diameter, and as the particle diameter becomes smaller, the magnetic restraining force decreases in a geometrical series, and the centrifugal force and electrostatic force generated on the photosensitive drum are reduced. The particles attached to the surface of the drum due to the static holding force cause particle leakage. If the electric resistivity of the particles is lowered unnecessarily in order to prevent electrostatic adhesion of the particles, dielectric breakdown of the photoconductor or leakage of photoconductor defects occurs, and pinholes or the like on the photoconductor drum side due to the charging bias. Is likely to occur. Therefore, in the above apparatus, the insulating sheet 109 is hung on the side surface of the fixed magnet body 103 toward the photoconductor drum side to mechanically prevent scattering of magnetic particles.

【0008】しかしながら前記のように絶縁シートをド
ラムに接触する構成では、摩耗等により長期使用に耐え
られないのみならず、磁性粒子を良導電性の材料にしな
ければ、絶縁性シートと粒子との摺擦帯電により粒子固
着等が生じてしまい好ましくない。
However, in the structure in which the insulating sheet is in contact with the drum as described above, not only can it not withstand long-term use due to abrasion or the like, but unless the magnetic particles are made of a material having good conductivity, the insulating sheet and particles are Particle rubbing and the like may cause particle sticking, which is not preferable.

【0009】本発明はかかる従来技術の欠点に鑑み、前
記帯電粒子の漏洩等が生じることなく又長期使用によっ
ても帯電剤が劣化する事なく安定した均一な帯電能を確
保し得る帯電装置として適用される発明を提供する事を
目的とする。本発明の他の目的は、絶縁破壊をおこすこ
となく磁性粒子の循環を良好に確保出来る帯電装置とし
て適用される発明を提供する事を目的とする。本発明の
他の目的は、製造上からも、使用者側からも、更に環境
にも十分配慮することが出来、極めて実用性の高い帯電
装置が得る事の出来る発明を提供することを目的とす
る。
In view of the above-mentioned drawbacks of the prior art, the present invention is applied as a charging device capable of ensuring a stable and uniform charging ability without causing leakage of the charged particles or deterioration of the charging agent even after long-term use. It is an object of the present invention to provide an invention that is made. Another object of the present invention is to provide an invention applied as a charging device capable of ensuring good circulation of magnetic particles without causing dielectric breakdown. Another object of the present invention is to provide an invention capable of obtaining a charging device having extremely high practicability, which can be sufficiently considered from the viewpoint of manufacturing, the user side, and the environment. To do.

【0010】[0010]

【課題を解決するための手段】本発明は、図1(A)に
示すように、感光体の帯電領域上に、該感光体に向けて
固定配置した第1の磁石体(以下主極という)を内包す
る非磁性帯電スリーブを、又前記帯電領域上に位置する
感光体ドラムの背面側に、前記主極と逆極性の第2の磁
石体(以下対向極という)を配し、前記両磁石体により
担持された磁性粒子群を介して感光体を帯電可能に構成
した帯電装置において、前記磁性粒子群の前記主極より
感光体回転方向上流側に位置する前記磁性粒子群を帯電
スリーブから分離し、前記感光体に落下可能に構成した
分離極を配するとともに平均粒径を略10〜40μmに
設定すると共に、前記磁性粒子群の1kOeの磁場での
飽和磁化を50emu/g〜200emu/g、比誘電
率εrを40以下に設定したことを特徴とする。請求項
2記載の発明は、前記磁性粒子群が体積固有抵抗が10
6 以下の導電性磁性粒子と体積固有抵抗が106 以上の
高抵抗磁性粒子の混合粒子群であり全体としての体積固
有抵抗が103 〜108 Ω・cmの範囲にあり、高抵抗
磁性粒子の平均粒径を導電性磁性粒子の平均粒径より大
にした事を特徴とする。この場合前記高抵抗磁性粒子の
20μm以下の粒子分布が5%以下になるように構成す
るのが良い。尚、前記体積固有抵抗は、底部に電極を有
する内径20mmのテフロン製筒体に、前記粒子を1.
5g入れ、上部より外径20mmφの電極を挿入した
後、該電極上面に1Kgの荷重を印加して測定した値で
ある。
According to the present invention, as shown in FIG. 1 (A), a first magnet body (hereinafter referred to as a main pole) fixedly arranged on a charged area of a photoconductor is directed toward the photoconductor. ) Is included, and a second magnet body having a polarity opposite to the main pole (hereinafter referred to as an opposite pole) is arranged on the back side of the photosensitive drum located on the charging area. In a charging device configured to charge a photoconductor through a magnetic particle group carried by a magnet body, the magnetic particle group located upstream of the main pole of the magnetic particle group in the photoconductor rotation direction from a charging sleeve Separation is performed so that a separation pole that can be dropped is disposed on the photoconductor, the average particle size is set to approximately 10 to 40 μm, and the saturation magnetization of the magnetic particle group in a magnetic field of 1 kOe is 50 emu / g to 200 emu / g, relative permittivity εr to 40 or less The feature is that it is set. In the invention according to claim 2, the volume resistivity of the magnetic particle group is 10 or less.
There 6 following conductive magnetic particles and a volume resistivity of a mixed particles of 106 or more high-resistance magnetic particle volume resistivity as a whole in the range of 10 3 ~10 8 Ω · cm, a high-resistance magnetic particles The average particle size of is larger than the average particle size of the conductive magnetic particles. In this case, it is preferable that the high resistance magnetic particles have a particle distribution of 20 μm or less of 5% or less. In addition, the volume resistivity is 1. Teflon cylinder having an inner diameter of 20 mm and an electrode at the bottom,
It is a value measured by inserting 5 g and inserting an electrode having an outer diameter of 20 mmφ from the upper part, and then applying a load of 1 kg to the upper surface of the electrode.

【0011】この場合前記帯電スリーブを感光体ドラム
の回転方向に対しアゲインスト方向に回転させるととも
に、前記主極A1 の前記最近接点P上における磁束密度
が、前記対向極B1 の前記最近接点P上における磁束密
度より大になる如く構成するのが良い。又、前記最大磁
束密度位置Q1 が最近接点Pを挟んで感光体ドラム回転
方向上流側 の+5°〜−30°、前記最大磁束密度位
置Q2 が最近接点Pを挟んで−10°〜 +5°の範囲
に配するのがよい。又更に感光体移動方向下流側におけ
る帯電スリーブ内に、前記対向極B1 と同極性の第2の
磁石体(以下シールド極A2 という)を配することによ
り磁気シールドが一層容易になる。
In this case, the charging sleeve is rotated in the against direction with respect to the rotation direction of the photosensitive drum, and the magnetic flux density on the closest contact point P of the main pole A 1 is the closest contact point of the opposite pole B 1. It is preferable that the magnetic flux density on P be higher than the magnetic flux density. Further, the maximum magnetic flux density position Q 1 is + 5 ° to −30 ° on the upstream side in the rotation direction of the photosensitive drum with the closest contact point P interposed, and the maximum magnetic flux density position Q 2 is −10 ° to +5 with the closest contact point P interposed. It is better to place it in the range of °. Further, by disposing a second magnet body (hereinafter referred to as shield pole A 2 ) having the same polarity as the opposing pole B 1 in the charging sleeve on the downstream side in the moving direction of the photoconductor, magnetic shielding becomes easier.

【0012】[0012]

【作用】本発明は磁性粒子群4の流出現象は、前記感光
体のスリーブ最近接点Pにおいて磁性粒子4が受ける磁
気力と静電気力との関係に依存する。即ち最近接点Pに
おいて粒子に働く磁気力Fmは、 Fm=k1 ・d31 :比例関数 d:粒径 即ち最近接点Pにおいて粒子に働く静電気力Fcは、 Fc=k2 ・(T・d)2 ・ΔV2 T:非誘電率に依存する関数 ΔV:電位差(帯電印加
電圧と感光層に加わる電圧) 磁気粒子が磁気力に打ち勝って静電気力で流出するとき
の電位差ΔVは Fc≧Fm ΔV≧(T)-1 ・(k1 ・d/k21/2 …1) 従って上記1)式より明らかなように粒子径が小さ過ぎ
るとFc≧Fmとなり、粒子の流出が生じる。
In the present invention, the outflow phenomenon of the magnetic particle group 4 depends on the relationship between the magnetic force and the electrostatic force which the magnetic particle 4 receives at the sleeve closest contact point P of the photoreceptor. That is, the magnetic force Fm acting on the particle at the closest point P is: Fm = k 1 · d 3 k 1 : Proportional function d: Particle size That is, the electrostatic force Fc acting on the particle at the closest point P is Fc = k 2 · (T · d) 2 · ΔV 2 T: Function dependent on non-dielectric constant ΔV: Potential difference (voltage applied to charging and voltage applied to photosensitive layer) Potential difference ΔV when magnetic particles overcome magnetic force and flow out by electrostatic force is Fc ≧ Fm ΔV ≧ (T) −1 · (k 1 · d / k 2 ) 1/2 ... 1) Therefore, as is clear from the above formula 1), if the particle size is too small, Fc ≧ Fm and the particles flow out.

【0013】一方、粒子径が大き過ぎると粒子の洩出は
生じないが、粒子径が大きくなるにしたがって磁性粒子
のスリーブ/ドラム間の充填率が低下し、その分同一帯
電バイアスにおいても帯電される感光体表面電位が低下
し、又図1(B)に示すように感光体1表面上における
隣接する磁性粒子4同士の空隙4aが多くなり、その分
帯電の均一むらが出来やすい。従って本発明は、平均粒
径を略10μm〜40μmに設定する事により、帯電領
域よりの粒子漏洩を円滑に阻止し得る。
On the other hand, if the particle size is too large, the particles do not leak, but as the particle size increases, the packing ratio of the magnetic particles between the sleeve and the drum decreases, and the particles are charged by the same charging bias. As a result, the surface potential of the photosensitive member decreases, and as shown in FIG. 1B, the number of voids 4a between adjacent magnetic particles 4 on the surface of the photosensitive member 1 increases, and uniform uneven charging is likely to occur. Therefore, in the present invention, by setting the average particle size to approximately 10 μm to 40 μm, it is possible to smoothly prevent particle leakage from the charging region.

【0014】又、前記磁性粒子群の磁気保持力は飽和磁
化に依存し、又、磁性粒子群の比誘電率が大きくなるほ
ど帯電剤に誘起される静電気力は増す。従って、前記磁
性粒子群の1kOeの磁場での飽和磁化を50emu/
g〜200emu/gが好ましく、比誘電率εrを40
以下に設定するのがよい。なお200emu/g以上で
比誘電率εrが40を越える磁性粒子群であると、後記
する図2に示す磁性粒子群4が分離極A4 で分離でき
ず、帯電スリーブ回転方向下流側に搬送されることとな
る。
The magnetic coercive force of the magnetic particle group depends on the saturation magnetization, and the electrostatic force induced in the charging agent increases as the relative dielectric constant of the magnetic particle group increases. Therefore, the saturation magnetization of the magnetic particle group in a magnetic field of 1 kOe is 50 emu /
g to 200 emu / g is preferable, and the relative dielectric constant εr is 40
The following should be set. If the magnetic particle group has a relative permittivity εr of more than 40 at 200 emu / g or more, the magnetic particle group 4 shown in FIG. 2 described later cannot be separated by the separation pole A 4 and is conveyed to the downstream side in the rotation direction of the charging sleeve. The Rukoto.

【0015】又、本発明は体積固有抵抗が106 Ω・c
m以下の導電性磁性粒子と体積固有抵抗が106 Ω・c
m以上の高抵抗磁性粒子の混合粒子群で前記磁性粒子群
を構成すると共に、高抵抗磁性粒子の平均粒径を導電性
磁性粒子の平均粒径より大、具体的には前記高抵抗磁性
粒子の20μm以下の粒子分布が5%以下になるように
構成することで、単一系の帯電剤に比べて生じやすい漏
洩を防止している。一方均一帯電に寄与する導電性磁性
粒子の平均粒径は小さい方が好ましく、例えば20μm
以下が好ましい。又高抵抗磁性粒子と導電性磁性粒子の
混合比は夫々の体積固有抵抗にもよるが、導電性磁性粒
子の混合比を少なく、具体的には5〜30重量%に設定
するのが良い。
The present invention has a volume resistivity of 10 6 Ω · c.
m or less conductive magnetic particles and volume resistivity of 10 6 Ω · c
The magnetic particle group is composed of a mixed particle group of high-resistance magnetic particles of m or more, and the average particle diameter of the high-resistance magnetic particles is larger than the average particle diameter of the conductive magnetic particles, specifically, the high-resistance magnetic particles. By configuring such that the particle distribution of 20 μm or less is 5% or less, leakage that is more likely to occur compared to a single type charging agent is prevented. On the other hand, it is preferable that the average particle diameter of the conductive magnetic particles that contribute to uniform charging be small, for example, 20 μm.
The following are preferred. Further, the mixing ratio of the high resistance magnetic particles and the conductive magnetic particles depends on the volume resistivity of each, but the mixing ratio of the conductive magnetic particles is small, and specifically, it may be set to 5 to 30% by weight.

【0016】又、図1に示すように感光体ドラム1のス
リーブ最近接点Pの帯電ギャップ5に導かれた磁性粒子
4は、該ギャップ5が隘路となるが、主極A1 における
最近接点Pの磁束密度をBA1 と、対向極B1 における
最近接点Pの磁束密度をBB1とした場合に「BA1 >B
B1 」に設定しているために、感光体ドラム1側より帯
電スリーブ2側に吸上げられる。更に本発明は前記帯電
スリーブ2を感光体ドラム1に対し、アゲインスト方
向、即ち帯電領域上流側に向け回転させている為に、前
記帯電スリーブ2に付着した磁性粒子4が帯電ギャップ
5位置より帯電領域上流側に向け流れる分離極A4によ
り、帯電スリーブ2から分離され該帯電領域内で磁性粒
子4の循環が可能となり、長期使用によっても該粒子の
劣化が生じることはない。
Further, as shown in FIG. 1, the magnetic particles 4 guided to the charging gap 5 of the sleeve closest contact point P of the photosensitive drum 1 have the gap 5 as a bottleneck, but the closest contact point P at the main pole A 1 . and the magnetic flux density B A1, when the magnetic flux density of the closest point P of the counter electrode B 1 was B B1 "B A1> B
Since it is set to " B1 ", it is sucked from the photosensitive drum 1 side to the charging sleeve 2 side. Further, according to the present invention, since the charging sleeve 2 is rotated with respect to the photosensitive drum 1 toward the opposite direction, that is, toward the upstream side of the charging area, the magnetic particles 4 attached to the charging sleeve 2 are moved from the charging gap 5 position. The separation electrode A 4 flowing toward the upstream side of the charging area allows the magnetic particles 4 to be separated from the charging sleeve 2 and circulate in the charging area, so that the particles do not deteriorate even after long-term use.

【0017】ここで最近接点P上における磁束密度を
「BA1 >BB1 」に設定したのは、帯電ギャップ5位置
で帯電スリーブ2側に粒子が移動できる効果を達成する
ためである。
The magnetic flux density on the closest contact point P is set to "B A1 > B B1 " in order to achieve the effect that the particles can move to the charging sleeve 2 side at the charging gap 5 position.

【0018】特に「BA1 >BB1 」の条件を最も有効に
達成するには夫々の磁石体の半値幅にもよるが、前記対
向極B1 の最大磁束密度位置Q1 が最近接点Pを挟んで
感光体ドラム1回転方向上流側の+5°〜−30°の範
囲に設定するのが良く、更に前記最大磁束密度位置Q2
が最近接点Pを挟んで−20°〜+5°の範囲に設定す
るのがよい。なお、角度は感光体ドラム軸心O1 と帯電
スリーブO2 を結ぶ線のうち、最近接点Pより軸心O2
側の方向を0°とし、感光体ドラム上流側をマイナス角
度、下流側をプラス角度に設定する。
In order to achieve the condition "B A1 > B B1 " most effectively, the maximum magnetic flux density position Q 1 of the opposing pole B 1 determines the closest contact point P, although it depends on the half width of each magnet. It is preferable to set it in the range of + 5 ° to −30 ° on the upstream side with respect to the rotation direction of the photosensitive drum 1 while sandwiching it, and further, the maximum magnetic flux density position Q 2
Is preferably set in the range of -20 ° to + 5 ° with the contact point P placed in between. The angle photosensitive drum axis O 1 and the charging sleeve O 2 of the line connecting the recently axis from the contact P O 2
The side direction is set to 0 °, the upstream side of the photosensitive drum is set to a minus angle, and the downstream side is set to a plus angle.

【0019】[0019]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図2
に基づいて本発明の実施例に係る帯電装置の構成につい
て説明する。帯電装置は前記したように図上右方向に回
転する感光体ドラム1に対し0.5mm程度の帯電ギャ
ップ5(最近接間隔)を介して帯電領域位置で前記感光
体ドラム1と互いに反対方向、即ちアゲインスト方向
(図上左方向、尚回転軸から見た場合はいずれも同一回
転方向となる。)に回転可能により非磁性の帯電スリー
ブ2を配設すると共に、該スリーブ2の背面側の帯電領
域下流側に固定配置した磁石集成体3を配設する。尚、
7は不図示の導電ブレード若しくは非磁性スリーブ2を
介して導電性磁性粒子群4に現像バイアスを印加させる
バイアス電源である。
Embodiments of the present invention will now be illustratively described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative positions and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely examples, unless otherwise specified. Not too much. Figure 2
The configuration of the charging device according to the embodiment of the present invention will be described based on FIG. As described above, the charging device is in the opposite direction to the photosensitive drum 1 at the charging area position via the charging gap 5 (closest spacing) of about 0.5 mm with respect to the photosensitive drum 1 rotating to the right in the figure. That is, the non-magnetic charging sleeve 2 is disposed so as to be rotatable in the against direction (the left direction in the drawing, and the same rotating direction when viewed from the rotation axis), and the rear side of the sleeve 2 is provided. A magnet assembly 3 is fixedly arranged on the downstream side of the charging area. still,
A bias power source 7 applies a developing bias to the conductive magnetic particle group 4 via a conductive blade or a non-magnetic sleeve 2 (not shown).

【0020】次に本発明の要旨たる帯電スリーブ2と感
光体ドラム1の夫々の磁極配置について説明する。先ず
前記磁石集成体3には、前記帯電ギャップ5上若しくは
該帯電ギャップ5より僅かに帯電スリーブ2回転方向上
流側に感光体ドラム1背面側の対向磁極B1 との間で主
として磁性粒子4の漏洩防止のために磁気シールを行う
N極の主極A1 、更に主極A1 の帯電スリーブ2回転方
向上流側に、反発磁界により前記磁気シール補助を行う
磁気シールを行うS極の磁石体(以下シールド補助極A
2 という)、又主極A1 の帯電スリーブ2回転方向下流
側にはスリーブ2上に約50ガウス以下の小さな磁力し
か持たない無磁力帯域である分離極A4を形成し、スリ
ーブ2のアゲインスト回転によりスリーブ2表面に担持
されながら搬送されるS極の磁石体A3 で搬送して磁性
粒子4を帯電領域上流側の感光体ドラム1側に落下させ
る構成とする。
Next, the arrangement of the magnetic poles of the charging sleeve 2 and the photosensitive drum 1 which is the subject matter of the present invention will be described. First, in the magnet assembly 3, the magnetic particles 4 are mainly formed on the charging gap 5 or slightly upstream of the charging gap 5 in the rotation direction of the charging sleeve 2 and between the opposing magnetic pole B 1 on the back side of the photosensitive drum 1. the main pole a 1 N pole for magnetic seal for preventing leakage, further charging sleeve 2 rotating direction upstream side of the main poles a 1, the magnet body S pole for magnetic seal for performing the magnetic seal assisted by repulsive magnetic field (Hereinafter shield auxiliary pole A
2 ), and a separation pole A 4 which is a non-magnetic band having a small magnetic force of about 50 gauss or less is formed on the sleeve 2 downstream of the main pole A 1 in the rotation direction of the charging sleeve 2. The magnetic particles 4 are transported by the magnet body A 3 of the S pole that is transported while being carried on the surface of the sleeve 2 by the strike rotation, and the magnetic particles 4 are dropped to the photosensitive drum 1 side on the upstream side of the charging area.

【0021】又前記帯電スリーブ2と感光体ドラム1に
挟まれる帯電領域上には導電性磁性粒子群4を介在させ
る。前記磁性粒子4の詳細は後記するが、体積固有抵抗
を103 〜108 Ω・cmの範囲に又、粒子径は平均粒
径が10〜30μmの範囲で任意に設定される。
Further, a group of conductive magnetic particles 4 is provided on the charging area sandwiched between the charging sleeve 2 and the photosensitive drum 1. Although the details of the magnetic particles 4 will be described later, the volume resistivity is arbitrarily set in the range of 10 3 to 10 8 Ω · cm, and the particle size is arbitrarily set in the range of 10 to 30 μm in average particle size.

【0022】一方、感光体ドラム1の背面側には、前記
主極A1 の対向位置より僅かに感光体ドラム1回転方向
上流側の帯電領域下流部にS極の磁石体(以下対向極B
1 という)と、前記対向極B1 に隣接させて帯電領域上
流側に感光体ドラム1の面と水平な磁場(以下「水平磁
場」という)を形成するためのN極の磁石体(以下隣接
極B2 という)とを隣接配置し、前記主極A1 と対向極
1 との間で感光体ドラム面に垂直な磁場(以下「垂直
磁場」という)を、又対向極B1 と隣接極B2との間で
感光体ドラム1上に水平磁場を形成する。
On the other hand, on the rear surface side of the photosensitive drum 1, an S-pole magnet body (hereinafter referred to as the opposing pole B) is provided at a downstream portion of the charging area slightly upstream of the main pole A 1 in the rotational direction of the photosensitive drum 1.
1 ) and an N-pole magnet body (hereinafter referred to as “adjacent”) for forming a magnetic field (hereinafter referred to as “horizontal magnetic field”) horizontal to the surface of the photoconductor drum 1 adjacent to the opposite pole B 1 on the upstream side of the charging area. pole B 2 hereinafter) and an adjacent arrangement, a magnetic field perpendicular to the photosensitive drum surface (hereinafter referred to as "vertical field") between the main pole a 1 and the counter electrode B 1, also adjacent to the opposite pole B 1 A horizontal magnetic field is formed on the photosensitive drum 1 with the pole B 2 .

【0023】即ち、前記対向配置される主極A1 と対向
極B1 を感光体ドラム1回転方向における帯電領域下流
側に配し、両磁石体A1 、B1 間に形成される垂直磁場
により前記磁性粒子群4を磁気保持させ、又隣接極B2
を対向極B1 に隣接させて帯電領域上流側に配置させ、
両磁石体B2 、B1 間に主として形成される感光体ドラ
ム1上の水平磁場により前記磁性粒子群4を感光体ドラ
ム1上に密着させる。
That is, the main pole A 1 and the counter pole B 1 which are opposed to each other are arranged on the downstream side of the charging area in the rotation direction of the photosensitive drum 1 , and the vertical magnetic field formed between the magnets A 1 and B 1 is formed. be magnetically holding said magnetic particles 4 due, also adjacent poles B 2
Is arranged adjacent to the counter electrode B 1 on the upstream side of the charging area,
The magnetic particle group 4 is brought into close contact with the photoconductor drum 1 by a horizontal magnetic field on the photoconductor drum 1 mainly formed between the two magnet bodies B 2 and B 1 .

【0024】更に具体的に前記夫々の磁極の磁極配置に
ついて図1(A)を用いて詳細に説明する。シールド補
助極A2 は主極A1 に対し帯電スリーブ回転方向上流側
にして、該シールド補助極A2 の帯電スリーブ上での最
大磁束密度位置Q3 が45°〜90°の範囲に設定され
ている。なお、角度は帯電スリーブO2 を中心として軸
心O2 から最近接点Pへ結ぶ線の方向を0°とし、0°
より感光体移動方向下流側への振れ角をプラスに設定し
た値である。主極A1 は、主極A1 の帯電スリーブ上に
おける最大磁束密度位置Q2 が、又前記対向極B1 の感
光体ドラム上における最大磁束密度位置Q1 より感光体
ドラム回転方向下流側に位置するように構成すると共
に、具体的には、Q2 が最近接点Pを挟んで−20°〜
+5°の範囲で、より好ましくは−10°〜+5°の範
囲に設定するのが良い。又対向極B1 は、最大磁束密度
位置Q1 が最近接点Pを挟んで感光体ドラム回転方向上
流側の+5°〜−30°の範囲に前記主極A1 の前記最
近接点P上における磁束密度が、前記対向極B1 の前記
最近接点P上における磁束密度より大になる如く配設す
る。なお、この場合の角度は作用の欄で示した値であ
る。又前記主極A1 と対向極B1 との関係は、帯電スリ
ーブ軸心O2 と前記主極A1 の最大磁束密度位置Q2
結ぶ線と、前記感光体ドラム軸心O1 と対向極B1の最
大磁束密度位置Q1 を結ぶ線の狭角を0〜50°に設定
する。
More specifically, the magnetic pole arrangement of each of the magnetic poles will be described in detail with reference to FIG. The shield auxiliary pole A 2 is located upstream of the main pole A 1 in the rotation direction of the charging sleeve, and the maximum magnetic flux density position Q 3 of the shield auxiliary pole A 2 on the charging sleeve is set in the range of 45 ° to 90 °. ing. The angle is 0 ° when the direction of the line connecting the axis O 2 to the closest contact point P with the charging sleeve O 2 as the center is 0 °.
This is a value in which the deflection angle toward the downstream side in the moving direction of the photoconductor is set to be positive. The main pole A 1 has a maximum magnetic flux density position Q 2 on the charging sleeve of the main pole A 1 and a downstream side of the maximum magnetic flux density position Q 1 on the photosensitive drum of the opposing pole B 1 in the photosensitive drum rotation direction. It is configured to be positioned, and more specifically, Q 2 has a closest contact point P between −20 ° and
It is preferable to set in the range of + 5 °, and more preferably in the range of −10 ° to + 5 °. Further, the opposing pole B 1 has a maximum magnetic flux density position Q 1 in the range of + 5 ° to −30 ° on the upstream side in the rotation direction of the photoconductor drum with the closest contact point P in between, and the magnetic flux on the closest contact point P of the main pole A 1 is. The density is set to be higher than the magnetic flux density on the closest contact P of the counter pole B 1 . The angle in this case is the value shown in the column of action. The relationship between the main pole A 1 and the opposing pole B 1 is that the line connecting the charging sleeve axis O 2 and the maximum magnetic flux density position Q 2 of the main pole A 1 and the photosensitive drum axis O 1 face each other. The narrow angle of the line connecting the maximum magnetic flux density position Q 1 of the pole B 1 is set to 0 to 50 °.

【0025】次にかかる実施例の作用を図1を用いて簡
単に説明すると、前記帯電領域に位置する磁性粒子群4
は、対向極B1 と隣接極B2 間の水平磁場4A上で感光
体ドラム1上に密着して付着され、この状態で感光体ド
ラム1が時計周りに回転すると、水平磁場4A上で感光
体ドラム1への帯電を行ないながら帯電ギャップ5側に
移動し、該帯電ギャップ5位置で磁性粒子群4はシール
ド補助極A2 により対向極B1 との間で反発磁界が生成
されて主極A1 対向極B1 で作る磁気シールドを補助
し、力の向きをA1 、B1 による上向きの力とによって
感光体ドラム上流側へ傾け、図上左上のスリーブ2側へ
移動する。そして分離極A4 によりスリーブ2上の無磁
力で前記磁性粒子がスリーブ2下流側に搬送されること
ない。この場合、磁性粒子群4の1KOeの磁場での飽
和磁化を50emu/g〜200emu/gに設定する
が、200emu/gを越えると分離極A4 を通過しや
すく帯電スリーブ2下流側に搬送されることとなる。一
方、50emu/g以下になると、主極A1 側に磁性粒
子群4が付着しづらく、結果として循環が困難となる。
The operation of this embodiment will be briefly described below with reference to FIG. 1. The magnetic particle group 4 located in the charging area is described below.
Is adhered to the photoconductor drum 1 in close contact with it on the horizontal magnetic field 4A between the opposite pole B 1 and the adjacent pole B 2 , and when the photoconductor drum 1 rotates clockwise in this state, it is exposed on the horizontal magnetic field 4A. While the body drum 1 is being charged, it moves to the charging gap 5 side, and at the position of the charging gap 5, the magnetic particle group 4 generates a repulsive magnetic field between the magnetic auxiliary particles A 2 and the opposing pole B 1 and the main pole. The magnetic shield created by the A 1 opposite pole B 1 is assisted, and the direction of the force is tilted to the upstream side of the photosensitive drum by the upward force of A 1 and B 1 and moved to the upper left sleeve 2 side in the figure. The separation pole A 4 prevents the magnetic particles from being conveyed to the downstream side of the sleeve 2 without magnetic force on the sleeve 2. In this case, the saturation magnetization of the magnetic particle group 4 in the magnetic field of 1 KOe is set to 50 emu / g to 200 emu / g, but when it exceeds 200 emu / g, the magnetic particles easily pass through the separation pole A 4 and are conveyed to the downstream side of the charging sleeve 2. The Rukoto. On the other hand, when it is 50 emu / g or less, the magnetic particle group 4 is hard to adhere to the main pole A 1 side, and as a result, circulation becomes difficult.

【0026】この場合、シールド極A2 と対向極B1
より形成される最近接点P上における磁気力の合成ベク
トルは不図示ではあるが、帯電ギャップ5入口側に向け
て設定する事により、前記反発磁界と共に磁界による押
戻し方向が働き、一層好ましい。そして更に前記感光体
ドラムのスリーブ最近接点Pの法線方向における、主極
1 と対向極B1 及びシールド極A2 により形成される
磁気力の合成ベクトルを帯電スリーブ2側に向くよう設
定する。これにより、前記帯電ギャップ上の磁性粒子は
帯電スリーブ2側に移動し且つ吸着する。
In this case, although the composite vector of the magnetic forces on the closest point P formed by the shield pole A 2 and the counter pole B 1 is not shown, it is set by the direction toward the charging gap 5 entrance side, The pushback direction by the magnetic field works together with the repulsive magnetic field, which is more preferable. Further, the combined vector of magnetic forces formed by the main pole A 1 , the counter pole B 1 and the shield pole A 2 in the normal direction of the sleeve closest contact point P of the photosensitive drum is set to face the charging sleeve 2. . As a result, the magnetic particles on the charging gap move to the charging sleeve 2 side and are attracted thereto.

【0027】そして帯電スリーブ2側に吸着した磁性粒
子4Bは、スリーブ2の回転に従って帯電領域上流側に
戻された後、前記磁石体A3 の下流に設けた分離極A4
が帯電領域上流側に位置するようにレイアウトされてい
る為に、帯電領域上流側に搬送された前記磁性粒子群4
Cを磁気的に開放し、感光体ドラム1側に落下し、磁性
粒子4の循環が行なわれる。
The magnetic particles 4B adsorbed on the charging sleeve 2 side are returned to the upstream side of the charging area as the sleeve 2 rotates, and then the separation pole A 4 provided downstream of the magnet body A 3.
Are laid out on the upstream side of the charging area, so that the magnetic particle group 4 conveyed to the upstream side of the charging area.
C is magnetically released, falls on the side of the photosensitive drum 1, and the magnetic particles 4 are circulated.

【0028】次にかかる装置を用いた帯電ギャップ5よ
りの磁性粒子4の漏洩を実験により確認する。先ず本実
験条件について説明する。感光体ドラム1はOPCドラ
ムを用い、その直径を30mmφ、その線速を25m/
secに設定する。帯電スリーブ2はアルミ管を用い、
その直径を12mmφ、その線速を8m/secに設定
する。
Next, the leakage of the magnetic particles 4 from the charging gap 5 using such a device is confirmed by an experiment. First, the experimental conditions will be described. The photoconductor drum 1 is an OPC drum, the diameter is 30 mmφ, and the linear velocity is 25 m /
Set to sec. The charging sleeve 2 uses an aluminum tube,
The diameter is set to 12 mmφ and the linear velocity is set to 8 m / sec.

【0029】又前記夫々の磁極の磁束密度は、対向極B
1 と隣接極B2 の夫々の感光体ドラム1上での最大磁束
密度を夫々S630G、N730G、更に主極A1 とシ
ールド補助極A2 の夫々の帯電スリーブ2上での最大磁
束密度を夫々N900G、S770Gに夫々設定する。
そして、主極A1 を0°(最大磁束密度をN900
G)、対向極B1 を−15°及びシールド補助極A2
60°に夫々設定した場合、最近接点P上における、主
極A1 と対向極B1 及びシールド補助極A2 により形成
される磁気力の合成ベクトルは、帯電スリーブのギャッ
プ入口に向けて磁気力が発生していることがシミュレー
ションにより確認された。
The magnetic flux density of each magnetic pole is the opposite pole B.
1 and the adjacent pole B 2 of each of the photosensitive drum 1 on the maximum magnetic flux density, respectively S630G of, N730G, further the maximum magnetic flux density on the main poles A 1 and the shield auxiliary pole A 2 of each of the charging sleeve 2 respectively Set to N900G and S770G respectively.
And the main pole A 1 is 0 ° (the maximum magnetic flux density is N900
G), when the counter pole B 1 is set to −15 ° and the shield auxiliary pole A 2 is set to 60 °, respectively, the main pole A 1 , the counter pole B 1 and the shield auxiliary pole A 2 on the closest contact P are formed. It was confirmed by simulation that the combined vector of the magnetic force generated by the magnetic force was generated toward the gap entrance of the charging sleeve.

【0030】この状態で弊社製造のLEDプリンタに組
込んで帯電バイアス電源7に400Vを印加して感光体
ドラム移動方向に対してアゲインスト方向へ帯電スリー
ブを回転させて、磁性粒子の循環状況および感光体ドラ
ムへの洩出状況を目視及び画像形成により確認した。な
お、磁性粒子は、平均粒径15μm、体積固有抵抗10
5 Ω・cm、1KOeの磁場で飽和磁化が70emu/
gのフェライトキャリアを用いた(試料1)。また、比
較例として磁性粒子は、平均粒径30μm、体積固有抵
抗105 Ω・cm、1KOeの磁場で飽和磁化が210
emu/gの鉄粉キャリアを用いた(試料2)。なお、
いずれのキャリアも非誘電率は40以下であった。本実
験の結果、試料1は良好に磁性粒子が循環されており、
良好な画像が得られた。これに対し、試料2は分離極A
4 で磁性粒子を分離することができず、帯電スリーブ2
周囲に磁性粒子が取り囲み、スムーズに循環されておら
ず帯電むらが画像にあらわれた。
In this state, it is incorporated into an LED printer manufactured by our company and 400 V is applied to the charging bias power source 7 to rotate the charging sleeve in the against direction with respect to the moving direction of the photosensitive drum to circulate the magnetic particles. The state of leakage to the photosensitive drum was confirmed visually and by image formation. The magnetic particles have an average particle size of 15 μm and a volume resistivity of 10 μm.
Saturation magnetization is 70 emu / in a magnetic field of 5 Ω · cm and 1 KOe
g of ferrite carrier was used (Sample 1). Further, as a comparative example, the magnetic particles have an average particle size of 30 μm, a volume resistivity of 10 5 Ω · cm, and a saturation magnetization of 210 in a magnetic field of 1 KOe.
An iron powder carrier of emu / g was used (Sample 2). In addition,
The non-dielectric constant of each carrier was 40 or less. As a result of this experiment, in the sample 1, magnetic particles are circulated well,
A good image was obtained. On the other hand, the sample 2 has the separation electrode A.
The magnetic particles cannot be separated by 4 and the charging sleeve 2
Magnetic particles were surrounded, and it was not circulated smoothly, and uneven charging appeared in the image.

【0031】[0031]

【効果】以上記載のごとく本発明によれば、粒子帯電に
おける磁性粒子の漏洩等が生じることなく又長期使用に
よっても帯電剤が劣化する事なく長期に亙って安定した
帯電能を確保し得る。又本発明によれば、磁性粒子の循
環を良好に確保出来る帯電装置として適用される。更に
本発明によれば、製造上からも、使用者側からも、更に
環境にも十分配慮することが出来、極めて実用性の高い
帯電装置が得る事の出来る。等の種々の著効を有す。
As described above, according to the present invention, stable charging ability can be secured for a long period of time without causing leakage of magnetic particles during particle charging and without deterioration of the charging agent even after long-term use. . Further, according to the present invention, it is applied as a charging device capable of ensuring good circulation of magnetic particles. Further, according to the present invention, it is possible to obtain a charging device having extremely high practicality, because it is possible to sufficiently consider the environment from the viewpoint of manufacturing, the user side, and the like. It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成図。FIG. 1 is a basic configuration diagram of the present invention.

【図2】本発明の実施例に係る帯電装置を示す全体図で
ある。
FIG. 2 is an overall view showing a charging device according to an exemplary embodiment of the present invention.

【図3】従来技術に係る帯電装置を示す表図である。FIG. 3 is a table showing a charging device according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 感光体ドラム 2 帯電スリーブ 3 磁石集成体 4 磁性粒子 5 帯電ギャップ P 最近接点 A1 主極 B1 対向極 A2 シールド補助極 A4 分離極1 Photoconductor drum 2 Charging sleeve 3 Magnet assembly 4 Magnetic particles 5 Charging gap P Closest contact A 1 Main pole B 1 Counter pole A 2 Shield auxiliary pole A 4 Separation pole

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 感光体の帯電領域上に、該感光体に向け
て固定配置した第1の磁石体(以下主極という)を内包
する非磁性帯電スリーブを、又前記帯電領域上に位置す
る感光体の背面側に、前記主極と逆極性の第2の磁石体
(以下対向極という)を配し、 、前記帯電スリーブを回転させながら、前記両磁石体に
より担持された磁性粒子群を介して感光体を帯電可能に
構成した帯電装置において、 前記磁性粒子群の前記主極より、感光体回転方向上流側
に位置する前記磁性粒子群を前記帯電スリーブから分離
し、前記感光体に落下可能に構成した分離極を配すると
ともに平均粒径を略10〜40μmで、1kOeの磁場
での飽和磁化を50emu/g〜200emu/g、比
誘電率εrを40以下に設定したことを特徴とする帯電
装置
1. A non-magnetic charging sleeve which encloses a first magnet body (hereinafter referred to as a main pole) fixedly arranged on the charging area of the photoconductor, and which is located on the charging area. A second magnet body having a polarity opposite to that of the main pole (hereinafter referred to as an opposite pole) is arranged on the back side of the photoconductor, and while rotating the charging sleeve, the magnetic particle groups carried by the both magnet bodies are arranged. In a charging device configured to be capable of charging a photoconductor via a magnetic particle group, the magnetic particle group located upstream of the main pole of the magnetic particle group in the photoconductor rotating direction is separated from the charging sleeve and dropped onto the photoconductor. It is characterized in that a separation pole configured as possible is arranged, an average particle size is approximately 10 to 40 μm, a saturation magnetization in a magnetic field of 1 kOe is set to 50 emu / g to 200 emu / g, and a relative permittivity εr is set to 40 or less. Charging device
【請求項2】 磁性粒子群が、体積固有抵抗が106
下の導電性磁性粒子と体積固有抵抗が106 以上の高抵
抗磁性粒子の混合粒子群であり、全体としての体積固有
抵抗が103 〜108 Ω・cmの範囲にあり高抵抗磁性
粒子の平均粒径を導電性磁性粒子の平均粒径より大にし
た事を特徴とする請求項1記載の帯電装置
2. A magnetic particle group, a mixed group of particles volume resistivity of 10 6 or less electrically conductive magnetic particles and a volume resistivity of 10 6 or more high-resistance magnetic particles, the volume resistivity of the entire 10 2. The charging device according to claim 1, wherein the average particle size of the high resistance magnetic particles is in the range of 3 to 10 < 8 > [Omega] .cm and is larger than the average particle size of the conductive magnetic particles.
【請求項3】 前記高抵抗磁性粒子の20μm以下の粒
子分布が5%以下になるように構成した請求項2記載の
帯電装置
3. The charging device according to claim 2, wherein the high resistance magnetic particles have a particle distribution of 5 μm or less of 20 μm or less.
【請求項4】 前記帯電スリーブを感光体の移動方向に
対しアゲインスト方向に回転させるとともに、前記主極
の前記感光体のスリーブ最近接点P上における磁束密度
が、前記対向極の前記最近接点P上における磁束密度よ
り大になる如く構成した事を特徴とする請求項1又は2
記載の帯電装置
4. The charging sleeve is rotated in the against direction with respect to the moving direction of the photoconductor, and the magnetic flux density on the sleeve closest contact point P of the photoconductor of the main pole is the closest contact point P of the opposite pole. The magnetic flux density is set to be higher than the above magnetic flux density.
Charging device described
【請求項5】 前記主極の帯電スリーブ上における最大
磁束密度位置Q2 が、又前記対向極の感光体ドラム上に
おける最大磁束密度位置Q1 より感光体ドラム回転方向
下流側に位置するように構成すると共に、 前記最大磁束密度位置Q1 が最近接点Pを挟んで感光体
ドラム回転方向上流側の+5°〜−30°、前記最大磁
束密度位置Q2 が前記最近接点Pを挟んで−10°〜+
5°の範囲に配した事を特徴とする請求項1又は2記載
の帯電装置
5. The maximum magnetic flux density position Q 2 on the charging sleeve of the main pole is located downstream of the maximum magnetic flux density position Q 1 on the photosensitive drum of the opposite pole in the photosensitive drum rotation direction. In addition, the maximum magnetic flux density position Q 1 is + 5 ° to −30 ° on the upstream side in the rotation direction of the photoconductor drum with the closest contact point P interposed, and the maximum magnetic flux density position Q 2 is −10 with the closest contact point P interposed. ° ~ +
The charging device according to claim 1, wherein the charging device is arranged in a range of 5 °.
【請求項6】 感光体移動方向下流側における帯電スリ
ーブ内に、前記対向極と同極性の第3の磁石体(以下シ
ールド補助極という)を配した事を特徴とする請求項3
記載の帯電装置
6. A third magnet body (hereinafter referred to as a shield auxiliary pole) having the same polarity as the counter pole is arranged in the charging sleeve on the downstream side in the moving direction of the photosensitive body.
Charging device described
JP02743594A 1994-01-31 1994-01-31 Charging device Expired - Fee Related JP3240027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02743594A JP3240027B2 (en) 1994-01-31 1994-01-31 Charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02743594A JP3240027B2 (en) 1994-01-31 1994-01-31 Charging device

Publications (2)

Publication Number Publication Date
JPH07219310A true JPH07219310A (en) 1995-08-18
JP3240027B2 JP3240027B2 (en) 2001-12-17

Family

ID=12221039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02743594A Expired - Fee Related JP3240027B2 (en) 1994-01-31 1994-01-31 Charging device

Country Status (1)

Country Link
JP (1) JP3240027B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659852A (en) * 1994-10-31 1997-08-19 Canon Kabushiki Kaisha Image forming method, image forming apparatus and process cartridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659852A (en) * 1994-10-31 1997-08-19 Canon Kabushiki Kaisha Image forming method, image forming apparatus and process cartridge

Also Published As

Publication number Publication date
JP3240027B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
US4030447A (en) Developing device
US4369729A (en) Image recording apparatus
JP2703992B2 (en) Developing device
US4295443A (en) Developing apparatus for electrostatic copying machine
JPH08106200A (en) Electrostatic charging device and image forming device
JPH07219310A (en) Electrostatic charging device
JP3177090B2 (en) Developing device
JPH04116674A (en) Electrostatic charging device
US5596394A (en) Charging apparatus for charging a photo-sensitive member by magnetically holding magnetic particles in a charging zone
JPH086353A (en) Charging device
JPS61149968A (en) Electrostatic recording device
JP3281139B2 (en) Charging device
JPH07209958A (en) Electrostatic charging device
JP3117863B2 (en) Charging device
JP3142034B2 (en) Apparatus and method for charging photoreceptor
JP3240026B2 (en) Charging device
JP3087934B2 (en) Photoconductor charging device
JPS623949B2 (en)
JP3212769B2 (en) Charging device
JP3087936B2 (en) Charging device
JPH0360436B2 (en)
JP3058531B2 (en) Contact charging particles and charging method thereof
JPH05289594A (en) Magnetic brush cleaning device
JPH0132505B2 (en)
JP3193228B2 (en) Contact charging particles used in particle charging method and image forming method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071012

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees