JPH07209958A - Electrostatic charging device - Google Patents

Electrostatic charging device

Info

Publication number
JPH07209958A
JPH07209958A JP2325494A JP2325494A JPH07209958A JP H07209958 A JPH07209958 A JP H07209958A JP 2325494 A JP2325494 A JP 2325494A JP 2325494 A JP2325494 A JP 2325494A JP H07209958 A JPH07209958 A JP H07209958A
Authority
JP
Japan
Prior art keywords
charging
photosensitive drum
sleeve
drum
charging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2325494A
Other languages
Japanese (ja)
Other versions
JP3241520B2 (en
Inventor
Shinji Yamane
信司 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP02325494A priority Critical patent/JP3241520B2/en
Publication of JPH07209958A publication Critical patent/JPH07209958A/en
Application granted granted Critical
Publication of JP3241520B2 publication Critical patent/JP3241520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To secure stable electrostatic charging capacity for a long period by specifying the magnetic force synthetic vector of two magnetic substances on a point closest to a charging sleeve on a photosensitive drum. CONSTITUTION:The charging sleeve 2 is rotated against the rotational direction of the photosensitive drum 1 and constituted so that the magnetic force synthetic vector Fn of two magnetic substances on the point P most close to the sleeve 2 on the drum 1 is positioned in an agular range thetaF around the point P (-90 deg.>thetaF>=15 deg.). In this case, the direction of the axial center O2 side of the sleeve 2 from the point P as a on a line connecting the axial center O1 of the drum 1 to the axial center O2 of the sleeve 2 is set up as O deg. and an upstream side and a downstream side in the rotataionai direction of the drum 1 are respectively set up to a minus angle and a plus angle. When a synthetic vector Fm is attracted in the inlet side direction of a charging gap 5, a grain group is moved in a direction to be retured from a leakage route to the upstream side of a charging area, so that the outflow or dispersion of grains from the charging area can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はいわゆるカールソンプロ
セスに基づく電子写真装置、例えば複写機、プリンタ、
ファクシミリ内に組込まれるか、若しくはこれらの機器
のプロセスカートリッジに組込まれる帯電装置として適
用される発明に係り、特に粒子帯電によりドラム状感光
体を帯電させる電子写真装置に於ける帯電装置として適
用される発明に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic apparatus based on the so-called Carlson process, such as a copying machine, a printer,
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device incorporated in a facsimile machine or incorporated in a process cartridge of these devices, and particularly to a charging device in an electrophotographic apparatus that charges a drum-shaped photoreceptor by particle charging. Relates to the invention.

【0002】[0002]

【従来の技術】従来より感光体ドラム外周面上に、露
光、現像、転写、クリーニング(残留トナー除去)、除
電、及び帯電の各プロセス手段を配置し、所定の電子写
真プロセスにより画像形成を行なう、いわゆるカールソ
ンプロセスに基づく電子写真装置は周知である。
2. Description of the Related Art Conventionally, process means for exposing, developing, transferring, cleaning (removing residual toner), discharging, and charging are arranged on the outer peripheral surface of a photosensitive drum, and an image is formed by a predetermined electrophotographic process. Electrophotographic devices based on the so-called Carlson process are well known.

【0003】この種の装置に用いる帯電手段は一般に細
いタングステン線に高電圧を印加してコロナ放電を行な
うコロトロン方式、又導電ローラに数百ボルトの電圧を
かけて感光体ドラムと接触帯電させるもの、又導電性ブ
ラシに電圧を印加して感光体ドラムに接触させながら帯
電を行なうもの等が存在する。しかしながらコロトロン
方式は高電圧を使用し、又オゾンを発生する等安全上、
環境上の問題が多い。又帯電ローラは感光体ドラムとの
接触が線接触であるために帯電が不安定である。更にブ
ラシ帯電方式はドラムとブラシが接触して帯電を行なう
為に、ブラシの帯電劣化が生じやすい。
The charging means used in this type of apparatus is generally a corotron system in which a high voltage is applied to a thin tungsten wire to perform corona discharge, or a conductive roller is applied with a voltage of several hundreds of volts to contact and charge a photosensitive drum. In addition, there is one in which a voltage is applied to a conductive brush so that the brush is charged while being in contact with the photosensitive drum. However, the corotron method uses a high voltage, and in terms of safety such as generating ozone,
There are many environmental problems. Further, since the charging roller is in line contact with the photosensitive drum, charging is unstable. Further, in the brush charging method, since the drum and the brush contact each other to perform charging, the charging deterioration of the brush is likely to occur.

【0004】かかる欠点を解消するために、感光体ドラ
ムと磁石体を内挿した帯電スリーブに帯電バイアスを印
加した状態で、該スリーブに磁性粒子群を付着させて刷
子状の磁気穂を感光体ドラムに摺擦させてスリーブを介
して帯電バイアスを磁性粒子群に印加させて帯電を行な
う、いわゆる粒子帯電法が提案されている。(特開昭5
9ー133569、特開昭63ー187267他)
In order to solve such a drawback, in a state where a charging bias is applied to a charging sleeve having a photosensitive drum and a magnet body inserted therein, a group of magnetic particles is attached to the sleeve to form a brush-shaped magnetic brush on the photosensitive body. A so-called particle charging method has been proposed in which a drum is rubbed and a charging bias is applied to a group of magnetic particles via a sleeve to perform charging. (JP-A-5
9-133569, JP-A-63-187267, etc.)

【0005】かかる帯電法においては、固定磁石体によ
り磁気穂を形成した場合、該磁石体よりの距離の2乗に
比例して磁界が減衰し、従って感光体ドラム表面に位置
する磁性粒子の磁気保持力が最も弱い。従ってこの状態
で感光体ドラムを回転させると、該ドラム表面に遠心力
が働き、また、帯電電圧印加にともない誘起された電荷
によって静電的に感光体ドラムに付着している磁性粒子
は固定磁石集成体よりの磁気保持力(磁界)に抗して前
記磁性粒子が帯電領域から離脱する方向に力が働き、該
感光体ドラムに付着した粒子が次工程の露光及び現像等
に悪影響を及ぼす。
In such a charging method, when a magnetic brush is formed by a fixed magnet body, the magnetic field is attenuated in proportion to the square of the distance from the magnet body, so that the magnetic particles on the surface of the photosensitive drum are magnetized. The holding power is the weakest. Therefore, when the photosensitive drum is rotated in this state, a centrifugal force acts on the surface of the photosensitive drum, and the magnetic particles electrostatically attached to the photosensitive drum by the charges induced by the application of the charging voltage are fixed magnets. A force acts in the direction in which the magnetic particles separate from the charging area against the magnetic coercive force (magnetic field) from the assembly, and the particles attached to the photosensitive drum adversely affect the exposure and development in the next step.

【0006】かかる欠点を解消するために、図6に示す
ように、前記帯電スリーブを用いずに帯電バイアス電源
101を接続した電極102を被覆した固定磁石体10
3を感光体ドラム104に対向配置すると共に、該固定
磁石体103と対向させて、感光体ドラム104の背面
側に逆極性の磁石体105を配し、該磁石体105と固
定磁石体103間に形成される磁場により前記磁性粒子
群107を帯電領域に保持させながら感光体の帯電を行
なうように構成した技術が開示されている。
In order to eliminate such a drawback, as shown in FIG. 6, a fixed magnet body 10 is provided which covers an electrode 102 to which a charging bias power source 101 is connected without using the charging sleeve.
3 is arranged so as to face the photosensitive drum 104, faces the fixed magnet body 103, and a magnet body 105 of opposite polarity is arranged on the back side of the photosensitive drum 104, and between the magnet body 105 and the fixed magnet body 103. There is disclosed a technique in which the photosensitive member is charged while the magnetic particle group 107 is held in the charging region by the magnetic field formed in the above.

【0007】[0007]

【発明が解決しようとする課題】かかる技術によれば、
磁性粒子群107の磁気保持を行なう磁石体が帯電ギャ
ップ108の片側にのみ配置されているのではなく、両
側に配置されている為に、帯電ギャップ108間の磁界
の勾配(ΔH/Δt)を大きく設定出来るが、尚、前記
磁性粒子が帯電領域から離脱するのを完全に阻止する事
が出来ず、この為、前記装置においては固定磁石体10
3の側面に絶縁性シート109を感光体ドラム側に垂下
させ、磁性粒子の飛散を防止している。
According to such a technique,
Since the magnet body for magnetically retaining the magnetic particle group 107 is not arranged only on one side of the charging gap 108 but on both sides thereof, the magnetic field gradient (ΔH / Δt) between the charging gaps 108 is Although it can be set to a large value, it is still impossible to completely prevent the magnetic particles from being separated from the charged area. Therefore, in the apparatus, the fixed magnet body 10 is used.
Insulating sheet 109 is hung on the side surface of No. 3 toward the photosensitive drum to prevent magnetic particles from scattering.

【0008】しかしながら前記のように絶縁シートをド
ラムに接触する構成では、摩耗等により長期使用に耐え
られない。又前記構成では磁性粒子を良導電性の材料に
しなければ、絶縁性シート109と粒子との摺擦帯電に
より粒子固着等が生じてしまい好ましくないが、良導電
性粒子を用いると、帯電バイアスにより感光体ドラム側
にピンホール等が発生しやすい。
However, the structure in which the insulating sheet contacts the drum as described above cannot withstand long-term use due to wear or the like. Further, in the above-mentioned configuration, unless the magnetic particles are made of a material having good conductivity, it is not preferable because the particles are fixed due to the sliding friction between the insulating sheet 109 and the particles. Pinholes are likely to occur on the photosensitive drum side.

【0009】又前記の構成を取ると、磁石体を片側のみ
に配置した従来技術に比較して磁性粒子の磁気保持力が
大幅に高まるために、帯電領域内の磁性粒子群の入替え
が出来ず、同一粒子群が長期に亙って保持され劣化して
しまうという問題が生じる。
Further, with the above construction, the magnetic coercive force of the magnetic particles is significantly increased as compared with the prior art in which the magnet body is arranged only on one side, and therefore the magnetic particle groups in the charging area cannot be replaced. However, there is a problem that the same particle group is retained and deteriorated over a long period of time.

【0010】本発明はかかる従来技術の欠点に鑑み、前
記帯電粒子の漏洩等が生じることなく又長期使用によっ
ても帯電剤が劣化する事なく長期に亙って安定した帯電
能を確保し得る帯電装置として適用される発明を提供す
る事を目的とする。本発明の他の目的は、磁性粒子の循
環を良好に確保出来る帯電装置として適用される発明を
提供する事を目的とする。本発明の他の目的は、製造上
からも、使用者側からも、更に環境にも十分配慮するこ
とが出来、極めて実用性の高い帯電装置が得る事の出来
る発明を提供することを目的とする。
In view of the above-mentioned drawbacks of the prior art, the present invention is a charging method capable of ensuring a stable charging ability for a long period of time without causing leakage of the charged particles and deterioration of the charging agent even after long-term use. It is an object of the present invention to provide an invention applied as a device. Another object of the present invention is to provide an invention applied as a charging device capable of ensuring good circulation of magnetic particles. Another object of the present invention is to provide an invention capable of obtaining a charging device having extremely high practicability, which can be sufficiently considered from the viewpoint of manufacturing, the user side, and the environment. To do.

【0011】[0011]

【課題を解決するための手段】本発明は、図1(A)
(B)に示すように、感光体ドラム1の帯電領域上に、
該ドラムに向けて固定配置した主極A1を内包する非磁
性帯電スリーブ2を、又前記帯電領 域上に位置する感
光体ドラム1の背面側に前記主極A1と逆極性の対向極
1を配してなる帯電装置において、前記帯電スリーブ
2を感光体ドラム1の回転方向に対しアゲインスト方向
に回転させると共に、感光体ドラム1上の帯電スリーブ
最近接点Pにおける前記2つの磁石体の磁気力合成ベク
トルFmが、前記最近接点Pを中心として下記1)
1’)式の角度範囲θFに位置するように構成したこと
を特徴とするものである。 −90°>θF≧15° …1) より好ましくは、−35°≧θF≧0° …1’) (感光体ドラム1軸心O1と帯電スリーブ2軸心O2を結
ぶ線のうち、最近接点Pより帯電スリーブ2の軸心O2
側の方向を0°とし、感光体ドラム回転方向上流側をマ
イナス角度、下流側をプラス角度に設定する。)
The present invention is shown in FIG.
As shown in (B), on the charging area of the photosensitive drum 1,
Non magnetic charging sleeve 2, and the main pole A 1 and opposite polarities opposite pole on the rear side of the photosensitive drum 1 positioned on the charging area which encloses the main pole A 1 which is fixedly disposed toward the drum In the charging device having B 1 , the charging sleeve 2 is rotated in the against direction with respect to the rotation direction of the photosensitive drum 1, and the two magnet bodies at the charging sleeve closest contact point P on the photosensitive drum 1 are arranged. The magnetic force synthesis vector Fm of the above is centered on the closest contact point P and the following 1)
1 ') is configured so as to be located in the angular range θ F. More preferably -90 °> θ F ≧ 15 ° ... 1), -35 ° ≧ θ F ≧ 0 ° ... 1 ') ( a line connecting the photosensitive drum 1 axis O 1 and the charging sleeve 2 axis O 2 Of these, the axis O 2 of the charging sleeve 2 from the closest contact point P 2
The side direction is set to 0 °, the upstream side of the photosensitive drum rotation direction is set to a minus angle, and the downstream side is set to a plus angle. )

【0012】このような構成を支える具体的手段とし
て、前記主極A1の帯電スリーブ2上における最大磁束
密度位置Q2が、又前記対向極B1の感光体ドラム1上に
おける最大磁束密度位置Q1より感光体ドラム1の回転
方向下流側に位置するように構成すると共に、前記主極
1における前記最近接点P上の磁束密度BA1が、前記
対向極B1における前記最近接点P上の磁束密度BB1
り大になる如く構成するのがよい。
As a concrete means for supporting such a constitution, the maximum magnetic flux density position Q 2 of the main pole A 1 on the charging sleeve 2 and the maximum magnetic flux density position of the counter pole B 1 on the photosensitive drum 1 are shown. as well as adapted from Q 1 positioned on the downstream side in the rotational direction of the photosensitive drum 1, the main the recent magnetic flux density BA 1 on the contact point P in the polar a 1 is the recently on the contact point P in the counter electrode B 1 It is preferable that the magnetic flux density is higher than the magnetic flux density BB 1 of .

【0013】この場合前記対向極B1の最大磁束密度位
置Q1は帯電スリーブ最近接点Pより感光体ドラム1の
回転方向上流側の+5°〜−30°の範囲に設定するの
が良く、より好ましくは、前記主極A1の最大磁束密度
位置Q2が帯電スリーブ最近接点Pを挟んで−20°〜
+5°の範囲にして、且つ 帯電スリーブ2軸心O2
前記主極A1の最大磁束密度位置Q2を結ぶ線と、前記感
光体ドラム1軸心O2と対向極B1の最大磁束密度位置Q
1を結ぶ線の狭角を0〜50°に設定するのが良い。
In this case, the maximum magnetic flux density position Q 1 of the opposite pole B 1 is preferably set in the range of + 5 ° to -30 ° on the upstream side in the rotation direction of the photosensitive drum 1 with respect to the closest contact P of the charging sleeve. Preferably, the maximum magnetic flux density position Q 2 of the main pole A 1 is −20 ° with the closest contact P of the charging sleeve interposed therebetween.
Within the range of + 5 °, a line connecting the charging sleeve 2 axial center O 2 and the maximum magnetic flux density position Q 2 of the main pole A 1 , and the maximum magnetic flux of the photosensitive drum 1 axial center O 2 and the opposing pole B 1 Density position Q
It is good to set the narrow angle of the line connecting 1 to 0 to 50 °.

【0014】尚、本発明においては体積固有抵抗が10
3〜108Ω・cmの範囲に、好ましくは104〜108Ω
・cmに設定した導電性磁性粒子を用いるのが良い。こ
の場合この体積固有抵抗は、底部に電極を有する内径2
0mmのテフロン製筒体に、前記粒子を1.5g入れ、
上部より外径20mmφの電極を挿入した後、該電極上
面に1Kgの荷重を印加して測定した値である。
In the present invention, the volume resistivity is 10
In the range of 3 to 10 8 Ω · cm, preferably 10 4 to 10 8 Ω
-It is preferable to use conductive magnetic particles set to cm. In this case, this volume resistivity has an inner diameter of 2 with an electrode at the bottom.
In a 0 mm Teflon cylinder, put 1.5 g of the particles,
It is a value measured by inserting an electrode having an outer diameter of 20 mmφ from the upper part and then applying a load of 1 kg to the upper surface of the electrode.

【0015】[0015]

【作用】本発明は上記構成にすることにより、図1に示
すごとく磁性粒子4群の流出現象は、最近接点Pにおい
て磁性粒子4が受ける磁気力の大きさと方向に依存す
る。即ち前記帯電領域上で感光体ドラム1に摺擦されな
がら最近接点Pの帯電ギャップ5に導かれた磁性粒子4
は、該ギャップ5が隘路となり、その流出を阻止しなが
ら、感光体ドラム上の最近接点Pにおける磁束密度を
「BA1>BB1」に設定しているために、感光体ドラム1
側より帯電スリーブ2側に吸上げられる。この際前記磁
性粒子4が帯電ギャップ5出口方向に大きな振れ角をも
って吸引されると、前記隘路より磁性粒子4が帯電領域
外側に飛出し流出や飛散が生じてしまう。
With the above-described structure of the present invention, the outflow phenomenon of the group of magnetic particles 4 as shown in FIG. 1 depends on the magnitude and direction of the magnetic force that the magnetic particles 4 receive at the closest contact point P. That is, the magnetic particles 4 most recently guided to the charging gap 5 of the contact point P while being rubbed against the photosensitive drum 1 on the charging area.
Since the gap 5 becomes a bottleneck and the outflow of the gap 5 is prevented, the magnetic flux density at the closest contact point P on the photoconductor drum is set to "BA 1 > BB 1 ".
From the side to the charging sleeve 2 side. At this time, if the magnetic particles 4 are attracted toward the exit of the charging gap 5 with a large deflection angle, the magnetic particles 4 fly out of the bottleneck to the outside of the charging area, and flow out or scatter.

【0016】そこで図1(B)に示すごとく最近接点P
における前記2つの磁石体の磁気力の合成ベクトルFm
を、帯電ギャップ5入口側(図上左横から左上方向)に
向け吸引させる事により、前記隘路より帯電領域上流側
に戻す方向に粒子群が移動し、これにより帯電領域より
の粒子流出や飛散を円滑に阻止出来る。この場合前記合
成ベクトルFmが僅かに出口側であっても大きな問題と
ならないことが確認され、そこで本発明は、前記ベクト
ルを前記1)式の範囲に設定している。
Therefore, as shown in FIG. 1B, the closest contact P
Vector Fm of the magnetic forces of the two magnets at
Are attracted toward the entrance side of the charging gap 5 (from the left lateral side to the upper left direction in the figure), the particle group moves in the direction returning to the upstream side of the charging area from the bottleneck, whereby the particles flow out or scatter from the charging area. Can be prevented smoothly. In this case, it has been confirmed that even if the combined vector Fm is slightly on the exit side, it does not pose a big problem. Therefore, in the present invention, the vector is set within the range of the expression 1).

【0017】又帯電スリーブ2が円弧であるために余り
に接線方向に近いよりも前記ベクトルが−45°以内、
より好ましくは前記1’)式の範囲に設定する事がよい
事が実験により確認している。更に本発明は前記帯電ス
リーブ2を感光体ドラム1に対し、アゲインスト方向、
即ち帯電領域上流側に向け回転させている為に、前記帯
電スリーブ2に付着した磁性粒子4が帯電ギャップ5位
置より帯電領域上流側に向け流れるために、該帯電領域
内で磁性粒子4の循環が可能となり、長期使用によって
も該粒子の劣化が生じることはない。
Since the charging sleeve 2 is an arc, the vector is within -45 ° rather than being too close to the tangential direction.
It has been confirmed by experiments that it is more preferable to set the range of the above formula 1 '). Further, according to the present invention, the charging sleeve 2 is attached to the photosensitive drum 1 in the opposite direction,
That is, since the magnetic particles 4 attached to the charging sleeve 2 flow toward the upstream side of the charging area from the position of the charging gap 5 because they are rotated toward the upstream side of the charging area, the magnetic particles 4 circulate in the charging area. It is possible to prevent deterioration of the particles even after long-term use.

【0018】そして前記効果は帯電ギャップ5位置で帯
電スリーブ2側に粒子が移動することにより始めて達成
し得るもので、最近接点P上における磁束密度を「BA1
>BB1」に設定する事が条件となる。そして帯電スリー
ブ2をアゲインスト回転させる場合は主極A1はほぼ最
近接点P上に配置するのが良い。
The above effect can be achieved only when the particles move toward the charging sleeve 2 at the position of the charging gap 5, and the magnetic flux density on the closest contact point P is "BA 1
> BB 1 ”must be set. When the charging sleeve 2 is rotated against again, the main pole A 1 should be arranged almost on the closest contact point P.

【0019】特に「BA1>BB1」の条件を最も有効に達
成するには夫々の磁石体の半値幅にもよるが、前記対向
極B1の最大磁束密度位置Q1は最近接点Pより感光体ド
ラム1回転方向上流側の+5°〜−30°の範囲に設定
するのが良く、更に前記最大磁束密度位置Q2が最近接
点Pを挟んで−20°〜+5°の範囲にして、且つ感光
体ドラム1軸心O1と前記主極A1の最大磁束密度位置Q
2を結ぶ線と、前記感光体ドラム1軸心O1と対向極B1
の最大磁束密度位置Q1を結ぶ線の狭角を0〜50°に
設定するのが良い。
[0019] While particular depending on the half-width condition of most effectively achieving magnet body each to the "BA 1> BB 1", the maximum magnetic flux density positions to Q 1 the opposing electrode B 1 represents than the closest point P It is preferable to set in the range of + 5 ° to −30 ° on the upstream side in the rotation direction of the photosensitive drum 1, and further, the maximum magnetic flux density position Q 2 is set in the range of −20 ° to + 5 ° with the nearest contact point P interposed. Further, the maximum magnetic flux density position Q between the photosensitive drum 1 axis O 1 and the main pole A 1
The line connecting the two , the axis O 1 of the photosensitive drum 1 and the opposite pole B 1
It is preferable to set the narrow angle of the line connecting the maximum magnetic flux density positions Q 1 of 0 to 50 °.

【0020】そして前記作用は前記磁性粒子4群の体積
固有抵抗を103〜108Ω・cmの範囲に設定すること
により有効に達成できる。けだし103Ω・cm以下で
は感光体ドラム1表面上にピンホールが出来るのみなら
ず、帯電開始時及び停止時の静電気力の増大により感光
体ドラム1の軸端側における前記磁石体の境界線上でキ
ャリア引きが生じ、又108Ω・cm以上では円滑な粒
子帯電が不可能になる。
The above-mentioned effect can be effectively achieved by setting the volume resistivity of the four groups of magnetic particles in the range of 10 3 to 10 8 Ω · cm. When the protrusion is 10 3 Ω · cm or less, not only pinholes are formed on the surface of the photoconductor drum 1, but also due to an increase in electrostatic force at the start and stop of charging, on the boundary line of the magnet body on the axial end side of the photoconductor drum 1. Carrier pulling occurs, and smooth particle charging becomes impossible at 10 8 Ω · cm or more.

【0021】[0021]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図2
に基づいて本発明の実施例に係る帯電装置の構成につい
て説明する。帯電装置は前記したように図上右方向に回
転する感光体ドラム1に対し0.5mm程度の帯電ギャ
ップ5(最近接間隔)を介して帯電領域位置で前記感光
体ドラム1と互いに反対方向、即ちアゲインスト方向
(図上左方向、尚回転軸から見た場合はいずれも同一回
転方向となる。)に回転可能により非磁性の帯電スリー
ブ2を配設すると共に、該スリーブ2の背面側の帯電領
域下流側に固定配置した磁石集成体3を配設する。尚、
7は不図示の導電ブレード若しくは非磁性スリーブ2を
介して導電性磁性粒子群4に現像バイアスを印加させる
バイアス電源である。
Embodiments of the present invention will now be illustratively described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative positions and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely examples, unless otherwise specified. Not too much. Figure 2
The configuration of the charging device according to the embodiment of the present invention will be described based on FIG. As described above, the charging device is in the opposite direction to the photosensitive drum 1 at the charging area position via the charging gap 5 (closest spacing) of about 0.5 mm with respect to the photosensitive drum 1 rotating to the right in the figure. That is, the non-magnetic charging sleeve 2 is disposed so as to be rotatable in the against direction (the left direction in the drawing, and the same rotating direction when viewed from the rotation axis), and the rear side of the sleeve 2 is provided. A magnet assembly 3 is fixedly arranged on the downstream side of the charging area. still,
A bias power source 7 applies a developing bias to the conductive magnetic particle group 4 via a conductive blade or a non-magnetic sleeve 2 (not shown).

【0022】次に本発明の要旨たる帯電スリーブ2と感
光体ドラム1の夫々の磁極配置について説明する。先ず
感光体ドラム1の軸心O1と帯電スリーブ2の軸心O2
結ぶ線をY軸、最近接点Pを通る感光体ドラム1の接線
をX軸とし、該両軸により形成される各象限を時計回り
方向に夫々1、2、3、4象限とする。
Next, the arrangement of the magnetic poles of the charging sleeve 2 and the photosensitive drum 1 will be described, which is the subject matter of the present invention. First the axis O 1 of the photosensitive drum 1 Y-axis a line connecting the axis O 2 of the charging sleeve 2, the tangent of the photosensitive drum 1 recently through the contact point P with the X-axis, each being formed by both said shaft The quadrants are clockwise in 1, 2, 3, and 4 quadrants, respectively.

【0023】そして前記磁石集成体3には、前記帯電ギ
ャップ5上若しくは該帯電ギャップ5より僅かに帯電ス
リーブ2回転方向上流側の第1象限内に後記する感光体
ドラム1背面側の対向磁極B1との間で主として磁性粒
子4の漏洩防止のために磁気シールを行うN極の主極A
1、更に主極A1の帯電スリーブ2回転方向上流側の第1
象限内に、前記磁気シールの補助を行うS極の磁石体
(以下シー ルド補助極A2という)、又主極A1の帯電
スリーブ2回転方向下流側の第4象限内には約50ガウ
ス以下の小さな磁力しか持たない無着磁領域である無磁
力帯域A4をスリーブ2上に形成し、スリーブ2のアゲ
インスト回転によりスリーブ2表面に担持されながら搬
送させるS極の磁石体A3で搬送して磁性粒子4を前記
無磁力体域A4にきたとき帯電領域上流側の感光体ドラ
ム1側に落下させる構成とする。
In the magnet assembly 3, on the charging gap 5 or slightly in the first quadrant upstream of the charging gap 5 in the rotational direction of the charging sleeve 2, the opposing magnetic pole B on the rear side of the photosensitive drum 1 will be described later. Main pole A of the N pole that magnetically seals with 1 to prevent leakage of magnetic particles 4.
1 , the first of the main pole A 1 on the upstream side in the rotation direction of the charging sleeve 2
In the quadrant, an S pole magnet body (hereinafter referred to as shield auxiliary pole A 2 ) for assisting the magnetic seal, and about 50 gauss in the fourth quadrant downstream of the main pole A 1 in the rotation direction of the charging sleeve 2 are provided. A non-magnetized zone A4, which is a non-magnetized region having only a small magnetic force, is formed on the sleeve 2 and is conveyed by an S-pole magnet body A 3 which is conveyed while being carried on the surface of the sleeve 2 by the against rotation of the sleeve 2. Then, when the magnetic particles 4 come to the non-magnetic body region A4, they are dropped to the photosensitive drum 1 side on the upstream side of the charging region.

【0024】又前記帯電スリーブ2と感光体ドラム1に
挟まれる帯電領域上には導電性磁性粒子群4を介在させ
る。前記磁性粒子4は導電性で、体積固有抵抗を103
〜108Ω・cmの範囲がよい。好ましくは104〜10
8Ω・cmで設定される。又、粒子径は平均粒径が10
〜30μmの範囲でよく、より好ましくは、10μm〜
25μmの範囲で任意に設定される。
A group of conductive magnetic particles 4 is interposed on the charging area sandwiched between the charging sleeve 2 and the photosensitive drum 1. The magnetic particles 4 are conductive and have a volume resistivity of 10 3
A range of 10 8 Ω · cm is preferable. Preferably 10 4 to 10
It is set at 8 Ω · cm. The average particle size is 10
˜30 μm, and more preferably 10 μm
It is arbitrarily set within the range of 25 μm.

【0025】一方、感光体ドラム1の背面側には、前記
主極A1の対向位置より僅かに感光体ドラム1回転方向
上流側の帯電領域下流部にS極の磁石体(以下対向極B
1という)と、前記対向極B1に隣接させて帯電領域上流
側に感光体ドラム1面と水平な磁場(以下「水平磁場」
という)を形成するためのN極の磁石体(以下隣接極B
2という)とを隣接配置し、前記主極A1と対向極B1
の間で感光体ドラム面に垂直な磁場を(以下「垂直磁
場」という)を、又対向極B1と隣接極B2との間で感光
体ドラム1上に水平磁場を形成する。
On the other hand, on the rear surface side of the photosensitive drum 1, an S-pole magnet body (hereinafter referred to as opposing pole B) is provided at a downstream portion of the charging area slightly upstream of the facing position of the main pole A 1 in the rotation direction of the photosensitive drum 1.
1 ) and a magnetic field horizontal to the surface of the photosensitive drum 1 adjacent to the opposite pole B 1 and upstream of the charging area (hereinafter referred to as “horizontal magnetic field”).
N pole magnet body (hereinafter, adjacent pole B)
2 ) are arranged adjacent to each other, and a magnetic field perpendicular to the surface of the photoconductor drum between the main pole A 1 and the counter pole B 1 (hereinafter referred to as “vertical magnetic field”), and the counter pole B 1 and the adjacent pole. A horizontal magnetic field is formed on the photosensitive drum 1 with B 2 .

【0026】即ち、具体的には前記対向配置される主極
1と対向極B1を感光体ドラム1回転方向における帯電
領域下流側に配し、両磁石体A1、B1間に形成される垂
直磁場により前記磁性粒子群4を磁気保持させ、又隣接
極B2を対向極B1に隣接させて帯電領域上流側に配置さ
せ、両磁石体B2、B1間に主として形成される感光体ド
ラム1上の水平磁場により前記磁性粒子群4を感光体ド
ラム1上に密着させる。
That is, specifically, the main pole A 1 and the counter pole B 1 which are arranged to face each other are arranged on the downstream side of the charging area in the rotation direction of the photosensitive drum 1 , and are formed between the two magnet bodies A 1 and B 1. The magnetic particle group 4 is magnetically held by the perpendicular magnetic field and the adjacent pole B 2 is arranged adjacent to the opposite pole B 1 on the upstream side of the charging area to mainly form between the two magnet bodies B 2 and B 1. The magnetic particles 4 are brought into close contact with the photosensitive drum 1 by a horizontal magnetic field on the photosensitive drum 1.

【0027】次にかかる実施例の作用を簡単に説明する
と、前記帯電領域に位置する磁性粒子群4は、対向極B
1と隣接極B2間の水平磁場4A上で感光体ドラム1上に
密着して付着され、この状態で感光体ドラム1が時計周
りに回転すると、水平磁場4A上で感光体ドラム1への
帯電を行ない帯電ギャップ5に近づくにつれて急速に帯
電電位を上げ帯電ギャップ5側へ移動する。該帯電ギャ
ップ5位置では主極A1と対向極B1との間で形成される
磁気力の合成ベクトルを前記1)式の範囲内で帯電スリ
ーブ2側に設定することにより、帯電スリーブ2側に移
動し且つ吸着する。
The operation of this embodiment will be briefly described below. The magnetic particle group 4 located in the charged area is the opposite pole B.
1 and is attached in close contact with the photosensitive drum 1 on a horizontal magnetic field 4A between adjacent poles B 2, when the photosensitive drum 1 in this state is rotated clockwise, on the horizontal magnetic field 4A to the photosensitive drum 1 As the charging is performed and the charging gap 5 is approached, the charging potential is rapidly increased to move to the charging gap 5 side. At the position of the charging gap 5, the composite vector of the magnetic force formed between the main pole A 1 and the counter pole B 1 is set on the charging sleeve 2 side within the range of the above formula 1), so that the charging sleeve 2 side Move to and adsorb.

【0028】そして帯電スリーブ2側に吸着した磁性粒
子4Bは、スリーブ2の回転に従って帯電領域上流側へ
戻された後、磁石体A3の下流側の無着磁帯A4による
無磁力帯が帯電領域上流側に位置するようにレイアウト
されている為に、帯電領域上流側に搬送された前記磁性
粒子群4Cを磁気的に開放し、感光体ドラム1側に落下
し、磁性粒子4の循環が行なわれる。
The magnetic particles 4B adsorbed on the charging sleeve 2 side are returned to the upstream side of the charging area as the sleeve 2 rotates, and then the non-magnetization zone by the non-magnetization zone A4 on the downstream side of the magnet body A 3 is charged. Since the magnetic particles 4C are laid out so as to be located on the upstream side of the area, the magnetic particle group 4C conveyed to the upstream side of the charging area is magnetically released and dropped to the side of the photoconductor drum 1 to circulate the magnetic particles 4. Done.

【0029】次にかかる装置を用いた帯電ギャップ5よ
りの磁性粒子4の漏洩を実験により確認する。先ず本実
験条件について図3、4を用いて説明する。感光体ドラ
ム1はOPCドラムを用い、その直径を30mmφ、そ
の線速を25m/secに設定する。帯電スリーブ2は
アルミ管を用い、その直径を12mmφ、その線速を8
m/secに設定する。磁性粒子4はその平均粒径が1
8.0μm、体積固有抵抗が5×106・Ω・cmのフ
ェライトコア粒子を用い、1kOeの磁場での最大磁化
を60emu/gに設定する。そして帯電バイアス電源
7に400Vを印加し、感光体表面電位が350Vに設
定する。
Next, the leakage of the magnetic particles 4 from the charging gap 5 using such a device is confirmed by an experiment. First, the experimental conditions will be described with reference to FIGS. The photoconductor drum 1 is an OPC drum, and its diameter is set to 30 mmφ and its linear velocity is set to 25 m / sec. The charging sleeve 2 is made of an aluminum tube and has a diameter of 12 mmφ and a linear velocity of 8 mm.
Set to m / sec. Magnetic particles 4 have an average particle size of 1
Ferrite core particles having a size of 8.0 μm and a volume resistivity of 5 × 10 6 Ω · cm are used, and the maximum magnetization in a magnetic field of 1 kOe is set to 60 emu / g. Then, 400V is applied to the charging bias power source 7 to set the surface potential of the photoconductor to 350V.

【0030】又前記夫々の磁極の磁束密度は、対向極B
1と隣接極B2の夫々の感光体ドラム1上での最大磁束密
度を夫々S630G、N730G、更に主極A1とシー
ルド極A2の夫々の帯電スリーブ2上での最大磁束密度
を夫々N900G(試料No.10についてのみ1100
G)、S770G(試料No.10についてのみ940
G)に夫々設定する。そして図1(A)に示すように、
主極A1と対向極B1及びシールド極A2の夫々の磁極の
配置角度をθ1、θ2、θ4に設定した場合の、最近接点
Pにおける前記2つの磁石体の磁気力の合成ベクトルF
mの角度θ、及び最近接点P上における感光体ドラム1
面の磁気力Fmを測定した。
The magnetic flux density of each magnetic pole is the opposite pole B.
1 and the maximum magnetic flux density, respectively S630G on the photoconductive drum 1 of each of the adjacent poles B 2, N730G, further main poles A 1 and the maximum magnetic flux density, respectively N900G of on the shield electrode A 2 of each of the charging sleeve 2 (1100 only for sample No. 10
G), S770G (940 for sample No. 10 only)
Set each in G). Then, as shown in FIG.
When the arrangement angles of the magnetic poles of the main pole A 1 , the counter pole B 1, and the shield pole A 2 are set to θ 1 , θ 2 , and θ 4 , the magnetic forces of the two magnet bodies at the closest contact P are combined. Vector F
The angle θ of m and the photosensitive drum 1 on the closest contact point P
The magnetic force Fm of the surface was measured.

【0031】そして前記夫々の条件下で感光体ドラム1
と帯電ドラムを前記線速で回し、磁性粒子4の漏洩状態
を調べたところ、θFが−35°〜0°の範囲の実験No.
3〜7のものについては全く漏洩がなく、又θFが+1
5°までの実験No.2、5のものについては帯電ギャッ
プ5より僅かに粒子の飛出しはあるがドラム下流側への
漏洩がなく、他のものの+15°以降の実験No.1と9
については漏洩があった。これにより本発明の作用が確
認された。
Under the respective conditions described above, the photosensitive drum 1
When the leakage state of the magnetic particles 4 was investigated by rotating the charging drum and the charging drum at the linear velocity, the experiment No. in the range of θ F of −35 ° to 0 °.
3 to 7 have no leakage at all, and θ F is +1
In Experiment Nos. 2 and 5 up to 5 °, particles were slightly ejected from the charging gap 5, but there was no leakage to the downstream side of the drum.
There was a leak about. This confirmed the effect of the present invention.

【0032】次に主極A1と対向極B1の磁極配置角度θ
1、θ2について検討するために、主極A1と対向極B1
最大磁束密度位置の振れ角を変化させて同様な測定をし
たところ、図4に示すように前記対向極B1の感光体ド
ラム1上の最大磁束密度位置Q1は最近接点Pより感光
体ドラム1回転方向上流 側の+5°〜−20°の範囲
に設定するのが良い。又θ1は−20°でθ2を広範囲に
設定可能である良好な結果を生んでいる事から、−30
°でもθ2の設定値により問題ない事が推定される。
Next, the magnetic pole arrangement angle θ between the main pole A 1 and the counter pole B 1
1, in order to examine the theta 2, it was measured similar by changing the deflection angle of the maximum magnetic flux density position of the main poles A 1 and the counter electrode B 1, the opposed poles B 1 as shown in FIG. 4 Photoconductor
The maximum magnetic flux density position on the ram 1 Q 1 is may be set to a range of the photosensitive drum 1 rotating direction upstream side of + 5 ° ~-20 ° more recent contacts P. Also, since θ 1 is -20 ° and θ 2 can be set in a wide range, it produces a good result, so -30
It is presumed that there will be no problem even with ° depending on the set value of θ 2 .

【0033】なお主極A1を0°の位置に設定し、対向
極B1を感光体ドラム1回転方向上流側に振った場合の
最近接点P上における磁界の強さHの変化を図5に示
す。この場合、曲線H1は主極A1の点P上における磁界
の強さの変化を、曲線Hmaは対向極B1の磁界の強さ
HaとH1の合成曲線、曲線Hmbは対向極B1の磁界の
強さHbとH1の合成曲線を示す。本図より理解される
通り、各種の磁界の強さの曲線Hmは極大値をもちこの
値で使用もできるが、θ1の振れ角が−30°以上では
磁速密度が収束し、実質的に対向極B1が無い場合と同
じになり好ましくない。又、図4より前記最大磁束密度
位置Q2が最近接点Pを挟んで角度θ2を−20°〜+
5°、好ましくは−10°〜+ 5°の範囲にして、且
つ 帯電スリーブ2軸心O2と前記主極A1の最大磁束密
度位置Q2を結ぶ線と、前記感光体ドラム1軸心O1と対
向極B1の最大磁束密度位置Q1を結ぶ線の狭角を0〜5
0°に設定するのが良い事も理解される。
The change in the magnetic field strength H on the closest contact point P when the main pole A 1 is set at the position of 0 ° and the opposite pole B 1 is swung upstream in the rotation direction of the photosensitive drum 1 is shown in FIG. Shown in. In this case, the curve H 1 shows the change in the magnetic field strength on the point P of the main pole A 1 , the curve Hma is the combined curve of the magnetic field strengths Ha and H 1 of the opposite pole B 1 , and the curve Hmb is the opposite pole B. shows one of the composite curve of the magnetic field strength Hb and H 1. As can be understood from this figure, the curves Hm of various magnetic field strengths have a maximum value and can be used at this value, but when the deflection angle of θ 1 is -30 ° or more, the magnetic velocity density converges and the It is not preferable because it is the same as the case where there is no counter electrode B 1 in . Further, as shown in FIG. 4, the maximum magnetic flux density position Q 2 has an angle θ 2 of −20 ° to + with the closest contact point P interposed.
5 °, preferably -10 ° to + 5 °, and a line connecting the charging sleeve 2 axial center O 2 and the maximum magnetic flux density position Q 2 of the main pole A 1 and the photosensitive drum 1 axial center. The narrow angle of the line connecting O 1 and the maximum magnetic flux density position Q 1 of the opposite pole B 1 is 0 to 5
It is also understood that it is better to set it to 0 °.

【0034】[0034]

【効果】以上記載のごとく本発明によれば、粒子帯電に
おける磁性粒子の漏洩等が生じることなく又長期使用に
よっても帯電剤が劣化する事なく長期に亙って安定した
帯電能を確保し得る。又本発明によれば、磁性粒子の循
環を良好に確保出来る帯電装置として適用される。更に
本発明によれば、製造上からも、使用者側からも、更に
環境にも十分配慮することが出来、極めて実用性の高い
帯電装置が得る事の出来る。等の種々の著効を有す。
As described above, according to the present invention, stable charging ability can be secured for a long period of time without causing leakage of magnetic particles during particle charging and without deterioration of the charging agent even after long-term use. . Further, according to the present invention, it is applied as a charging device capable of ensuring good circulation of magnetic particles. Further, according to the present invention, it is possible to obtain a charging device having extremely high practicality, because it is possible to sufficiently consider the environment from the viewpoint of manufacturing, the user side, and the like. It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の基本構成図。(B)は主極で
対向極の合成ベクトルの関係を示す。
FIG. 1A is a basic configuration diagram of the present invention. (B) shows the relationship of the combined vector of the main pole and the opposite pole.

【図2】本発明の実施例に係る帯電装置を示す全体図で
ある。
FIG. 2 is an overall view showing a charging device according to an exemplary embodiment of the present invention.

【図3】図2の実施例において主極と対向極を位置を変
化させて、両磁石体の磁気力の合成ベクトルと粒子漏洩
の関係を示す表図である。
FIG. 3 is a table showing a relationship between a combined vector of magnetic forces of both magnet bodies and particle leakage by changing positions of a main pole and an opposite pole in the embodiment of FIG.

【図4】主極と対向極の磁極配置角度と粒子漏洩の関係
を示す表図である。
FIG. 4 is a table showing a relationship between a magnetic pole arrangement angle of a main pole and a counter pole and particle leakage.

【図5】主極を0°とし対向極を感光体ドラム回転方向
上流側に振った場合の磁速密度を示すグラフである。
FIG. 5 is a graph showing the magnetic velocity density when the main pole is 0 ° and the counter pole is swung upstream in the rotation direction of the photosensitive drum.

【図6】従来技術に係る帯電装置を示す表図である。FIG. 6 is a table showing a charging device according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 感光体ドラム 2 帯電スリーブ 3 前記磁石集成体 4 磁性粒子 5 帯電ギャップ P 最近接点 A1 主極 B1 対向磁極1 Photoreceptor Drum 2 Charging Sleeve 3 The Magnet Assembly 4 Magnetic Particles 5 Charging Gap P Closest Contact A 1 Main Pole B 1 Opposing Magnetic Pole

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 感光体ドラムの帯電領域上に、該ドラム
に向けて固定配置した第1の磁石体(以下主極という)
を内包する非磁性帯電スリーブを、又前記帯電領域上に
位置する感光体ドラムの背面側に、前記主極と逆極性の
第2の磁石体(以下対向極という)を配し、前記両磁石
体により担持された磁性粒子群を介して感光体ドラムを
帯電可能に構成した帯電装置において、 前記感光体ドラム上の帯電スリーブ最近接点Pにおける
前記2つの磁石体の磁気力合成ベクトルFmが、 前記最近接点Pを中心として下記1)式の角度θF範囲
に位置するように構成したことを特徴とする帯電装置 −90°>θF≧+15° …1) (感光体ドラム軸心O1と帯電スリーブ軸心O2を結ぶ線
のうち、最近接点Pより帯電スリーブ軸心O2側の方向
を0°とし、感光体ドラム回転方向上流側をマイナス角
度、下流側をプラス角度に設定する。)
1. A first magnet body (hereinafter referred to as a main pole) fixedly arranged on a charging area of a photosensitive drum toward the drum.
A non-magnetic charging sleeve containing a magnet, and a second magnet body having a polarity opposite to that of the main pole (hereinafter referred to as a counter pole) on the back side of the photosensitive drum located on the charging area. In a charging device configured to charge a photosensitive drum via a group of magnetic particles carried by a body, a magnetic force synthesis vector Fm of the two magnet bodies at a charging sleeve closest contact point P on the photosensitive drum is: Charging device characterized by being configured so as to be located within the angle θ F range of the following formula 1) with the closest point P as the center −90 °> θ F ≧ + 15 ° ... 1) (photosensitive drum shaft center O 1 of the line connecting the charging sleeve axis O 2, recently direction from the contact point P charging sleeve axis O 2 side and 0 °, set the rotational direction of the photoreceptor drum upstream minus angle, the downstream side to the positive angle. )
【請求項2】感光体ドラム上の帯電スリーブ最近接点P
における前記2つの磁石体の磁気力合成ベクトルFm
が、 前記最近接点Pを中心として下記1’)式の角度範囲に
位置するように構成したことを特徴とする請求項1記載
の帯電装置 −35°≧θF≧0° …1’)
2. A charging sleeve closest contact point P on a photosensitive drum.
Magnetic force synthesis vector Fm of the two magnets in
The charging device according to claim 1, wherein the charging device is located within an angle range of the following formula 1 ') about the nearest contact point P as a center. -35 ° ≥ θ F ≥ 0 ° ... 1').
【請求項3】前記帯電スリーブを感光体ドラムの回転方
向に対しアゲインスト方向に回転させるように構成した
ことを特徴とする請求項1記載の帯電装置
3. The charging device according to claim 1, wherein the charging sleeve is configured to rotate in an against direction with respect to a rotating direction of the photosensitive drum.
【請求項4】前記磁性粒子群の体積固有抵抗を103
108Ω・cmの範囲に設定した請求項1記載の帯電装
4. The volume resistivity of the magnetic particle group is from 10 3 to
The charging device according to claim 1, wherein the charging device is set in a range of 10 8 Ω · cm.
【請求項5】感光体ドラムの帯電領域上に、前記主極を
内包する非磁性帯電スリーブを、又前記帯電領域上に位
置する感光体ドラムの背面側に、前記対向極を配し、前
記両磁石体により担持された磁性粒子群を介して感光体
を帯電可能に構成した帯電装置において、 前記主極の帯電スリーブ上における最大磁束密度位置Q
2が、又前記対向極の感光体ドラム上における最大磁束
密度位置Q1より感光体ドラム回転方向下流側に位置す
るように構成すると共に、 前記主極における前記最近接点P上の磁束密度が、前記
対向極における前記最近接点P上の磁束密度より大にな
る如く構成した事を特徴とする請求項1記載の帯電装置
5. A non-magnetic charging sleeve that encloses the main pole is provided on the charging area of the photosensitive drum, and the opposite pole is provided on the back side of the photosensitive drum located on the charging area. In a charging device configured to charge a photoconductor through a group of magnetic particles carried by both magnet bodies, a maximum magnetic flux density position Q on the charging sleeve of the main pole
2 is located downstream of the maximum magnetic flux density position Q 1 on the photoconductor drum of the opposite pole in the photoconductor drum rotation direction, and the magnetic flux density on the closest contact P of the main pole is 2. The charging device according to claim 1, wherein the charging device is configured so as to have a magnetic flux density higher than that of the closest contact P at the opposite pole.
【請求項6】前記最大磁束密度位置Q1を最近接点Pよ
り感光体ドラム回転方向上流側の角度θ1を+ 5°〜−
30°の範囲に設定した事を特徴とする請求項5記載の
帯電装置(感光体ドラム軸心O1と帯電スリーブ軸心O2
を結ぶ線のうち、最近接点Pより帯電スリーブ軸心O2
側の方向を0°とし、感光体ドラム回転方向上流側をマ
イナス角度、下流側をプラス角度に設定する。)
6. The angle theta 1 of the maximum magnetic flux density position photoconductor from the nearest points P Q 1 drum rotation direction upstream side + 5 ° ~ -
6. The charging device according to claim 5, wherein the charging device has a shaft center O 1 and a charging sleeve shaft O 2.
Of the line connecting the charging sleeve axis O 2 from the closest contact point P
The side direction is set to 0 °, the upstream side of the photosensitive drum rotation direction is set to a minus angle, and the downstream side is set to a plus angle. )
【請求項7】前記最大磁束密度位置Q2が最近接点Pを
挟んで−20°〜+5°の範囲に して、且つ 帯電ス
リーブ軸心O2と前記主極の最大磁束密度位置Q2を結ぶ
線と、前記感光体ドラム軸心O1と対向極の最大磁束密
度位置Q1を結ぶ線の狭角を0〜50°に設定した請求
項5記載の帯電装置(感光体ドラム軸心O1と帯電スリ
ーブ軸心O2を結ぶ線のうち、最近接点Pより帯電スリ
ーブ軸心O2側の方向を0°とし、感光体ドラム回転方
向上流側をマイナス角度、下流側をプラス角度に設定す
る。)
7. The maximum magnetic flux density position Q 2 is in the range of −20 ° to + 5 ° across the nearest contact point P, and the charging sleeve axial center O 2 and the maximum magnetic flux density position Q 2 of the main pole are set. lines and the photoconductor drum axis O 1 and charging device opposite poles of the maximum magnetic flux density position Q 1 line narrow angle claim 5 set at 0 to 50 ° of connecting (photosensitive drum axis O connecting Of the line connecting 1 and the charging sleeve axis O 2 , the direction from the closest point P to the charging sleeve axis O 2 side is set to 0 °, the upstream side in the rotation direction of the photosensitive drum is set to a negative angle, and the downstream side is set to a plus angle. Yes.)
JP02325494A 1994-01-25 1994-01-25 Charging device Expired - Fee Related JP3241520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02325494A JP3241520B2 (en) 1994-01-25 1994-01-25 Charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02325494A JP3241520B2 (en) 1994-01-25 1994-01-25 Charging device

Publications (2)

Publication Number Publication Date
JPH07209958A true JPH07209958A (en) 1995-08-11
JP3241520B2 JP3241520B2 (en) 2001-12-25

Family

ID=12105469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02325494A Expired - Fee Related JP3241520B2 (en) 1994-01-25 1994-01-25 Charging device

Country Status (1)

Country Link
JP (1) JP3241520B2 (en)

Also Published As

Publication number Publication date
JP3241520B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
US4030447A (en) Developing device
JP3507294B2 (en) Developing device
JPH07209958A (en) Electrostatic charging device
JP3240026B2 (en) Charging device
JP3281139B2 (en) Charging device
JP3240027B2 (en) Charging device
JP3117863B2 (en) Charging device
JPS61149968A (en) Electrostatic recording device
JP2979599B2 (en) Electrophotographic development
JP3142034B2 (en) Apparatus and method for charging photoreceptor
JP2556525B2 (en) Image forming apparatus having a plurality of developing devices
JP3087934B2 (en) Photoconductor charging device
JP3212769B2 (en) Charging device
JPS60159770A (en) Developing device
JPS6030946B2 (en) developing device
JPH05289594A (en) Magnetic brush cleaning device
JP3124322B2 (en) Developing device
JPH0535105A (en) Magnetic brush electrifying device
JP3087936B2 (en) Charging device
JP2001350318A (en) Magnetic brush electrifying device, process cartridge and image forming device
JP2946898B2 (en) Electrophotographic charging device
JPS6083972A (en) Electrostatic charger for toner
JPH06222675A (en) Developing device
JPH0744021A (en) Image forming device
JPH087500B2 (en) Development device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees