JP3240027B2 - Charging device - Google Patents

Charging device

Info

Publication number
JP3240027B2
JP3240027B2 JP02743594A JP2743594A JP3240027B2 JP 3240027 B2 JP3240027 B2 JP 3240027B2 JP 02743594 A JP02743594 A JP 02743594A JP 2743594 A JP2743594 A JP 2743594A JP 3240027 B2 JP3240027 B2 JP 3240027B2
Authority
JP
Japan
Prior art keywords
charging
magnetic
magnetic particles
pole
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02743594A
Other languages
Japanese (ja)
Other versions
JPH07219310A (en
Inventor
信司 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP02743594A priority Critical patent/JP3240027B2/en
Publication of JPH07219310A publication Critical patent/JPH07219310A/en
Application granted granted Critical
Publication of JP3240027B2 publication Critical patent/JP3240027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Color Electrophotography (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はいわゆるカールソンプロ
セスに基づく電子写真装置、例えば複写機、プリンタ、
ファクシミリ内に組込まれるか、若しくはこれらの機器
のプロセスカートリッジに組込まれる帯電装置として適
用される発明に係り、特に粒子帯電によりベルト状若し
くはドラム状感光体を帯電させる電子写真装置に於ける
帯電装置として適用される発明に関する。
The present invention relates to an electrophotographic apparatus based on the so-called Carlson process, for example, a copying machine, a printer,
The present invention relates to a charging device incorporated in a facsimile or applied as a charging device incorporated in a process cartridge of these devices, and particularly as a charging device in an electrophotographic apparatus for charging a belt-shaped or drum-shaped photoconductor by particle charging. It relates to the applied invention.

【0002】[0002]

【従来の技術】従来より感光体ドラム外周面上に、露
光、現像、転写、クリーニング(残留トナー除去)、除
電、及び帯電の各プロセス手段を配置し、所定の電子写
真プロセスにより画像形成を行なう、いわゆるカールソ
ンプロセスに基づく電子写真装置は周知である。
2. Description of the Related Art Conventionally, respective process means of exposure, development, transfer, cleaning (removal of residual toner), charge elimination and charging are arranged on the outer peripheral surface of a photosensitive drum, and an image is formed by a predetermined electrophotographic process. Electrophotographic apparatuses based on the so-called Carlson process are well known.

【0003】この種の装置に用いる帯電手段は一般に細
いタングステン線に高電圧を印加してコロナ放電を行な
うコロトロン方式、又導電ローラに数百ボルトの電圧を
かけて感光体ドラムと接触帯電させるもの、又導電性ブ
ラシに電圧を印加して感光体ドラムに接触させながら帯
電を行なうもの等が存在する。しかしながらコロトロン
方式は高電圧を使用し、又オゾンを発生する等安全上、
環境上の問題が多い。又帯電ローラは感光体ドラムとの
接触が線接触であるために帯電が不安定である。更にブ
ラシ帯電方式はドラムとブラシが接触して帯電を行なう
為に、ブラシの帯電劣化が生じやすい。
The charging means used in this type of apparatus is generally a corotron type in which a high voltage is applied to a thin tungsten wire to perform corona discharge, or a charging means in which a voltage of several hundred volts is applied to a conductive roller to contact and charge a photosensitive drum. In addition, there is a type in which a voltage is applied to a conductive brush while being brought into contact with a photosensitive drum to charge the conductive brush. However, the corotron method uses high voltage and generates ozone for safety reasons.
Many environmental problems. Further, the charging roller is unstable in charging because the contact with the photosensitive drum is a line contact. Further, in the brush charging method, the charging of the brush is likely to occur because the drum and the brush are in contact with each other to perform charging.

【0004】かかる欠点を解消するために、感光体ドラ
ムと磁石体を内挿した帯電スリーブに帯電バイアスを印
加した状態で、該スリーブに磁性粒子群を付着させて刷
子状の磁気穂を感光体ドラムに摺擦させてスリーブを介
して帯電バイアスを磁性粒子群に印加させて帯電を行な
う、いわゆる粒子帯電法が提案されている。(特開昭5
9ー133569、特開昭63ー187267他)
In order to solve such a drawback, in a state in which a charging bias is applied to a charging sleeve in which a photosensitive drum and a magnet body are inserted, magnetic particles are attached to the sleeve and a brush-like magnetic spike is formed on the photosensitive sleeve. A so-called particle charging method has been proposed, in which a charging bias is applied to a group of magnetic particles by rubbing the drum through a sleeve and charging is performed. (Japanese Patent Laid-Open No. 5
9-133569, JP-A-63-187267, etc.)

【0005】かかる帯電法においては、固定磁石体によ
り磁気穂を形成した場合、該磁石体よりの距離の2乗に
比例して磁界が減衰し、従って感光体ドラム表面に位置
する磁性粒子の磁気保持力が最も弱い。従ってこの状態
で感光体ドラムを回転させると、該ドラム表面に遠心力
が働き、静電的に感光体ドラムに付着している磁性粒子
は固定磁石集成体よりの磁気保持力(磁界)に抗して前
記磁性粒子が帯電領域から離脱する方向に力が働き、該
感光体ドラムに付着した粒子が次工程の露光及び現像等
に悪影響を及ぼす。
In such a charging method, when a magnetic spike is formed by a fixed magnet body, the magnetic field attenuates in proportion to the square of the distance from the magnet body. The weakest holding power. Therefore, when the photosensitive drum is rotated in this state, a centrifugal force acts on the surface of the drum, and the magnetic particles electrostatically adhering to the photosensitive drum resist the magnetic coercive force (magnetic field) from the fixed magnet assembly. Then, a force acts in a direction in which the magnetic particles separate from the charged area, and the particles adhered to the photosensitive drum adversely affect the exposure and development in the next step.

【0006】かかる欠点を解消するために、図3に示す
ように、前記帯電スリーブを用いずに帯電バイアス電源
101を接続した電極102を被覆した固定磁石体10
3を感光体ドラム104に対向配置すると共に、該固定
磁石体103と対向させて、感光体ドラム104の背面
側に逆極性の磁石体105を配し、該磁石体105と固
定磁石体103間に形成される磁場により前記磁性粒子
群107を帯電領域に保持させながら感光体の帯電を行
なうように構成した技術が開示されている。
As shown in FIG. 3, in order to eliminate such a drawback, a fixed magnet body 10 covering an electrode 102 to which a charging bias power source 101 is connected without using the charging sleeve.
3 is arranged opposite to the photoconductor drum 104, and opposite to the fixed magnet body 103, and a magnet body 105 of the opposite polarity is arranged on the back side of the photoconductor drum 104, and between the magnet body 105 and the fixed magnet body 103. A technique has been disclosed in which the photoconductor is charged while the magnetic particle group 107 is held in a charged area by a magnetic field formed in the magnetic field.

【0007】[0007]

【発明が解決しようとする課題】かかる技術によれば、
磁性粒子群107の磁気保持を行なう磁石体が帯電ギャ
ップ108の片側にのみ配置されているのではなく、両
側に配置されている為に、帯電ギャップ108間の磁界
の勾配(ΔH/Δt)を大きく設定出来るが、前記した
磁石体と磁性粒子の磁化力は粒子径に依存し、粒子径が
小さくなると等比級数的に磁気的拘束力が低下し、感光
体ドラム生成する遠心力や静電的保持力により該ドラム
表面に付着した粒子により粒子漏洩が生じてしまう。又
前記粒子の静電的付着を阻止するために、粒子の電気抵
抗率をむやみに下げると、感光体の絶縁破壊や感光体欠
陥のリークが生じ、帯電バイアスにより感光体ドラム側
にピンホール等が発生しやすい。この為、前記装置にお
いては固定磁石体103の側面に絶縁性シート109を
感光体ドラム側に垂下させ、磁性粒子の飛散を機械的に
防止している。
According to such technology,
Since the magnetic body for holding the magnetic particles 107 is not disposed only on one side of the charging gap 108 but on both sides, the gradient of the magnetic field (ΔH / Δt) between the charging gaps 108 is reduced. Although it can be set to a large value, the magnetizing force of the magnet and the magnetic particles depends on the particle size, and when the particle size is small, the magnetic binding force decreases geometrically exponentially. Particle leakage occurs due to particles attached to the drum surface due to the target holding force. If the electrical resistivity of the particles is reduced excessively in order to prevent the electrostatic adhesion of the particles, dielectric breakdown of the photoconductor and leakage of a photoconductor defect occur, and a pinhole or the like is formed on the photoconductor drum side by the charging bias. Is easy to occur. For this reason, in the above-mentioned apparatus, the insulating sheet 109 is hung down on the side of the fixed magnet body 103 toward the photosensitive drum side to mechanically prevent scattering of magnetic particles.

【0008】しかしながら前記のように絶縁シートをド
ラムに接触する構成では、摩耗等により長期使用に耐え
られないのみならず、磁性粒子を良導電性の材料にしな
ければ、絶縁性シートと粒子との摺擦帯電により粒子固
着等が生じてしまい好ましくない。
However, in the configuration in which the insulating sheet is brought into contact with the drum as described above, not only is it not possible to withstand long-term use due to abrasion or the like, but if the magnetic particles are not made of a material having good conductivity, the insulating sheet and the particles cannot be used. Undesirably, particles are fixed due to the triboelectric charging.

【0009】本発明はかかる従来技術の欠点に鑑み、前
記帯電粒子の漏洩等が生じることなく又長期使用によっ
ても帯電剤が劣化する事なく安定した均一な帯電能を確
保し得る帯電装置として適用される発明を提供する事を
目的とする。本発明の他の目的は、絶縁破壊をおこすこ
となく磁性粒子の循環を良好に確保出来る帯電装置とし
て適用される発明を提供する事を目的とする。本発明の
他の目的は、製造上からも、使用者側からも、更に環境
にも十分配慮することが出来、極めて実用性の高い帯電
装置が得る事の出来る発明を提供することを目的とす
る。
In view of the drawbacks of the prior art, the present invention is applied to a charging device capable of ensuring stable and uniform charging ability without causing the leakage of the charged particles and the deterioration of the charging agent even after long-term use. It is an object of the invention to provide the invention. Another object of the present invention is to provide an invention applied as a charging device capable of ensuring good circulation of magnetic particles without causing dielectric breakdown. Another object of the present invention is to provide an invention capable of obtaining a highly practical charging device that can sufficiently consider the environment, from the viewpoint of manufacturing and from the side of the user, and furthermore. I do.

【0010】[0010]

【課題を解決するための手段】本発明は、図1(A)に
示すように、感光体の帯電領域上に、該感光体に向けて
固定配置した第1の磁石体(以下主極 という)を内
包する非磁性帯電スリーブを、又前記帯電領域上に位置
する感光体の背面側に、前記主極 と逆極性の第2の
磁石体(以下対向極 という)を配し、前記帯電スリ
ーブを回転させながら、前記両磁石体により担持された
磁性粒子群を介して感光体を帯電可能に構成した帯電装
置において、前記対向極B に隣接配置され該対向極B
と逆極性とすることで水平磁場を形成する第3の磁石
体(以下隣接極B という)を感光体背面側に配し、前
記主極A と逆極性の磁性粒子を搬送する第4の磁石体
(以下搬送極A という)と、該搬送極A より下流に
配置され前記磁性粒子群の前記主極 より、感光体回
転方向上流側に位置する前記磁性粒子群を前記搬送極A
により搬送された後前記帯電スリーブから分離・落下
させる50ガウス以下の磁力を有する第5の磁石体(以
下分離極A という)を前記帯電スリーブ内に配し、且
つ前記帯電スリーブを感光体の移動方向に対しアゲイン
スト方向に回転させるとともに、前記主極 の前記感
光体のスリーブ最近接点P上の帯電ギャップ5位置にお
ける磁束密度が、前記対向極 の前記最近接点P上に
おける磁束密度より大なる如く構成し、好ましくは前記
磁性粒子群の平均粒径を略10〜40μmに設定すると
共に、該磁性粒子群の1kOeの磁場での飽和磁化を5
0emu/g〜200emu/g、比誘電率εrを40
以下に設定したことを特徴とする。又本発明は好ましく
は、前記磁性粒子群が体積固有抵抗が106以下の導電
性磁性粒子と体積固有抵抗が106以上の高抵抗磁性粒
子の混合粒子群であり全体としての体積固有抵抗が10
3〜108Ω・cmの範囲にあり、高抵抗磁性粒子の平均
粒径を導電性磁性粒子の平均粒径より大にし、そしてこ
の場合前記高抵抗磁性粒子の20μm以下の粒子分布が
5%以下になるように構成するのが良い。尚、前記体積
固有抵抗は、底部に電極を有する内径20mmのテフロ
ン製筒体に、前記粒子を1.5g入れ、上部より外径2
0mmφの電極を挿入した後、該電極上面に1Kgの荷
重を印加して測定した値である。
According to the present invention, as shown in FIG. 1A, a first magnet body (hereinafter referred to as a main pole A ) fixedly disposed on a charged area of a photoconductor toward the photoconductor. the non-magnetic charging sleeve enclosing a) of 1, and the back side of the photosensitive member located on the charged area, the main pole a 1 and opposite polarities second magnet body (hereinafter referred opposing electrode B 1) It arranged, while rotating the charging sleeve, in the chargeable configured the charging device of the photoreceptor through a supported magnetic particles by both the magnet body, disposed adjacent to the opposite pole B 1 the pair Kokyoku B
A third magnet that forms a horizontal magnetic field by making the polarity opposite to 1.
Arranging the body (hereinafter referred adjacent poles B 2) to the photosensitive member back side, front
Fourth magnet body for conveying the reverse polarity of the magnetic particles Kinushikyoku A 1
(Referred to hereinafter conveying pole A 3), downstream from 該搬Okukyoku A 3
Than the main poles A 1 of disposed the magnetic particles, the magnetic particles located in the photosensitive member rotation direction upstream said conveyor pole A
Separated and dropped from the charging sleeve after being transported by 3
Fifth magnetic body having a magnetic force of 50 Gauss or less
Arranged) that lower separating pole A 4 in the charging sleeve and the charging sleeve is rotated in Against direction to the moving direction of the photosensitive member, the photosensitive member of the sleeve closest point P of the main pole A 1 Contact <br/> Keru flux density in charging gap 5 position of the above, and configured as Ru greater-than the magnetic flux density at the opposite pole B 1 of the last on contact P, preferably the
The average particle diameter of the magnetic particle group is set to approximately 10 to 40 μm , and the saturation magnetization of the magnetic particle group at a magnetic field of 1 kOe is set to 5 μm.
0 emu / g to 200 emu / g and a relative dielectric constant εr of 40
It is characterized by the following settings. The present invention is preferably the magnetic particles have a volume resistivity of the entire a mixed particles having a volume resistivity of 10 6 or less electrically conductive magnetic particles and a volume resistivity of 10 6 or more high-resistance magnetic particles 10
3-10 is in the range of 8 Omega · cm, average particle diameter than the large west average particle diameter conductive magnetic particles of the high-resistance magnetic particles and 20μm following particle distribution in this case the high-resistance magnetic particles of 5% It is better to configure as follows. The volume resistivity is determined by placing 1.5 g of the particles in a Teflon cylindrical body having an inner diameter of 20 mm and having an electrode at the bottom, and having an outer diameter of 2 g from the top.
This is a value measured by applying a load of 1 kg to the upper surface of the electrode after inserting an electrode of 0 mmφ.

【0011】この場合前記帯電スリーブを感光体ドラム
の回転方向に対しアゲインスト方向に回転させるととも
に、前記主極A1 の前記最近接点P上における磁束密度
が、前記対向極B1 の前記最近接点P上における磁束密
度より大になる如く構成するのが良い。又、前記最大磁
束密度位置Q1 が最近接点Pを挟んで感光体ドラム回転
方向上流側 の+5°〜−30°、前記最大磁束密度位
置Q2 が最近接点Pを挟んで−10°〜 +5°の範囲
に配するのがよい。又更に感光体移動方向下流側におけ
る帯電スリーブ内に、前記対向極B1 と同極性の第2の
磁石体(以下シールド極A2 という)を配することによ
り磁気シールドが一層容易になる。
In this case, the charging sleeve is rotated in the opposite direction to the rotation direction of the photosensitive drum, and the magnetic flux density on the closest point P of the main pole A 1 is changed to the closest point of the opposite pole B 1. It is preferable that the magnetic flux density be larger than the magnetic flux density on P. Moreover, the maximum magnetic flux density position Q 1 is recently photosensitive drum rotation direction upstream side of + 5 ° ~-30 ° across the contacts P, the maximum magnetic flux density position Q 2 is -10 ° ~ +5 recently across the contacts P It is good to arrange in the range of °. More charging the sleeve in the photosensitive member movement direction downstream side The magnetic shield becomes easier by placing and the counter electrode B 1 second magnet body having the same polarity (hereinafter referred shield electrode A 2).

【0012】[0012]

【作用】本発明は磁性粒子群4の流出現象は、前記感光
体のスリーブ最近接点Pにおいて磁性粒子4が受ける磁
気力と静電気力との関係に依存する。即ち最近接点Pに
おいて粒子に働く磁気力Fmは、 Fm=k1 ・d31 :比例関数 d:粒径 即ち最近接点Pにおいて粒子に働く静電気力Fcは、 Fc=k2 ・(T・d)2 ・ΔV2 T:非誘電率に依存する関数 ΔV:電位差(帯電印加
電圧と感光層に加わる電圧) 磁気粒子が磁気力に打ち勝って静電気力で流出するとき
の電位差ΔVは Fc≧Fm ΔV≧(T)-1 ・(k1 ・d/k21/2 …1) 従って上記1)式より明らかなように粒子径が小さ過ぎ
るとFc≧Fmとなり、粒子の流出が生じる。
According to the present invention, the outflow phenomenon of the magnetic particles 4 depends on the relationship between the magnetic force and the electrostatic force applied to the magnetic particles 4 at the sleeve closest point P of the photosensitive member. That is, the magnetic force Fm acting on the particles at the closest point P is: Fm = k 1 · d 3 k 1 : a proportional function d: the particle diameter The electrostatic force Fc acting on the particles at the closest point P is: Fc = k 2 · (T · d) 2 · ΔV 2 T: function dependent on non-dielectric constant ΔV: potential difference (charging applied voltage and voltage applied to photosensitive layer) Potential difference ΔV when magnetic particles overcome magnetic force and flow out by electrostatic force is Fc ≧ Fm ΔV ≧ (T) −1 · (k 1 · d / k 2 ) 1/2 1) Therefore, as is apparent from the above equation (1), if the particle diameter is too small, Fc ≧ Fm, and the particles flow out.

【0013】一方、粒子径が大き過ぎると粒子の洩出は
生じないが、粒子径が大きくなるにしたがって磁性粒子
のスリーブ/ドラム間の充填率が低下し、その分同一帯
電バイアスにおいても帯電される感光体表面電位が低下
し、又図1(B)に示すように感光体1表面上における
隣接する磁性粒子4同士の空隙4aが多くなり、その分
帯電の均一むらが出来やすい。従って本発明は、平均粒
径を略10μm〜40μmに設定する事により、帯電領
域よりの粒子漏洩を円滑に阻止し得る。
On the other hand, if the particle size is too large, no leakage of particles occurs, but as the particle size increases, the filling rate of the magnetic particles between the sleeve and the drum decreases, and the particles are charged even by the same charging bias. 1B, the gap 4a between adjacent magnetic particles 4 on the surface of the photoreceptor 1 increases, as shown in FIG. 1 (B). Therefore, according to the present invention, by setting the average particle size to approximately 10 μm to 40 μm, it is possible to smoothly prevent the leakage of particles from the charged region.

【0014】又、前記磁性粒子群の磁気保持力は飽和磁
化に依存し、又、磁性粒子群の比誘電率が大きくなるほ
ど帯電剤に誘起される静電気力は増す。従って、前記磁
性粒子群の1kOeの磁場での飽和磁化を50emu/
g〜200emu/gが好ましく、比誘電率εrを40
以下に設定するのがよい。なお200emu/g以上で
比誘電率εrが40を越える磁性粒子群であると、後記
する図2に示す磁性粒子群4が分離極A4 で分離でき
ず、帯電スリーブ回転方向下流側に搬送されることとな
る。
The magnetic coercive force of the magnetic particles depends on the saturation magnetization, and the electrostatic force induced by the charging agent increases as the relative permittivity of the magnetic particles increases. Therefore, the saturation magnetization of the magnetic particle group at a magnetic field of 1 kOe is reduced to 50 emu /
g to 200 emu / g, and a relative dielectric constant εr of 40
It is better to set below. Note the 200 emu / dielectric constant εr at least g is a magnetic particles exceeding 40, the magnetic particles 4 shown in FIG. 2 to be described later can not be separated by the separation electrode A 4, it is conveyed to the charging sleeve rotation direction downstream side The Rukoto.

【0015】又、本発明は体積固有抵抗が106 Ω・c
m以下の導電性磁性粒子と体積固有抵抗が106 Ω・c
m以上の高抵抗磁性粒子の混合粒子群で前記磁性粒子群
を構成すると共に、高抵抗磁性粒子の平均粒径を導電性
磁性粒子の平均粒径より大、具体的には前記高抵抗磁性
粒子の20μm以下の粒子分布が5%以下になるように
構成することで、単一系の帯電剤に比べて生じやすい漏
洩を防止している。一方均一帯電に寄与する導電性磁性
粒子の平均粒径は小さい方が好ましく、例えば20μm
以下が好ましい。又高抵抗磁性粒子と導電性磁性粒子の
混合比は夫々の体積固有抵抗にもよるが、導電性磁性粒
子の混合比を少なく、具体的には5〜30重量%に設定
するのが良い。
The present invention has a volume resistivity of 10 6 Ω · c.
m and conductive magnetic particles with a volume resistivity of 10 6 Ω · c
m and a mixed particle group of high-resistance magnetic particles of at least m, and the average particle size of the high-resistance magnetic particles is larger than the average particle size of the conductive magnetic particles, specifically, the high-resistance magnetic particles. By configuring so that the particle distribution of 20 μm or less is 5% or less, it is possible to prevent leakage that is more likely to occur than in the case of a single-type charging agent. On the other hand, the average particle size of the conductive magnetic particles contributing to uniform charging is preferably small, for example, 20 μm.
The following is preferred. The mixing ratio between the high-resistance magnetic particles and the conductive magnetic particles depends on the specific volume resistivity. However, the mixing ratio of the conductive magnetic particles is preferably small, specifically, 5 to 30% by weight.

【0016】又、図1に示すように感光体ドラム1のス
リーブ最近接点Pの帯電ギャップ5に導かれた磁性粒子
4は、該ギャップ5が隘路となるが、主極A1 における
最近接点Pの磁束密度をBA1 と、対向極B1 における
最近接点Pの磁束密度をBB1とした場合に「BA1 >B
B1 」に設定しているために、感光体ドラム1側より帯
電スリーブ2側に吸上げられる。更に本発明は前記帯電
スリーブ2を感光体ドラム1に対し、アゲインスト方
向、即ち帯電領域上流側に向け回転させている為に、前
記帯電スリーブ2に付着した磁性粒子4が帯電ギャップ
5位置より帯電領域上流側に向け流れる分離極A4によ
り、帯電スリーブ2から分離され該帯電領域内で磁性粒
子4の循環が可能となり、長期使用によっても該粒子の
劣化が生じることはない。
Also, as shown in FIG. 1, the magnetic particles 4 guided to the charging gap 5 of the sleeve nearest point P of the photosensitive drum 1 have a bottleneck in the gap 5, but the closest point P at the main pole A 1 and the magnetic flux density B A1, when the magnetic flux density of the closest point P of the counter electrode B 1 was B B1 "B A1> B
Since it is set to " B1 ", it is sucked from the photosensitive drum 1 side to the charging sleeve 2 side. Further, in the present invention, since the charging sleeve 2 is rotated with respect to the photosensitive drum 1 in the opposite direction, that is, toward the upstream side of the charging area, the magnetic particles 4 attached to the charging sleeve 2 move from the position of the charging gap 5 to the charging gap 5. the separation electrode a 4 flowing toward the charging area upstream, in the charged area is separated from the charging sleeve 2 enables circulation of the magnetic particles 4, it never said particles deteriorates even by long-term use.

【0017】ここで最近接点P上における磁束密度を
「BA1 >BB1 」に設定したのは、帯電ギャップ5位置
で帯電スリーブ2側に粒子が移動できる効果を達成する
ためである。
Here, the reason why the magnetic flux density on the closest contact point P is set to "B A1 > B B1 " is to achieve an effect that particles can move toward the charging sleeve 2 at the charging gap 5 position.

【0018】特に「BA1 >BB1 」の条件を最も有効に
達成するには夫々の磁石体の半値幅にもよるが、前記対
向極B1 の最大磁束密度位置Q1 が最近接点Pを挟んで
感光体ドラム1回転方向上流側の+5°〜−30°の範
囲に設定するのが良く、更に前記最大磁束密度位置Q2
が最近接点Pを挟んで−20°〜+5°の範囲に設定す
るのがよい。なお、角度は感光体ドラム軸心O1 と帯電
スリーブO2 を結ぶ線のうち、最近接点Pより軸心O2
側の方向を0°とし、感光体ドラム上流側をマイナス角
度、下流側をプラス角度に設定する。
In particular, in order to most effectively achieve the condition of “B A1 > B B1 ”, the maximum magnetic flux density position Q 1 of the opposing pole B 1 is close to the closest point P, although it depends on the half width of each magnet body. It is preferable to set the range of + 5 ° to −30 ° on the upstream side in the rotation direction of the photoconductor drum with the interposition therebetween, and further, the maximum magnetic flux density position Q 2
Is preferably set in the range of −20 ° to + 5 ° across the closest contact point P. The angle between the center O 2 of the line connecting the photosensitive drum axis O 1 and the charging sleeve O 2 with respect to the axis O 2 from the closest point P
Is set to 0 °, the upstream side of the photosensitive drum is set to a minus angle, and the downstream side is set to a plus angle.

【0019】[0019]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図2
に基づいて本発明の実施例に係る帯電装置の構成につい
て説明する。帯電装置は前記したように図上右方向に回
転する感光体ドラム1に対し0.5mm程度の帯電ギャ
ップ5(最近接間隔)を介して帯電領域位置で前記感光
体ドラム1と互いに反対方向、即ちアゲインスト方向
(図上左方向、尚回転軸から見た場合はいずれも同一回
転方向となる。)に回転可能により非磁性の帯電スリー
ブ2を配設すると共に、該スリーブ2の背面側の帯電領
域下流側に固定配置した磁石集成体3を配設する。尚、
7は不図示の導電ブレード若しくは非磁性スリーブ2を
介して導電性磁性粒子群4に現像バイアスを印加させる
バイアス電源である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Not just. FIG.
The configuration of the charging device according to the embodiment of the present invention will be described based on FIG. As described above, the charging device is opposite to the photosensitive drum 1 at a charging area position via a charging gap 5 (nearest distance) of about 0.5 mm with respect to the photosensitive drum 1 rotating rightward in the drawing, That is, a non-magnetic charging sleeve 2 which is rotatable in the opposite direction (the left direction in the figure, and when viewed from the rotation axis is the same rotation direction) is disposed, and the charging sleeve 2 on the back side of the sleeve 2 is provided. The magnet assembly 3 fixedly arranged on the downstream side of the charging area is provided. still,
Reference numeral 7 denotes a bias power supply for applying a developing bias to the conductive magnetic particle group 4 via a conductive blade or a non-magnetic sleeve 2 (not shown).

【0020】次に本発明の要旨たる帯電スリーブ2と感
光体ドラム1の夫々の磁極配置について説明する。先ず
前記磁石集成体3には、前記帯電ギャップ5上若しくは
該帯電ギャップ5より僅かに帯電スリーブ2回転方向上
流側に感光体ドラム1背面側の対向磁極B1 との間で主
として磁性粒子4の漏洩防止のために磁気シールを行う
N極の主極A1 、更に主極A1 の帯電スリーブ2回転方
向上流側に、反発磁界により前記磁気シール補助を行う
磁気シールを行うS極の磁石体(以下シールド補助極A
2 という)、又主極A1 の帯電スリーブ2回転方向下流
側にはスリーブ2上に約50ガウス以下の小さな磁力し
か持たない無磁力帯域である分離極A4を形成し、スリ
ーブ2のアゲインスト回転によりスリーブ2表面に担持
されながら搬送されるS極の磁石体A3 で搬送して磁性
粒子4を帯電領域上流側の感光体ドラム1側に落下させ
る構成とする。
Next, the arrangement of the magnetic poles of the charging sleeve 2 and the photosensitive drum 1, which is the gist of the present invention, will be described. First, the magnet assembly 3 mainly includes the magnetic particles 4 on the charging gap 5 or slightly upstream of the charging gap 5 in the rotation direction of the charging sleeve 2 and between the opposite magnetic pole B 1 on the back side of the photosensitive drum 1. the main pole a 1 N pole for magnetic seal for preventing leakage, further charging sleeve 2 rotating direction upstream side of the main poles a 1, the magnet body S pole for magnetic seal for performing the magnetic seal assisted by repulsive magnetic field (Hereafter, shield auxiliary pole A
Of 2), and the charging sleeve 2 rotation direction downstream side of the main poles A 1 to form a separated electrode A 4 is a non-magnetic band with only about 50 Gauss or less a small magnetic force on the sleeve 2, the sleeve 2 AGAIN a structure for dropping the magnetic particles 4 are transported by a magnet body a 3 S pole which are conveyed while being carried on the sleeve 2 surface to the photosensitive drum 1 side of the charged region upstream by strike rotation.

【0021】又前記帯電スリーブ2と感光体ドラム1に
挟まれる帯電領域上には導電性磁性粒子群4を介在させ
る。前記磁性粒子4の詳細は後記するが、体積固有抵抗
を103 〜108 Ω・cmの範囲に又、粒子径は平均粒
径が10〜30μmの範囲で任意に設定される。
Further, a conductive magnetic particle group 4 is interposed on a charging area sandwiched between the charging sleeve 2 and the photosensitive drum 1. Although the details of the magnetic particles 4 will be described later, the volume resistivity is arbitrarily set in a range of 10 3 to 10 8 Ω · cm, and the particle size is arbitrarily set in a range of an average particle size of 10 to 30 μm.

【0022】一方、感光体ドラム1の背面側には、前記
主極A1 の対向位置より僅かに感光体ドラム1回転方向
上流側の帯電領域下流部にS極の磁石体(以下対向極B
1 という)と、前記対向極B1 に隣接させて帯電領域上
流側に感光体ドラム1の面と水平な磁場(以下「水平磁
場」という)を形成するためのN極の磁石体(以下隣接
極B2 という)とを隣接配置し、前記主極A1 と対向極
1 との間で感光体ドラム面に垂直な磁場(以下「垂直
磁場」という)を、又対向極B1 と隣接極B2との間で
感光体ドラム1上に水平磁場を形成する。
On the other hand, on the rear side of the photosensitive drum 1, the main only slightly photoconductive than the counter positions of A 1 drum 1 rotating direction upstream side of the charging area downstream portion of the S pole magnet member (hereinafter opposite pole B
1 ) and an N-pole magnet body (hereinafter, referred to as “horizontal magnetic field”) for forming a magnetic field (hereinafter, referred to as “horizontal magnetic field”) horizontal to the surface of the photosensitive drum 1 on the upstream side of the charging area adjacent to the opposite pole B 1. pole B 2 hereinafter) and an adjacent arrangement, a magnetic field perpendicular to the photosensitive drum surface (hereinafter referred to as "vertical field") between the main pole a 1 and the counter electrode B 1, also adjacent to the opposite pole B 1 forming a horizontal magnetic field on the photosensitive drum 1 between the pole B 2.

【0023】即ち、前記対向配置される主極A1 と対向
極B1 を感光体ドラム1回転方向における帯電領域下流
側に配し、両磁石体A1 、B1 間に形成される垂直磁場
により前記磁性粒子群4を磁気保持させ、又隣接極B2
を対向極B1 に隣接させて帯電領域上流側に配置させ、
両磁石体B2 、B1 間に主として形成される感光体ドラ
ム1上の水平磁場により前記磁性粒子群4を感光体ドラ
ム1上に密着させる。
That is, the main pole A 1 and the counter pole B 1 disposed opposite to each other are disposed downstream of the charging area in the rotation direction of the photosensitive drum, and a vertical magnetic field formed between the two magnet bodies A 1 and B 1 is provided. be magnetically holding said magnetic particles 4 due, also adjacent poles B 2
Is disposed adjacent to the counter electrode B 1 and upstream of the charging area,
The magnetic particle group 4 is brought into close contact with the photosensitive drum 1 by a horizontal magnetic field on the photosensitive drum 1 mainly formed between the two magnet bodies B 2 and B 1 .

【0024】更に具体的に前記夫々の磁極の磁極配置に
ついて図1(A)を用いて詳細に説明する。シールド補
助極Aは主極Aに対し帯電スリーブ回転方向上流側
にして、該シールド補助極Aの帯電スリーブ上での最
大磁束密度位置Qが45°〜90°の範囲に設定され
ている。なお、角度は帯電スリーブOを中心として軸
心Oから最近接点Pへ結ぶ線の方向を0°とし、0°
より感光体移動方向下流側への振れ角をプラスに設定し
た値である。主極Aは、主極Aの帯電スリーブ上に
おける最大磁束密度位置Qが、又前記対向極Bの感
光体ドラム上における最大磁束密度位置Qより感光体
ドラム回転方向下流側に位置するように構成すると共
に、具体的には、Qが最近接点P挟んで−20°〜+
5°の範囲で、より好ましくは−10°〜+5°の範囲
に設定するのが良い。又対向極Bは、最大磁束密度位
置Qが最近接点Pを挟んで感光体ドラム回転方向上流
側の+5°〜−30°の範囲に前記主極Aの前記最近
接点P上の帯電ギャップ5位置における磁束密度が、前
記対向極Bの前記最近接点P上の帯電ギャップ5位置
における磁束密度より大になる如く配設する。なお、こ
の場合の角度は作用の欄で示した値である。又前記主極
と対向極Bとの関係は、帯電スリーブ軸心O
前記主極Aの最大磁束密度位置Qを結ぶ線と、前記
感光体ドラム軸心Oと対向極Bの最大磁束密度位置
を結ぶ線の狭角を0〜50°に設定する。
More specifically, the arrangement of the magnetic poles will be described in detail with reference to FIG. Shield auxiliary poles A 2 is in the charging sleeve rotation direction upstream side relative to the main poles A 1, the maximum magnetic flux density position Q 3 on the charging sleeve of the shield auxiliary pole A 2 is set in the range of 45 ° to 90 ° ing. The angle is the direction of a line connecting the axis O 2 around the charging sleeve O 2 recently to the contact point P and 0 °, 0 °
This is a value in which the deflection angle toward the downstream side in the photoconductor moving direction is set to be plus. The main poles A 1, the maximum magnetic flux density position Q 2 in the main poles A 1 charge on sleeve, also the photosensitive drum rotation direction downstream side of the maximum magnetic flux density positions Q 1 in the counter electrode B 1 of the photoreceptor drum as well as configured to be located, in particular, -20 ° ~ across Q 2 is nearest point P +
It is preferable to set the angle in the range of 5 °, more preferably in the range of -10 ° to + 5 °. The opposite pole B 1 represents a maximum magnetic flux density position Q 1 is recently the recent charge on the contact point P of the main pole A 1 in the range of the photosensitive drum rotation direction upstream side of + 5 ° ~-30 ° across the contacts P the magnetic flux density in the gap 5 position, the recent charging gap 5 position on the contact point P of the counter electrode B 1
Arranged as becomes larger than the magnetic flux density at. In this case, the angle is the value shown in the column of action. The relationship between the main poles A 1 and the counter electrode B 1 represents a line connecting the maximum magnetic flux density position Q 2 between the charging sleeve axis O 2 the main pole A 1, the photosensitive drum axis O 1 and the counter setting the narrow angle of a line connecting the maximum magnetic flux density positions to Q 1 pole B 1 to 0 to 50 °.

【0025】次にかかる実施例の作用を図1を用いて簡
単に説明すると、前記帯電領域に位置する磁性粒子群4
は、対向極B1 と隣接極B2 間の水平磁場4A上で感光
体ドラム1上に密着して付着され、この状態で感光体ド
ラム1が時計周りに回転すると、水平磁場4A上で感光
体ドラム1への帯電を行ないながら帯電ギャップ5側に
移動し、該帯電ギャップ5位置で磁性粒子群4はシール
ド補助極A2 により対向極B1 との間で反発磁界が生成
されて主極A1 対向極B1 で作る磁気シールドを補助
し、力の向きをA1 、B1 による上向きの力とによって
感光体ドラム上流側へ傾け、図上左上のスリーブ2側へ
移動する。そして分離極A4 によりスリーブ2上の無磁
力で前記磁性粒子がスリーブ2下流側に搬送されること
ない。この場合、磁性粒子群4の1KOeの磁場での飽
和磁化を50emu/g〜200emu/gに設定する
が、200emu/gを越えると分離極A4 を通過しや
すく帯電スリーブ2下流側に搬送されることとなる。一
方、50emu/g以下になると、主極A1 側に磁性粒
子群4が付着しづらく、結果として循環が困難となる。
Next, the operation of the embodiment will be briefly described with reference to FIG.
Is attached in close contact with the photosensitive drum 1 and the counter electrode B 1 on a horizontal magnetic field 4A between adjacent poles B 2, when the photosensitive drum 1 in this state is rotated clockwise, the photosensitive on a horizontal magnetic field 4A The magnetic particle group 4 moves toward the charging gap 5 while charging the body drum 1, and at the position of the charging gap 5, a repulsive magnetic field is generated between the magnetic auxiliary particles A 1 and the counter electrode B 1 by the shield auxiliary pole A 2, and the main pole assist a magnetic shield made of a 1 opposite pole B 1, inclined direction of the force by the upward force according to a 1, B 1 to the photosensitive drum upstream, moves to the sleeve 2 side of the drawing the upper left. Then the magnetic particles is not transported to the second downstream side sleeve without force on the sleeve 2 by the separation electrode A 4. In this case, setting the saturation magnetization at a magnetic field of 1KOe magnetic particles 4 to 50emu / g~200emu / g, is conveyed exceeds 200 emu / g separating electrode A 4 pass easily charged sleeve 2 downstream the The Rukoto. On the other hand, becomes below 50 emu / g, the main pole A 1 side magnetic particles 4 are difficult adhere to, circulation becomes difficult as a result.

【0026】この場合、シールド極A2 と対向極B1
より形成される最近接点P上における磁気力の合成ベク
トルは不図示ではあるが、帯電ギャップ5入口側に向け
て設定する事により、前記反発磁界と共に磁界による押
戻し方向が働き、一層好ましい。そして更に前記感光体
ドラムのスリーブ最近接点Pの法線方向における、主極
1 と対向極B1 及びシールド極A2 により形成される
磁気力の合成ベクトルを帯電スリーブ2側に向くよう設
定する。これにより、前記帯電ギャップ上の磁性粒子は
帯電スリーブ2側に移動し且つ吸着する。
In this case, although the combined vector of the magnetic force on the closest point P formed by the shield pole A 2 and the counter pole B 1 is not shown, by setting it toward the entrance of the charging gap 5, The pushing back direction by the magnetic field works together with the repulsive magnetic field, which is more preferable. And further wherein in the normal direction of the sleeve closest point P of the photosensitive drum, set the main pole A 1 and the counter electrode B 1 and to face the resultant vector of the magnetic force on the charging sleeve 2 side which is formed by the shield electrode A 2 . As a result, the magnetic particles on the charging gap move toward the charging sleeve 2 and are attracted.

【0027】そして帯電スリーブ2側に吸着した磁性粒
子4Bは、スリーブ2の回転に従って帯電領域上流側に
戻された後、前記磁石体A3 の下流に設けた分離極A4
が帯電領域上流側に位置するようにレイアウトされてい
る為に、帯電領域上流側に搬送された前記磁性粒子群4
Cを磁気的に開放し、感光体ドラム1側に落下し、磁性
粒子4の循環が行なわれる。
After the magnetic particles 4B adsorbed on the charging sleeve 2 are returned to the upstream side of the charging area in accordance with the rotation of the sleeve 2, the separation pole A 4 provided downstream of the magnet body A 3 is provided.
Are arranged so as to be located on the upstream side of the charged area, and therefore, the magnetic particle group 4 conveyed on the upstream side of the charged area.
C is magnetically released, falls to the photosensitive drum 1 side, and the circulation of the magnetic particles 4 is performed.

【0028】次にかかる装置を用いた帯電ギャップ5よ
りの磁性粒子4の漏洩を実験により確認する。先ず本実
験条件について説明する。感光体ドラム1はOPCドラ
ムを用い、その直径を30mmφ、その線速を25m/
secに設定する。帯電スリーブ2はアルミ管を用い、
その直径を12mmφ、その線速を8m/secに設定
する。
Next, the leakage of the magnetic particles 4 from the charging gap 5 using such an apparatus will be confirmed by experiments. First, the experimental conditions will be described. The photoconductor drum 1 is an OPC drum having a diameter of 30 mmφ and a linear velocity of 25 m /
Set to sec. The charging sleeve 2 uses an aluminum tube.
The diameter is set to 12 mmφ, and the linear velocity is set to 8 m / sec.

【0029】又前記夫々の磁極の磁束密度は、対向極B
1 と隣接極B2 の夫々の感光体ドラム1上での最大磁束
密度を夫々S630G、N730G、更に主極A1 とシ
ールド補助極A2 の夫々の帯電スリーブ2上での最大磁
束密度を夫々N900G、S770Gに夫々設定する。
そして、主極A1 を0°(最大磁束密度をN900
G)、対向極B1 を−15°及びシールド補助極A2
60°に夫々設定した場合、最近接点P上における、主
極A1 と対向極B1 及びシールド補助極A2 により形成
される磁気力の合成ベクトルは、帯電スリーブのギャッ
プ入口に向けて磁気力が発生していることがシミュレー
ションにより確認された。
The magnetic flux density of each of the magnetic poles is
1 and the adjacent pole B 2 of each of the photosensitive drum 1 on the maximum magnetic flux density, respectively S630G of, N730G, further the maximum magnetic flux density on the main poles A 1 and the shield auxiliary pole A 2 of each of the charging sleeve 2 respectively N900G and S770G are set respectively.
Then, the main pole A 1 is set to 0 ° (the maximum magnetic flux density is set to N900).
G), when the counter electrode B 1 is set to −15 ° and the shield auxiliary electrode A 2 is set to 60 °, the main electrode A 1 , the counter electrode B 1, and the shield auxiliary electrode A 2 on the closest point P are formed. It was confirmed by simulation that the resultant vector of the magnetic force generated was a magnetic force generated toward the gap entrance of the charging sleeve.

【0030】この状態で弊社製造のLEDプリンタに組
込んで帯電バイアス電源7に400Vを印加して感光体
ドラム移動方向に対してアゲインスト方向へ帯電スリー
ブを回転させて、磁性粒子の循環状況および感光体ドラ
ムへの洩出状況を目視及び画像形成により確認した。な
お、磁性粒子は、平均粒径15μm、体積固有抵抗10
5 Ω・cm、1KOeの磁場で飽和磁化が70emu/
gのフェライトキャリアを用いた(試料1)。また、比
較例として磁性粒子は、平均粒径30μm、体積固有抵
抗105 Ω・cm、1KOeの磁場で飽和磁化が210
emu/gの鉄粉キャリアを用いた(試料2)。なお、
いずれのキャリアも非誘電率は40以下であった。本実
験の結果、試料1は良好に磁性粒子が循環されており、
良好な画像が得られた。これに対し、試料2は分離極A
4 で磁性粒子を分離することができず、帯電スリーブ2
周囲に磁性粒子が取り囲み、スムーズに循環されておら
ず帯電むらが画像にあらわれた。
In this state, the charging sleeve is incorporated in an LED printer manufactured by our company, and 400 V is applied to the charging bias power supply 7 to rotate the charging sleeve in the opposite direction to the moving direction of the photosensitive drum. The state of leakage to the photosensitive drum was confirmed visually and by image formation. The magnetic particles have an average particle size of 15 μm and a volume resistivity of 10 μm.
5 Ω · cm, the saturation magnetization in the magnetic field of 1KOe is 70emu /
g of ferrite carrier was used (Sample 1). As a comparative example, the magnetic particles have an average particle diameter of 30 μm, a volume resistivity of 10 5 Ω · cm, and a saturation magnetization of 210 in a magnetic field of 1 KOe.
An emu / g iron powder carrier was used (Sample 2). In addition,
Each carrier had a non-dielectric constant of 40 or less. As a result of this experiment, the magnetic particles of Sample 1 were circulated well,
Good images were obtained. On the other hand, sample 2 has a separation pole A
4 , the magnetic particles could not be separated.
Magnetic particles were surrounded, and they were not circulated smoothly, and uneven charging appeared in the image.

【0031】[0031]

【効果】以上記載のごとく本発明によれば、粒子帯電に
おける磁性粒子の漏洩等が生じることなく又長期使用に
よっても帯電剤が劣化する事なく長期に亙って安定した
帯電能を確保し得る。又本発明によれば、磁性粒子の循
環を良好に確保出来る帯電装置として適用される。更に
本発明によれば、製造上からも、使用者側からも、更に
環境にも十分配慮することが出来、極めて実用性の高い
帯電装置が得る事の出来る。等の種々の著効を有す。
As described above, according to the present invention, stable charging performance can be ensured for a long period of time without causing leakage of magnetic particles during particle charging and without deterioration of the charging agent even after long-term use. . Further, according to the present invention, the present invention is applied as a charging device capable of ensuring good circulation of magnetic particles. Further, according to the present invention, the environment can be sufficiently considered from the viewpoint of manufacturing and from the side of the user, and a highly practical charging device can be obtained. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本構成図。FIG. 1 is a basic configuration diagram of the present invention.

【図2】本発明の実施例に係る帯電装置を示す全体図で
ある。
FIG. 2 is an overall view showing a charging device according to an embodiment of the present invention.

【図3】従来技術に係る帯電装置を示す表図である。FIG. 3 is a table showing a charging device according to the related art.

【符号の説明】[Explanation of symbols]

1 感光体ドラム 2 帯電スリーブ 3 磁石集成体 4 磁性粒子 5 帯電ギャップ P 最近接点 A1 主極 B1 対向極 A2 シールド補助極 A4 分離極DESCRIPTION OF SYMBOLS 1 Photoreceptor drum 2 Charging sleeve 3 Magnet assembly 4 Magnetic particle 5 Charging gap P Closest contact A 1 Main pole B 1 Counter pole A 2 Shield auxiliary pole A 4 Separation pole

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 感光体の帯電領域上に、該感光体に向け
て固定配置した第1の磁石体(以下主極 という)を
内包する非磁性帯電スリーブを、又前記帯電領域上に位
置する感光体の背面側に、前記主極 と逆極性の第2
の磁石体(以下対向極 という)を配し、前記帯電ス
リーブを回転させながら、前記両磁石体により担持され
た磁性粒子群を介して感光体を帯電可能に構成した帯電
装置において、前記対向極B に隣接配置され該対向極B と逆極性と
することで水平磁場を形成する第3の磁石体(以下隣接
極B という)を感光体背面側に配し、前記主極A
逆極性の磁性粒子を搬送する第4の磁石体(以下搬送極
という)と、該搬送極A より下流に配置され 前記
磁性粒子群の前記主極 より、感光体回転方向上流側
に位置する前記磁性粒子群を前記搬送極A により搬送
された後前記帯電スリーブから分離・落下させる50ガ
ウス以下の磁力を有する第5の磁石体(以下分離極A
という)を前記帯電スリーブ内に配し、且つ前記帯電ス
リーブを感光体の移動方向に対しアゲインスト方向に回
転させるとともに、前記主極 の前記感光体のスリー
ブ最近接点P上の帯電ギャップ位置における磁束密度
が、前記対向極 の前記最近接点P上における磁束密
度より大なる如く構成した事を特徴とする帯電装置。
1. A non-magnetic charging sleeve including a first magnet body (hereinafter, referred to as a main pole A1 ) fixedly disposed toward the photoconductor on a charging area of the photoconductor, and on the charging area. on the back side of the position photoreceptors, the main pole a 1 and the opposite polarity second
Disposing a magnet body (hereinafter referred to as the counter electrode B 1), while rotating the charging sleeve, in the chargeable configured the charging device of the photoreceptor through a supported magnetic particles by both magnetic bodies, wherein disposed adjacent to the opposite pole B 1 and the pair Kokyoku B 1 opposite polarity and
To form a third magnetic body (hereinafter referred to as an adjacent
Pole arranged B of 2) the photoreceptor back side, and the main pole A 1
A fourth magnet body for transporting magnetic particles of opposite polarity (hereinafter a transport pole)
Conveyed that A 3), 該搬 than Okukyoku A 3 from the main pole A 1 of disposed downstream the magnetic particles by the magnetic particles the conveying pole A 3 a group located in the photosensitive member rotation direction upstream side
50 moths of separating or dropping from the charging sleeve after being
Fifth magnet having the following magnetic mouse (hereinafter separated electrode A 4
The) that placed in the charging sleeve and the charging sleeve is rotated in Against direction to the moving direction of the photosensitive member, the photosensitive member sleeve recent charging gap position on the contact point P of the main pole A 1 the magnetic flux density in the charging device, characterized in that configured as Ru greater-than the magnetic flux density at the opposite pole B 1 of the last on contact P.
【請求項2】 感光体移動方向下流側における帯電スリ
ーブ内に、前記対向極と同極性の第6の磁石体(以下シ
ールド補助極 という)を配した事を特徴とする請求
項1記載の帯電装置。
To 2. A within charging sleeve in the photosensitive member movement direction downstream side, according to claim 1, characterized in that arranged the sixth magnet of the opposite poles of the same polarity (hereinafter referred shield auxiliary poles A 2) Charging device.
【請求項3】 前記磁性粒子群を、平均粒径が略10〜
40μmで、1kOeの磁場での飽和磁化を50emu
/g〜200emu/g、比誘電率εrを40以下に設
定したことを特徴とする請求項1若しくは2記載の帯電
装置。
3. The method according to claim 1, wherein the magnetic particles have an average particle diameter of about 10 to 10.
The saturation magnetization in a magnetic field of 1 kOe is set to 50 emu at 40 μm.
3. The charging device according to claim 1, wherein the relative dielectric constant εr is set to not more than 40 / g to 200 emu / g.
【請求項4】 前記磁性粒子群が、体積固有抵抗が10
6以下の導電性磁性粒子と体積固有抵抗が106以上の高
抵抗磁性粒子の混合粒子群であり、全体としての体積固
有抵抗が103〜108Ω・cmの範囲にあり高抵抗磁性
粒子の平均粒径を導電性磁性粒子の平均粒径より大にし
た事を特徴とする請求項3記載の帯電装置。
4. The magnetic particle group having a volume resistivity of 10
6 is a mixed particles of less conductive magnetic particles and a volume resistivity of 10 6 or more high-resistance magnetic particles, there volume resistivity as a whole in the range of 10 3 ~10 8 Ω · cm high resistivity magnetic particles 4. The charging device according to claim 3, wherein the average particle diameter of the conductive particles is larger than the average particle diameter of the conductive magnetic particles.
【請求項5】 前記高抵抗磁性粒子の20μm以下の粒
子分布が5%以下になるように構成した事を特徴とする
請求項4記載の帯電装置。
5. The charging device according to claim 4, wherein a distribution of the high-resistance magnetic particles of 20 μm or less is 5% or less.
【請求項6】 前記主極 の帯電スリーブ上における
最大磁束密度位置Q2が、又前記対向極 の感光体ド
ラム上における最大磁束密度位置Q1より感光体ドラム
回転方向下流側に位置するように構成すると共に、 前記最大磁束密度位置Q1が最近接点Pを挟んで感光体
ドラム回転方向上流側の+5°〜−30°、前記最大磁
束密度位置Q2が前記最近接点Pを挟んで−10°〜+
5°の範囲に配した事を特徴とする請求項1記載の帯電
装置。
6. maximum magnetic flux density position Q 2 on the charging sleeve of the main pole A 1 is also the photosensitive drum rotation direction downstream side of the maximum magnetic flux density positions Q 1 in the counter electrode B 1 of the photoreceptor drum together configured to position the maximum magnetic flux density position Q 1 is recently photosensitive drum rotation direction upstream side of + 5 ° ~-30 ° across the contacts P, the maximum magnetic flux density position Q 2 is the closest point P -10 ° ~ +
2. The charging device according to claim 1, wherein the charging device is disposed within a range of 5 [deg.].
JP02743594A 1994-01-31 1994-01-31 Charging device Expired - Fee Related JP3240027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02743594A JP3240027B2 (en) 1994-01-31 1994-01-31 Charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02743594A JP3240027B2 (en) 1994-01-31 1994-01-31 Charging device

Publications (2)

Publication Number Publication Date
JPH07219310A JPH07219310A (en) 1995-08-18
JP3240027B2 true JP3240027B2 (en) 2001-12-17

Family

ID=12221039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02743594A Expired - Fee Related JP3240027B2 (en) 1994-01-31 1994-01-31 Charging device

Country Status (1)

Country Link
JP (1) JP3240027B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659852A (en) * 1994-10-31 1997-08-19 Canon Kabushiki Kaisha Image forming method, image forming apparatus and process cartridge

Also Published As

Publication number Publication date
JPH07219310A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
US4030447A (en) Developing device
JP4143229B2 (en) Development device
JP3240027B2 (en) Charging device
JPH08106200A (en) Electrostatic charging device and image forming device
JP3177090B2 (en) Developing device
JPH10240015A (en) Developing device
JP3117863B2 (en) Charging device
JP2592552B2 (en) Electrostatic image development method
JP3281139B2 (en) Charging device
JP3240026B2 (en) Charging device
JP3241520B2 (en) Charging device
JP2002116625A (en) Image forming device
JPS5961858A (en) Electrostatic charger and destaticization device for electrostatic recording
JP3142034B2 (en) Apparatus and method for charging photoreceptor
JP3087934B2 (en) Photoconductor charging device
JP2516380Y2 (en) Development device
JP3193228B2 (en) Contact charging particles used in particle charging method and image forming method
JP3058531B2 (en) Contact charging particles and charging method thereof
JP3212769B2 (en) Charging device
JP3009435B2 (en) Magnetic brush development method
JPS615254A (en) Developer
JPH08328387A (en) Developing method
JPH06348107A (en) Image forming device
Suzuki et al. Toner Charging in Developing Process
JPH0462390B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071012

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees