JPH07218478A - Ultrasonic wave pulse echo system and method therefor - Google Patents

Ultrasonic wave pulse echo system and method therefor

Info

Publication number
JPH07218478A
JPH07218478A JP6335136A JP33513694A JPH07218478A JP H07218478 A JPH07218478 A JP H07218478A JP 6335136 A JP6335136 A JP 6335136A JP 33513694 A JP33513694 A JP 33513694A JP H07218478 A JPH07218478 A JP H07218478A
Authority
JP
Japan
Prior art keywords
wall
transmission path
pipe
transducer
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6335136A
Other languages
Japanese (ja)
Inventor
Zwart Johan
ヨハン・ツワルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOOGOVENS TECH SERVICES
HOOGOVENS TECHNICAL SERVICES INSPECTION SYST BV
HOOGOVENS TECHNICAL SERVICES INSUPEKUSHIYON SYST BV
Original Assignee
HOOGOVENS TECH SERVICES
HOOGOVENS TECHNICAL SERVICES INSPECTION SYST BV
HOOGOVENS TECHNICAL SERVICES INSUPEKUSHIYON SYST BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOOGOVENS TECH SERVICES, HOOGOVENS TECHNICAL SERVICES INSPECTION SYST BV, HOOGOVENS TECHNICAL SERVICES INSUPEKUSHIYON SYST BV filed Critical HOOGOVENS TECH SERVICES
Publication of JPH07218478A publication Critical patent/JPH07218478A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/045External reflections, e.g. on reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Abstract

PURPOSE: To heighten sensitivity for detecting the crack of a steam pipe of a nuclear reactor. CONSTITUTION: Beams emitted from a convertor 1 proceed along transmission routes 7, 8, 9 toward the wall 4 of a pipe with certain angles. The angles are larger than an incident critical angle in respective cases, and as the result parts of the beams further enter the wall 4 insides of the pipe. The two transmission routes 8, 9 are such routes as two beams join in a zone of the wall 4 of the pipe. A sound wave reflected from the route 8 at a place of the inner wall face 5 of the pipe returns to the converter through the route 9, and the reverse is conducted regarding the route 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はパルス化された超音波の
信号を第1の伝送経路に沿って伝送し且つ受け取る変換
器および多重反射系から成る超音波パルス・エコー・シ
ステムに関する。例えばパイプの壁を検査するのに使用
する場合、第1の伝送経路は実質的にこのパイプの壁に
平行である。多重反射系は第1の反射面および第2の反
射面から成り、これらの面によって超音波のビームがパ
イプの壁に向けられ、反射したビームは変換器へと戻さ
れる。本発明はまた該システムを用いて壁を検査する方
法に関する。
FIELD OF THE INVENTION The present invention relates to an ultrasonic pulse echo system comprising a transducer and a multiple reflection system for transmitting and receiving a pulsed ultrasonic signal along a first transmission path. When used, for example, to inspect the wall of a pipe, the first transmission path is substantially parallel to the wall of this pipe. The multi-reflecting system consists of a first reflecting surface and a second reflecting surface by which a beam of ultrasonic waves is directed onto the wall of the pipe and the reflected beam is returned to the transducer. The invention also relates to a method of inspecting a wall using the system.

【0002】[0002]

【従来技術及びその課題】このようなパルス・エコー・
システムは公知であって、米国特許第4,022,05
5号には超音波に対する一対の反射面を用いることが記
載されている。各反射面は検査すべき壁に対する別の伝
送経路を規定している。この二つの別の伝送経路の一つ
は検査すべき壁に垂直であり、第2の伝送経路は該壁に
対して或る角度をなしている。垂直な伝送経路は検査す
べき壁の厚さに関する情報を与える反射信号を発生する
役目をする。或る角度をもった伝送経路はパイプの壁の
中の亀裂のような不規則性を検出する役目をする。
2. Description of the Related Art Such pulse echo
The system is known and is described in US Pat. No. 4,022,05.
No. 5 describes the use of a pair of reflecting surfaces for ultrasonic waves. Each reflective surface defines another transmission path for the wall to be inspected. One of the two alternative transmission paths is perpendicular to the wall to be examined and the second transmission path is at an angle to the wall. The vertical transmission path serves to generate a reflected signal which gives information about the thickness of the wall to be examined. The angled transmission path serves to detect irregularities such as cracks in the wall of the pipe.

【0003】該発明におけるようなパルス・エコー・シ
ステムは、実際に例えば水冷式の原子炉装置の水蒸気パ
イプの亀裂を検出するような、安全性の理由のためにこ
のような亀裂を早期に検出するのが重要な場合に使用さ
れる。
A pulse echo system as in the present invention detects such cracks early for safety reasons, such as in fact detecting cracks in steam pipes of water-cooled reactor equipment. Used when it is important to do.

【0004】実際には、生じる大部分の亀裂は亀裂が存
在するパイプの壁に垂直な反射面をもっていることが見
出だされている。従って米国特許第4,022,055
号において壁厚を検出する役目をするパイプの壁に対し
垂直な方向の音波のエネルギーは、このような亀裂の検
出には寄与しない。検査すべき壁に対し或る角度をもっ
て伝送され放射されるエネルギーの部分だけがこのよう
な亀裂を検出するのに適している。この場合このような
亀裂の位置で反射が起こり、超音波の一部は反対の方向
に伝わって変換器の方向に向かい、ここで反射が検出さ
れる。しかし大部分のエネルギーはパイプの壁の中で分
散し、亀裂の検出およびその他の目的に効果的に使用さ
れない。
In practice, it has been found that most cracks that occur have a reflective surface perpendicular to the wall of the pipe in which the crack is present. Accordingly, US Pat. No. 4,022,055
The energy of the acoustic waves in the direction perpendicular to the wall of the pipe, which serves to detect the wall thickness in the signal, does not contribute to the detection of such cracks. Only the part of the energy which is transmitted and radiated at an angle to the wall to be inspected is suitable for detecting such cracks. In this case, reflection occurs at the location of such a crack and some of the ultrasonic waves travel in the opposite direction towards the transducer, where the reflection is detected. However, most of the energy is dispersed in the wall of the pipe and is not effectively used for crack detection and other purposes.

【0005】ヨーロッパ特許A−479368号には2
個の平面鏡および1個の凹面鏡によって1個の変換器か
らパイプの壁へと入る2本のビームを検出し、ビームが
パイプの壁の中で90°で交わるようなパルス・エコー
・システムが記載されている。その目的はビームの間の
混信を避けることおよび両方のビームに対し同じ経路長
を得ることである。
2 in European Patent A-479368.
Describes a pulse-echo system that detects two beams entering a pipe wall from a single transducer with one plane mirror and one concave mirror, and the beams intersect at 90 ° in the pipe wall. Has been done. Its purpose is to avoid crosstalk between the beams and to obtain the same path length for both beams.

【0006】本発明の目的は上記種類の亀裂を検出する
ための大きな感度をもったパルス・エコー・システムを
提供することである。本発明のシステムは同時に壁の厚
さおよび壁の内部の輪郭に関する情報を得ることができ
る。
It is an object of the present invention to provide a pulse echo system with great sensitivity for detecting cracks of the above type. The system of the invention can simultaneously obtain information about the wall thickness and the internal contour of the wall.

【0007】[0007]

【課題を解決するための手段】本発明似従えば、第1の
伝送経路に沿ってパルス化された超音波信号を伝送し受
信するための変換器、および両方とも該第1の伝送経路
の中にある第1の反射面および第2の反射面から成る多
重反射装置から成る超音波パルス・エコー・システムが
提供される。該第1および第2の反射面はそれぞれ変換
器から生じる超音波が個々の角度で該第1の伝送経路へ
と反射される別の伝送経路を規定し、該第1の伝送経路
および該別の伝送経路は共通の面内に存在している。該
別の伝送経路のなす個々の角度は90°より小さく、こ
れらの二つの伝送経路が互いに合流するように選ばれ
る。該第1の伝送経路は検査されるべき壁に対して平行
であり、該共通の面は該壁に対して垂直であり、該別の
二つの伝送経路の各々の該壁に対する角度は該壁の所に
おける臨界入射角よりも大きく、その結果該壁に向かっ
た超音波の一部は壁の中へと入って行く。
In accordance with the invention, a transducer for transmitting and receiving a pulsed ultrasound signal along a first transmission path, and both of the first transmission path, is provided. An ultrasonic pulse echo system is provided that comprises a multi-reflector comprising a first reflecting surface and a second reflecting surface therein. The first and second reflecting surfaces respectively define another transmission path through which the ultrasonic waves originating from the transducer are reflected to the first transmission path at respective angles, and the first transmission path and the other transmission path are defined. The transmission paths of are in a common plane. The individual angles made by the further transmission paths are less than 90 ° and are chosen such that these two transmission paths meet each other. The first transmission path is parallel to the wall to be inspected, the common plane is perpendicular to the wall, and the angle of each of the other two transmission paths to the wall is the wall. Greater than the critical angle of incidence at that, so that some of the ultrasonic waves that are directed toward the wall enter the wall.

【0008】本発明による壁を検査する方法は、壁に平
行な第1の伝送経路に沿って変換器から超音波信号を放
射し、該第1の伝送経路と共通の面内にあり且つ該壁の
所で該壁に対し90°より小さい角度をなししかも臨界
入射角よりも大きい方向を向いた別の伝送経路に沿って
第1および第2の反射面で該信号を反射させ、超音波信
号の少なくとも一部を壁の中へ通し、該第1および第2
の伝送経路を壁の中の区域中で合流させ、壁によって反
射された信号を検出して該変換器へと戻す工程から成っ
ていることを特徴としている。
The method of inspecting a wall according to the invention emits an ultrasonic signal from a transducer along a first transmission path parallel to the wall, which is in a plane common to said first transmission path and Reflecting the signal at the first and second reflecting surfaces along another transmission path at a wall that forms an angle of less than 90 ° with respect to the wall and that is oriented greater than the critical angle of incidence, Passing at least a portion of the signal into a wall, the first and second signals
Are merged in an area within the wall and the signal reflected by the wall is detected and returned to the transducer.

【0009】好ましくは第1の伝送経路に対する第1の
反射面の角度および第1の伝送経路に対する第2の反射
面の角度の和は約90°である。この和が88〜92°
であることが好適である。
Preferably, the sum of the angle of the first reflecting surface with respect to the first transmission path and the angle of the second reflecting surface with respect to the first transmission path is about 90 °. This sum is 88-92 °
Is preferred.

【0010】超音波変換器によって伝送され第1の反射
面によって反射される音のエネルギーはパイプの壁の内
側の面で反射し、壁に入った後パイプの壁の外側の表面
に対して反射する。これらの反射波はパイプの壁と第2
の反射面との間にある第2の経路によって戻り、次いで
変換器へと至る。第2の反射面で反射されたビームにつ
いては同じことが逆に起こる。しかし亀裂または欠陥部
から反射された信号はそれが伝って来たのと同じ反射面
から戻って来るから、全体の伝送経路は内側の壁面およ
び外側の壁面における反射の経路とは異なっている。
The sound energy transmitted by the ultrasonic transducer and reflected by the first reflecting surface is reflected by the inner surface of the wall of the pipe and after entering the wall is reflected by the outer surface of the wall of the pipe. To do. These reflected waves and the pipe wall and the second
Via a second path to and from the reflective surface of the then to the transducer. The same happens in reverse for the beam reflected at the second reflecting surface. However, since the signal reflected from the crack or defect returns from the same reflective surface it traveled through, the overall transmission path is different than the path of reflection at the inner and outer walls.

【0011】本発明のシステムは使用時において、変換
器、第1の反射面および検査すべき壁の間の伝送経路、
および変換器、第2の反射面および壁の間の伝送経路が
壁の領域において互いに交わり、従って検査すべきパイ
プの壁の内面および外面、並びに壁の中に存在するどの
ような不規則部分によって生じるどのような反射も変換
器へと戻って来るように設定されている。本発明のシス
テムでは変換器によって伝送される全エネルギーの挙動
は最適になり、亀裂を検出する感度が最適化されてい
る。さらに本発明のシステムでは壁に関する情報、例え
ばその厚さ、およびパイプの壁の輪郭に関する同様な情
報を壁の内面および外面で起こる反射から得ることがで
きる。
In use, the system of the present invention comprises a transmission path between the transducer, the first reflecting surface and the wall to be inspected,
And the transmission path between the transducer, the second reflecting surface and the wall intersect each other in the region of the wall, and thus by the inner and outer surfaces of the wall of the pipe to be inspected and by any irregularities present in the wall. Any reflections that occur are set back into the transducer. In the system of the invention, the behavior of the total energy transmitted by the transducer is optimized and the sensitivity of crack detection is optimized. Furthermore, in the system of the invention, information about the wall, such as its thickness, and similar information about the wall contour of the pipe, can be obtained from the reflections occurring on the inner and outer surfaces of the wall.

【0012】本発明に従えば、第1の伝送経路に対する
第1の反射面の角度が35〜37°の間にあり、第1の
伝送経路に対する第2の反射面の角度が55〜53°の
間にある場合に最良の結果が得られる。最適の角度の設
定から1°ずらして角度を選ぶと動作特性において6デ
シベルの差が生じる。
According to the invention, the angle of the first reflecting surface with respect to the first transmission path is between 35 and 37 °, and the angle of the second reflecting surface with respect to the first transmission path is 55 to 53 °. Best results are obtained when between. If the angle is selected by shifting 1 ° from the optimum angle setting, a difference of 6 decibels will occur in the operating characteristics.

【0013】[0013]

【実施例】次に添付図面を参照して本発明の具体化例を
説明する。この具体化例は本発明を限定するものではな
い。
Embodiments of the present invention will now be described with reference to the accompanying drawings. This embodiment does not limit the invention.

【0014】二つの添付図面において同じ参照番号は同
じ部分を示している。
Like reference numerals in the two drawings indicate like parts.

【0015】内壁面5および外壁面6を有するパイプの
壁4を本発明を具体化したパルス・エコー・システムを
用いて検査する。このために超音波変換器1によりそれ
と一緒に動作する一対の反射面2および3の方向にパル
ス信号を伝送する。反射面2および3は変換器1に対し
て異なった角度をもつように設定され、長手方向に互い
にずらされて配置されている。変換器1と反射面2およ
び3から成る多重反射系との間の伝送経路7は、検査す
べきパイプの壁4に対して実質的に平行である。反射面
2および3は伝送経路7を経て入って来た超音波ビーム
をパイプの壁4の方向に反射し、反射面2および反射面
3の両方からパイプの壁の区域で合流する別の2つのパ
イプの壁への伝送経路8,9がつくられる。壁4に対す
る各経路8,9の角度は約45°である。片方の経路8
は前方に向いている。即ち経路7と同じ方向に向かって
いる。これに対し他の経路9は後方に向いている。この
二つの経路は同一面内にあり、且つ経路7を含む面内に
ある。
The wall 4 of the pipe having an inner wall surface 5 and an outer wall surface 6 is inspected using a pulse echo system embodying the invention. For this purpose, a pulse signal is transmitted by the ultrasonic transducer 1 in the direction of the pair of reflecting surfaces 2 and 3 operating with it. The reflecting surfaces 2 and 3 are set to have different angles with respect to the transducer 1 and are arranged offset from each other in the longitudinal direction. The transmission path 7 between the transducer 1 and the multiple reflection system consisting of the reflecting surfaces 2 and 3 is substantially parallel to the wall 4 of the pipe to be examined. The reflecting surfaces 2 and 3 reflect the ultrasonic beam entering through the transmission path 7 in the direction of the wall 4 of the pipe, and another two converging in the area of the wall of the pipe from both the reflecting surface 2 and the reflecting surface 3. Transmission paths 8, 9 to the wall of one pipe are created. The angle of each path 8, 9 with respect to the wall 4 is about 45 °. One route 8
Is facing forward. That is, it is heading in the same direction as the route 7. On the other hand, the other route 9 faces rearward. The two paths are in the same plane and in the plane containing the path 7.

【0016】添付図面においては説明を容易にするため
に経路7は2本の線で示されているが、実際にはこれは
単一の伝送ビームおよび(下記に説明するように)戻り
ビームである。
In the accompanying drawings, path 7 is shown as two lines for ease of explanation, but in practice this is a single transmit beam and a return beam (as described below). is there.

【0017】伝送経路7に対する第1の反射面2の角度
に該伝送経路に対する第2の反射面3の角度を加えた値
は約90°である。第1の伝送経路7に対する反射面2
の角度は35〜37°の範囲にあり、第1の伝送経路7
に対する第2の反射面3の角度は55〜53°の範囲に
あることが好ましい。
The value obtained by adding the angle of the second reflecting surface 3 to the transmission path to the angle of the first reflecting surface 2 to the transmission path 7 is about 90 °. Reflection surface 2 for the first transmission path 7
Is in the range of 35 to 37 °, and the first transmission path 7
The angle of the second reflection surface 3 with respect to is preferably in the range of 55 to 53 °.

【0018】伝送経路7を伝送された音波は反射面2お
よび3で反射された後、伝送経路8および伝送経路9の
両方を通ってパイプの壁4に達する。パイプの壁4の内
側の面5に達すると、これらの音波の一部は反射され
る。伝送経路8を経て内側の面5に達したビームはその
一部が反射され、伝送経路9および伝送経路7によって
つくられる経路を経て変換器1へ戻る。
The sound wave transmitted through the transmission path 7 is reflected by the reflecting surfaces 2 and 3, and then reaches the wall 4 of the pipe through both the transmission path 8 and the transmission path 9. Upon reaching the inner surface 5 of the pipe wall 4, some of these sound waves are reflected. The beam reaching the inner surface 5 via the transmission path 8 is partially reflected and returns to the converter 1 via the path formed by the transmission path 9 and the transmission path 7.

【0019】伝送経路9を経てパイプの内側の面5に達
した音波のビームによりそれに対応した同様な経路がつ
くられる。このビームも同様に反射され、反射波は伝送
経路8および伝送経路7を反対方向に経由して変換器1
へと戻る。これらの二つのビームに対する全体としの音
波の経路長は同じであり、従って図1に示されているよ
うにグラフにはパイプの内径IDに対し単一の信号が現
れる(ここでIPは最初のパルスを表す)。
A corresponding path is created by a beam of acoustic waves that reaches the inner surface 5 of the pipe via the transmission path 9. This beam is also reflected in the same manner, and the reflected wave passes through the transmission path 8 and the transmission path 7 in the opposite directions, and the converter 1
Return to. The total acoustic wave path lengths for these two beams are the same, so the graph shows a single signal for the inner diameter ID of the pipe as shown in FIG. 1 (where IP is the first Represents a pulse).

【0020】伝送経路8および9を経てパイプの壁4に
達した超音波ビームのエネルギーの他の部分はパイプの
壁4の中に入り、パイプの壁4の中に亀裂または欠陥部
がない場合には(図1に示されるように)、パイプの壁
4の外壁面6で反射される。この場合も外壁面6から反
射された二つのビームは他の経路によって変換器1へ戻
り、この二つの経路の全体としての経路長は同じであ
り、図1のグラフに示されているように外径ODに対し
単一の信号が現れる。IDおよびODに対する信号が現
れる時間の差が壁の厚さを与え、またID信号は内壁面
の輪郭および形状に関する情報を与える。
If another part of the energy of the ultrasonic beam reaching the pipe wall 4 via the transmission paths 8 and 9 enters the pipe wall 4 and there is no crack or defect in the pipe wall 4. (As shown in FIG. 1) is reflected by the outer wall surface 6 of the wall 4 of the pipe. Also in this case, the two beams reflected from the outer wall surface 6 return to the converter 1 by another path, and the total path lengths of these two paths are the same, and as shown in the graph of FIG. A single signal appears for the outer diameter OD. The difference in the time the signals appear for the ID and OD gives the wall thickness, and the ID signal gives information about the contour and shape of the inner wall.

【0021】壁に亀裂が存在すると、伝送経路8を経由
して送らたビームの一部はこの亀裂により反射され、経
路8および経路7を経て変換器1へ戻る。この場合の全
経路長はID信号の全経路長よりも短く、図2のグラフ
において右向きの矢印で示されているように、亀裂に対
するパルス・エコー信号は壁のID信号の前に現れる。
同様に伝送経路9を経て送られたビームは亀裂により部
分的に反射され、経路9および7を経て変換器1へ戻
る。この反射波は全経路長がODの反射波よりも長く、
従って図2のグラフにおいて左向きの矢印で示されてい
るように、OD信号の後で亀裂からの別のパルス・エコ
ー信号が現れる。実際には亀裂は両側で検出される。
If a crack is present in the wall, part of the beam sent via the transmission path 8 is reflected by this crack and returns to the converter 1 via paths 8 and 7. The total path length in this case is shorter than the total path length of the ID signal, and the pulse echo signal for the crack appears in front of the ID signal on the wall, as indicated by the arrow pointing to the right in the graph of FIG.
Similarly, the beam sent via the transmission path 9 is partially reflected by the crack and returns to the converter 1 via paths 9 and 7. The total path length of this reflected wave is longer than the reflected wave of OD,
Therefore, another pulse echo signal from the crack appears after the OD signal, as indicated by the arrow pointing to the left in the graph of FIG. In reality cracks are detected on both sides.

【0022】亀裂または欠陥部によるOD信号の減衰も
検査することができる。
The attenuation of the OD signal due to cracks or defects can also be examined.

【0023】以上本発明をその具体化例によって説明し
たが、本発明はこれらの具体化例に限定されるものでは
なく、本発明の概念の範囲内において多くの変形を行う
ことができる。
Although the present invention has been described with reference to its embodiments, the present invention is not limited to these embodiments, and many modifications can be made within the scope of the concept of the present invention.

【0024】本発明の主な特徴及び態様は次の通りであ
る。 1.第1の伝送経路(7)に沿ってパルス化された超音
波信号を伝送し受信するための変換器(1)、および両
方とも該第1の伝送経路の中にある第1の反射面(2)
および第2の反射面(3)から成る多重反射装置から成
り;該第1および第2の反射面はそれぞれ変換器から生
じる超音波が個々の角度で該第1の伝送経路(7)へと
反射される別の伝送経路(8,9)を規定し、該第1の
伝送経路(7)および該別の伝送経路(8,9)は共通
の面内に存在し;該別の伝送経路のなす個々の角度は、
該別の二つの伝送経路が互いに合流するように選ばれ、
且つ該第1の伝送経路(7)が検査されるべき壁(4)
に対して平行であり該共通の面が該壁に対して垂直であ
る場合、該別の二つの伝送経路の各々の該壁に対する角
度が90°より小さくしかも該壁の所における臨界入射
角よりも大きく、その結果該壁に向かった超音波の一部
が壁の中へと入って来るように選ばれている超音波パル
ス・エコー・システム。
The main features and aspects of the present invention are as follows. 1. A transducer (1) for transmitting and receiving a pulsed ultrasonic signal along a first transmission path (7), and a first reflecting surface (both of which is in the first transmission path). 2)
And a second reflecting surface (3) comprising a multi-reflecting device; said first and second reflecting surfaces each transmitting ultrasonic waves originating from the transducer at respective angles to said first transmission path (7). Defining another transmission path (8, 9) to be reflected, said first transmission path (7) and said another transmission path (8, 9) being in a common plane; The individual angles made by
The two other transmission paths are chosen to join each other,
And the wall (4) on which the first transmission path (7) is to be inspected
Parallel to the wall and the common plane is perpendicular to the wall, the angle of each of the two other transmission paths with respect to the wall is less than 90 ° and is less than the critical angle of incidence at the wall. Ultrasonic pulse-echo system that is chosen so that it is also large, so that some of the ultrasound waves that are directed toward the wall enter the wall.

【0025】2.第1の伝送経路(7)に対する第1の
反射面(2)の角度と第1の伝送経路(7)に対する第
1の反射面(3)の角度との和が約90°である上記第
1項記載のパルス・エコー・システム。
2. The sum of the angle of the first reflecting surface (2) with respect to the first transmission path (7) and the angle of the first reflecting surface (3) with respect to the first transmission path (7) is about 90 °. The pulse echo system according to item 1.

【0026】3.第1の伝送経路(7)に対する第1の
反射面(2)の角度は35〜37°の範囲内にあり、第
1の伝送経路(7)に対する第1の反射面(3)の角度
は55〜53°の範囲内にある上記第1項記載のパルス
・エコー・システム。
3. The angle of the first reflecting surface (2) with respect to the first transmission path (7) is in the range of 35 to 37 °, and the angle of the first reflecting surface (3) with respect to the first transmission path (7) is The pulse echo system of claim 1 in the range 55-53 °.

【0027】4.壁に平行な第1の伝送経路(7)に沿
って変換器(1)から超音波信号を放射し、該第1の伝
送経路と共通の面内にあり且つ該壁の所で該壁に対し9
0°より小さい角度をなししかも臨界入射角よりも大き
い方向を向いた別の伝送経路(8,9)に沿って第1お
よび第2の反射面(2,3)で該信号を反射させ、超音
波信号の少なくとも一部を壁(4)の中へ通し、該第1
および第2の伝送経路を壁の中の区域中で合流させ、壁
によって反射された信号を検出し、該変換器(1)へと
戻す超音波により壁(4)を検査する方法。
4. Emitting an ultrasonic signal from the transducer (1) along a first transmission path (7) parallel to the wall, in the plane common to the first transmission path and at the wall to the wall. To 9
Reflecting the signal at the first and second reflecting surfaces (2,3) along another transmission path (8,9) which is oriented at an angle smaller than 0 ° and which is oriented larger than the critical angle of incidence, Passing at least part of the ultrasonic signal into the wall (4),
And a method of merging the second transmission path in an area within the wall, detecting the signal reflected by the wall and inspecting the wall (4) by ultrasonic waves returning to the transducer (1).

【0028】5.該壁(4)に対する別の伝送経路
(8,9)の角度は実質的に等しく、壁の表面(5,
6)によって反射され第1の反射面(2)から出て来る
信号は第2の反射面へと戻され、逆もまたそうである上
記第4項記載の方法。
5. The angles of the other transmission paths (8, 9) with respect to the wall (4) are substantially equal and the wall surface (5, 9)
The method according to claim 4, wherein the signal reflected by 6) and emerging from the first reflecting surface (2) is returned to the second reflecting surface and vice versa.

【0029】6.第1の伝送経路(7)に対する第1の
反射面(2)の角度と第1の伝送経路(7)に対する第
1の反射面(3)の角度との和は約90°である上記第
4項記載の方法。
6. The sum of the angle of the first reflecting surface (2) with respect to the first transmission path (7) and the angle of the first reflecting surface (3) with respect to the first transmission path (7) is about 90 °. The method according to item 4.

【0030】7.第1の伝送経路(7)に対する第1の
反射面(2)の角度は35〜37°の範囲にあり、第1
の伝送経路(7)に対する第1の反射面(3)の角度は
55〜53°の範囲にある上記第4項記載の方法。
7. The angle of the first reflecting surface (2) with respect to the first transmission path (7) is in the range of 35 to 37 °.
The method of claim 4 wherein the angle of the first reflective surface (3) with respect to the transmission path (7) is in the range 55-53 °.

【図面の簡単な説明】[Brief description of drawings]

【図1】亀裂がないパイプの壁の部分を検査する場合の
本発明を具体化したパルス・エコー・システムを示す。
FIG. 1 shows a pulse echo system embodying the present invention when inspecting a portion of a pipe wall that is free of cracks.

【図2】亀裂が存在するパイプのの部分を検査する場合
の図1のパルス・エコー・システムを示す。
2 shows the pulse echo system of FIG. 1 when inspecting a portion of a pipe where cracks are present.

【符号の説明】[Explanation of symbols]

1 変換器 2 反射面 3 反射面 4 壁 5 内壁面 6 外壁面 7 伝送路 8 伝送路 9 伝送路 DESCRIPTION OF SYMBOLS 1 Converter 2 Reflective surface 3 Reflective surface 4 Wall 5 Inner wall surface 6 Outer wall surface 7 Transmission line 8 Transmission line 9 Transmission line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の伝送経路に沿ってパルス化された
超音波信号を伝送し受信するための変換器、および両方
とも該第1の伝送経路の中にある第1の反射面および第
2の反射面から成る多重反射装置から成り;該第1およ
び第2の反射面はそれぞれ変換器から生じる超音波が個
々の角度で該第1の伝送経路へと反射される別の伝送経
路を規定し、該第1の伝送経路および該別の伝送経路は
共通の面内に存在し;該別の伝送経路のなす個々の角度
は、該別の二つの伝送経路が互いに合流するように選ば
れ、且つ該第1の伝送経路が検査されるべき壁に対して
平行であり該共通の面が該壁に対して垂直である場合、
該別の二つの伝送経路の各々の該壁に対する角度が90
°より小さくしかも該壁の所における臨界入射角よりも
大きく、その結果該壁に向かった超音波の一部が壁の中
へと入って来るように選ばれていることを特徴とする超
音波パルス・エコー・システム。
1. A transducer for transmitting and receiving a pulsed ultrasonic signal along a first transmission path, and a first reflecting surface and a first both in the first transmission path. A multi-reflecting device consisting of two reflecting surfaces; said first and second reflecting surfaces each comprising a separate transmission path through which the ultrasonic waves originating from the transducer are reflected at respective angles to said first transmission path. Defining the first transmission path and the further transmission path in a common plane; the individual angles of the further transmission path are selected such that the two further transmission paths meet each other. And the first transmission path is parallel to the wall to be inspected and the common plane is perpendicular to the wall,
The angle of each of the other two transmission paths with respect to the wall is 90.
Ultrasonic waves characterized in that they are smaller than ° and larger than the critical angle of incidence at the wall, so that some of the ultrasonic waves that are directed towards the wall enter the wall. Pulse echo system.
【請求項2】 壁に平行な第1の伝送経路に沿って変換
器から超音波信号を放射し、 該第1の伝送経路と共通の面内にあり且つ該壁の所で該
壁に対し90°より小さい角度をなししかも臨界入射角
よりも大きい方向を向いた別の伝送経路に沿って第1お
よび第2の伝送面で該信号を反射させ、超音波信号の少
なくとも一部を壁の中へ通し、該第1および第2の伝送
経路を壁の中の区域中で合流させ、壁によって反射され
た信号を検出し、該変換器へと戻すことを特徴とする超
音波により壁を検査する方法。
2. An ultrasonic signal is emitted from the transducer along a first transmission path parallel to the wall, the ultrasonic signal being in a plane common to the first transmission path and at the wall relative to the wall. Reflecting the signal at the first and second transmission surfaces along another transmission path that forms an angle less than 90 ° and that is oriented greater than the critical angle of incidence, at least a portion of the ultrasonic signal at the wall Ultrasonically, characterized by passing through, merging the first and second transmission paths in an area in the wall, detecting the signal reflected by the wall and returning it to the transducer. How to inspect.
JP6335136A 1993-12-23 1994-12-21 Ultrasonic wave pulse echo system and method therefor Pending JPH07218478A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL9302247 1993-12-23
NL9302247A NL9302247A (en) 1993-12-23 1993-12-23 Pulse-echo system with a multiple reflection system.

Publications (1)

Publication Number Publication Date
JPH07218478A true JPH07218478A (en) 1995-08-18

Family

ID=19863305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6335136A Pending JPH07218478A (en) 1993-12-23 1994-12-21 Ultrasonic wave pulse echo system and method therefor

Country Status (4)

Country Link
JP (1) JPH07218478A (en)
CA (1) CA2138487A1 (en)
FR (1) FR2714472A1 (en)
NL (1) NL9302247A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843401A1 (en) 2013-08-30 2015-03-04 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO System and method for defect monitoring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943351A (en) * 1982-09-03 1984-03-10 Hitachi Ltd Thickness measuring/flaw detecting probe
JPS6134081A (en) * 1984-07-27 1986-02-18 Hitachi Ltd Lustering agent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022055A (en) * 1974-12-02 1977-05-10 Texaco Inc. Pulse-echo method and system for testing wall thicknesses
NL185585C (en) * 1981-10-05 1990-05-16 Nucon Eng & Contracting Bv SYSTEM FOR MEASURING PARAMETERS OF A PIPE OR TUBULAR MEASUREMENT OBJECT.
GB2149116B (en) * 1983-10-31 1987-03-25 Texaco Development Corp Method and apparatus for measuring wall thickness
NL9002156A (en) * 1990-10-04 1992-05-06 Nucon Eng & Contracting Bv PULSE-ECHO SYSTEM.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943351A (en) * 1982-09-03 1984-03-10 Hitachi Ltd Thickness measuring/flaw detecting probe
JPS6134081A (en) * 1984-07-27 1986-02-18 Hitachi Ltd Lustering agent

Also Published As

Publication number Publication date
NL9302247A (en) 1995-07-17
CA2138487A1 (en) 1995-06-24
FR2714472A1 (en) 1995-06-30

Similar Documents

Publication Publication Date Title
US5431054A (en) Ultrasonic flaw detection device
US4435984A (en) Ultrasonic multiple-beam technique for detecting cracks in bimetallic or coarse-grained materials
JPH0253746B2 (en)
JPS62179660A (en) Ultrasonic detecting method of hydrogen damage in boiler tube
US4305297A (en) Ultrasonic testing of weld seams of pipes for detecting transversely extending defects
US20210278373A1 (en) Ultrasonic probe
JP3023641B2 (en) Composite longitudinal wave bevel probe for ultrasonic flaw detection of pipe welds
JPH11118770A (en) Ultrasonic flaw-detecting method and device
US4149139A (en) Ultrasonic transmission device
JPH07218478A (en) Ultrasonic wave pulse echo system and method therefor
JPS5871403A (en) Measuring device for parameter of tubular test body
JPH08136512A (en) Ultrasonic flaw detection method at seam welded part of steel pipe
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JPH05119025A (en) Flaw detection method of circumference welding part
JPH0972887A (en) Flaw detection of pipe by ultrasonic surface acoustic sh wave
JPH04264258A (en) Pulse echo system for detecting discontinuity and method therefor
JP2003254944A (en) Ultrasonic flaw detection method and ultrasonic flaw detection device
JPH1164300A (en) Ultrasonic probe and ultrasonic flaw detecting apparatus
US7418867B2 (en) Remote use of ultrasonic sensors
JP3581015B2 (en) Crack evaluation device and probe for welded part to be inspected
JPH0810793Y2 (en) Attenuator Material Probe
JPH0521011Y2 (en)
JPH0129568Y2 (en)
JPH0116043Y2 (en)
JPH095304A (en) Ultrasonic flaw detection method in welded part between straight pipe and elbow