JPH07218408A - Dual axis load test device - Google Patents

Dual axis load test device

Info

Publication number
JPH07218408A
JPH07218408A JP948994A JP948994A JPH07218408A JP H07218408 A JPH07218408 A JP H07218408A JP 948994 A JP948994 A JP 948994A JP 948994 A JP948994 A JP 948994A JP H07218408 A JPH07218408 A JP H07218408A
Authority
JP
Japan
Prior art keywords
load
hydraulic cylinder
horizontal
sample
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP948994A
Other languages
Japanese (ja)
Other versions
JP2825055B2 (en
Inventor
Tadao Tsujii
忠生 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6009489A priority Critical patent/JP2825055B2/en
Publication of JPH07218408A publication Critical patent/JPH07218408A/en
Application granted granted Critical
Publication of JP2825055B2 publication Critical patent/JP2825055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a dual axis load test device capable of obtaining a test result with high accuracy. CONSTITUTION:A dual axis load test device comprises an oil hydraulic cylinder 14 for a vertical load that loads a shaft force on a sample held by a pair of upper and lower pressure tables 19, 22, a hydraulic cylinder 26 for a horizontal load that relatively conveys the pair of pressure tables 19, 22 by acting the shaft force to the sample and loads a shearing stress thereto in a direction perpendicular to that of the shaft force and a hydraulic cylinder 29 that conveys the pressure tables 19, 22 in such a manner that a central point of the sample and a center of the shaft force are always in agreement with each other when repeatedly loading the shearing stress on the sample.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、免震ゴムなどの性能を
評価するのに好適な2軸載荷試験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biaxial loading test apparatus suitable for evaluating the performance of seismic isolation rubber or the like.

【0002】[0002]

【従来の技術】従来から、たとえば図9に示すような2
軸載荷試験装置が知られている。図9において、供試体
1は上下圧盤2,3により下部架台4と上押し部材5と
の間に保持されている。上押し部材5は鉛直スライドガ
イド6で上下方向に移動可能に支持枠7に保持され、下
部架台4は水平スライドベアリング8で水平方向に往復
移動可能に基台9上に設けられている。
2. Description of the Related Art Conventionally, as shown in FIG.
Axle load testing devices are known. In FIG. 9, the sample 1 is held between the lower pedestal 4 and the upper pushing member 5 by the upper and lower platens 2 and 3. The upper pushing member 5 is held on a support frame 7 by a vertical slide guide 6 so as to be vertically movable, and the lower mount 4 is provided on a base 9 so as to be horizontally reciprocally movable by a horizontal slide bearing 8.

【0003】上押し部材5を不図示の載荷アクチュエー
タで鉛直方向に押動して供試体1に圧縮荷重を負荷し、
その状態で、下部架台4を不図示の負荷アクチュエータ
で水平方向に往復移動させる。そのとき、負荷アクチュ
エータの変位量を変位計で測定するとともに、負荷アク
チュエータと下部架台4との間に介装したロードセルで
負荷荷重を測定し、横軸を水平方向移動量、縦軸をロー
ドセル出力としたエネルギ曲線を描き、そのエネルギ曲
線の面積から、供試体1の剪断エネルギを評価する。
The upper pushing member 5 is pushed vertically by a loading actuator (not shown) to apply a compressive load to the test piece 1,
In this state, the lower gantry 4 is horizontally reciprocated by a load actuator (not shown). At that time, the displacement amount of the load actuator is measured by a displacement gauge, and the load load is measured by a load cell interposed between the load actuator and the lower pedestal 4, and the horizontal axis indicates the horizontal movement amount and the vertical axis indicates the load cell output. Is drawn, and the shear energy of the sample 1 is evaluated from the area of the energy curve.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来の2軸載荷試験装置にあっては、供試体1の下部
だけが水平方向に往復動し上部位置は不動である。その
ため、2点鎖線のように変形する供試体1の弾性復元力
により上押し部材5には、水平力によるモーメントおよ
び鉛直力によるモーメントの加算されたモーメントが作
用し、鉛直スライドガイド6に不所望な圧縮荷重が働
き、上下圧盤2,3を平行に保つには上押部材5および
支持枠7は多大な剛性を要する。しかもその圧縮荷重は
供試体の水平変位量に応じて変動するため、スライドガ
イド6の摩擦力も変動するとともに、水平スライドベア
リング8の摩擦力も変動してしまう。その結果、水平負
荷アクチュエータと下部圧盤との間に介装したロードセ
ルの出力から摩擦分をキャンセルする補正演算が困難と
なり、精度の高い試験結果が得られない。
However, in the above-mentioned conventional biaxial loading test apparatus, only the lower part of the test piece 1 reciprocates horizontally and the upper position is immovable. Therefore, the sum of the moment due to the horizontal force and the moment due to the vertical force acts on the upper pushing member 5 due to the elastic restoring force of the sample 1 which is deformed as shown by the chain double-dashed line, and the vertical slide guide 6 is undesired. Since a large compressive load works, the upper pressing member 5 and the support frame 7 need to have a great rigidity in order to keep the upper and lower platens 2 and 3 in parallel. Moreover, since the compressive load fluctuates according to the horizontal displacement amount of the specimen, the frictional force of the slide guide 6 also fluctuates and the frictional force of the horizontal slide bearing 8 also fluctuates. As a result, it becomes difficult to perform a correction calculation for canceling the frictional component from the output of the load cell interposed between the horizontal load actuator and the lower platen, and a highly accurate test result cannot be obtained.

【0005】本発明の目的は、精度の高い試験結果を得
るようにした2軸載荷試験装置を提供することにある。
It is an object of the present invention to provide a biaxial loading test device which can obtain highly accurate test results.

【0006】[0006]

【課題を解決するための手段】本発明に係る2軸載荷試
験装置は、上下一対の圧盤に保持された供試体に軸力を
負荷する軸力負荷手段と、前記供試体に軸力を作用させ
たまま、前記上下一対の圧盤を相対移動させて前記軸力
に直交する剪断力を繰返し負荷する剪断負荷手段と、前
記供試体に繰返し剪断力を負荷するときに、前記供試体
の中心点が前記軸力の軸心と一致するように前記上下圧
盤を移動させる圧盤移動手段とを具備し、これにより、
上記目的を達成する。
SUMMARY OF THE INVENTION A biaxial loading test apparatus according to the present invention comprises an axial force applying means for applying an axial force to a specimen held by a pair of upper and lower platens, and an axial force acting on the specimen. While keeping the above, the pair of upper and lower platens are relatively moved to repeatedly apply a shearing force perpendicular to the axial force, and a shearing force is repeatedly applied to the specimen, the center point of the specimen is repeatedly applied. Further comprises a platen moving means for moving the upper and lower platens so that they coincide with the axial center of the axial force.
To achieve the above objectives.

【0007】[0007]

【作用】上下一対の圧盤に保持された供試体に軸力負荷
手段で軸力を負荷しつつ、剪断負荷手段で上下一対の圧
盤を相対移動させて供試体に剪断力を繰返し負荷する。
このとき、移動手段は前記供試体の中心点が軸力負荷手
段の軸心に対して一致するように上下圧盤を剪断力の方
向に移動する。これにより、供試体の中心点が軸力の軸
線上に一致し、剪断力に伴うモーメントを小さくするこ
とができ、試験精度の向上が図れる。
The axial load is applied to the test piece held by the pair of upper and lower platens while the axial load is applied to the test piece, and the shear load means relatively moves the pair of upper and lower platens to repeatedly apply the shearing force to the test piece.
At this time, the moving means moves the upper and lower platens in the direction of the shearing force so that the center point of the specimen coincides with the axial center of the axial force applying means. As a result, the center point of the test piece coincides with the axial line of the axial force, the moment associated with the shearing force can be reduced, and the test accuracy can be improved.

【0008】[0008]

【実施例】図1〜図8により本発明を免震ゴムの剪断エ
ネルギ評価試験機に適用した場合の一実施例を説明す
る。図1〜3は免震ゴムの剪断エネルギ評価試験機の一
実施例を示す図であり、図2は正面図、図3は左側面
図、図1は図3の支柱枠を取り除いて見た図である。こ
れらの図において、左右の支柱枠11は基部12とクロ
スヨーク13で負荷枠を構成し、クロスヨーク13に垂
直荷重用の油圧シリンダ14が設置され、油圧シリンダ
14のラムロッド14aには球座15を介して負荷ヨー
ク16が接続されている。この負荷ヨーク16の左右端
は支柱枠11に鉛直スライドガイド17を介して支持さ
れている。負荷ヨーク16の下面には水平方向に移動可
能にスライドベアリング18を介して上部圧盤19が設
けられている。上部圧盤19の下面には上面盤20が設
けられている。基部12には水平スライドベアリング2
1を介して下部圧盤22が設けられ、この下部圧盤22
の上面に下面盤23が設けられている。供試体1は上下
面盤20,23にボルトナットなどで固定される。上下
圧盤19,22は水平スライドベアリング18,21に
より図1の左右方向に移動される。
EXAMPLE An example in which the present invention is applied to a shear energy evaluation tester for seismic isolation rubber will be described with reference to FIGS. 1 to 3 are views showing an embodiment of a shear energy evaluation tester for seismic isolation rubber, FIG. 2 is a front view, FIG. 3 is a left side view, and FIG. 1 is a view obtained by removing the support frame of FIG. It is a figure. In these figures, the left and right support frames 11 form a load frame with a base 12 and a cross yoke 13, a hydraulic cylinder 14 for vertical load is installed on the cross yoke 13, and a ball seat 15 is provided on a ram rod 14 a of the hydraulic cylinder 14. The load yoke 16 is connected via. The left and right ends of the load yoke 16 are supported by the column frame 11 via vertical slide guides 17. An upper platen 19 is provided on the lower surface of the load yoke 16 via a slide bearing 18 so as to be movable in the horizontal direction. An upper surface plate 20 is provided on the lower surface of the upper platen 19. The base 12 has a horizontal slide bearing 2
1 is provided with a lower platen 22.
The lower surface board 23 is provided on the upper surface of the. The sample 1 is fixed to the upper and lower surfaces 20 and 23 with bolts and nuts. The upper and lower platens 19 and 22 are moved in the horizontal direction in FIG. 1 by the horizontal slide bearings 18 and 21.

【0009】図1に示されているように、上部および下
部圧盤19,22にはそれぞれブラケット24,25が
設けられ、両ブラケット24,25には水平負荷用油圧
シリンダ26の両端が接続されて、油圧シリンダ26の
伸縮により両ブラケット24,25間の距離が変化す
る。一方、基部12に設けられたブラケット27と下部
圧盤22に設けられたブラケット28には下部圧盤移動
用の油圧シリンダ29の両端が接続されて、油圧シリン
ダ29の伸縮により下部圧盤22が水平方向に移動す
る。
As shown in FIG. 1, upper and lower platens 19 and 22 are provided with brackets 24 and 25, respectively, to which both ends of a horizontal load hydraulic cylinder 26 are connected. The distance between the brackets 24 and 25 changes due to the expansion and contraction of the hydraulic cylinder 26. On the other hand, both ends of a hydraulic cylinder 29 for moving the lower platen are connected to a bracket 27 provided on the base 12 and a bracket 28 provided on the lower platen 22, and the lower platen 22 is horizontally moved by expansion and contraction of the hydraulic cylinder 29. Moving.

【0010】図4は試験装置の制御部を示すもので、4
0はCPUなどを主体に構成される制御回路、41は垂
直負荷用油圧シリンダ14の駆動回路、42は水平負荷
用油圧シリンダ26の駆動回路、43は下部圧盤移動用
油圧シリンダ29の駆動回路である。44は垂直負荷荷
重を検出するロードセル、45は上部圧盤19の垂直変
位を検出する変位計、46は水平負荷用油圧シリンダ2
6に作用する水平方向負荷荷重を検出するロードセル、
47は水平負荷用油圧シリンダ26のストロークを検出
する変位計である。また、48は下部圧盤移動用油圧シ
リンダ29のストロークを検出する変位計、49は下部
圧盤移動用油圧シリンダ29に作用する荷重を検出する
ロードセルである。各駆動回路41〜43には不図示の
油圧源から油圧が供給され、制御回路40からの制御信
号に基づいて各駆動回路はサーボ弁などを駆動して各油
圧シリンダのストロークを調節する。
FIG. 4 shows the control unit of the test apparatus.
Reference numeral 0 is a control circuit mainly composed of a CPU, 41 is a drive circuit for the vertical load hydraulic cylinder 14, 42 is a drive circuit for the horizontal load hydraulic cylinder 26, and 43 is a drive circuit for the lower platen moving hydraulic cylinder 29. is there. Reference numeral 44 is a load cell for detecting a vertical load, 45 is a displacement gauge for detecting a vertical displacement of the upper platen 19, and 46 is a horizontal load hydraulic cylinder 2.
Load cell that detects the horizontal load acting on 6,
Reference numeral 47 is a displacement gauge for detecting the stroke of the horizontal load hydraulic cylinder 26. Further, 48 is a displacement gauge for detecting the stroke of the lower platen moving hydraulic cylinder 29, and 49 is a load cell for detecting the load acting on the lower platen moving hydraulic cylinder 29. Hydraulic pressure is supplied to each of the drive circuits 41 to 43 from a hydraulic source (not shown), and each drive circuit drives a servo valve or the like based on a control signal from the control circuit 40 to adjust the stroke of each hydraulic cylinder.

【0011】制御回路40は各油圧シリンダを対応する
駆動回路を介して次のように駆動制御する。 供試体1に一定垂直荷重が作用するように、ロードセ
ル44の検出信号で垂直負荷用油圧シリンダ14をフィ
ードバック制御する。すなわち、ロードセル44の検出
信号を予め入力された制御信号(たとえばランプ入力信
号や周波数信号)と比較し、その偏差がゼロとなるよう
に油圧シリンダ14をフィードバックする。
The control circuit 40 drives and controls each hydraulic cylinder via the corresponding drive circuit as follows. The vertical load hydraulic cylinder 14 is feedback-controlled by the detection signal of the load cell 44 so that a constant vertical load acts on the sample 1. That is, the detection signal of the load cell 44 is compared with a previously input control signal (for example, a ramp input signal or a frequency signal), and the hydraulic cylinder 14 is fed back so that the deviation becomes zero.

【0012】所定の周期で供試体1に剪断力が作用す
るように、変位計47の検出信号で水平負荷用油圧シリ
ンダ26をフィードバック制御する。すなわち、変位計
47の検出信号を予め入力された制御信号(周波数信
号)と比較し、その偏差がゼロとなるように油圧シリン
ダ26をフィードバックする。
The horizontal load hydraulic cylinder 26 is feedback-controlled by a detection signal of the displacement gauge 47 so that the shearing force acts on the test piece 1 at a predetermined cycle. That is, the detection signal of the displacement gauge 47 is compared with a control signal (frequency signal) input in advance, and the hydraulic cylinder 26 is fed back so that the deviation becomes zero.

【0013】油圧シリンダ26の動作により供試体1
が所定周期で水平方向に往復動するとき、供試体1の中
心点が垂直負荷用油圧シリンダ14の軸心と常時一致す
るように、上記往復動と逆の位相で1/2だけ下部圧盤
22を水平方向に往復動させる。すなわち、変位計49
の検出信号を予め入力された制御信号(周波数信号)と
比較し、その偏差がゼロとなるように油圧シリンダ29
をフィードバックする。この場合、油圧シリンダ26の
動作と同期をとるのが好ましい。
The specimen 1 is operated by the operation of the hydraulic cylinder 26.
When it reciprocates horizontally in a predetermined cycle, the lower platen 22 is ½ in a phase opposite to the reciprocating motion so that the center point of the sample 1 always coincides with the axis of the vertical load hydraulic cylinder 14. Reciprocate horizontally. That is, the displacement meter 49
Of the hydraulic cylinder 29 is compared with the control signal (frequency signal) input in advance so that the deviation becomes zero.
Give us feedback. In this case, it is preferable to synchronize with the operation of the hydraulic cylinder 26.

【0014】このように構成された2軸載荷試験装置の
動作を図5〜8も参照して説明する。まず不図示の試験
条件入力操作部材により垂直負荷荷重および、水平方向
の変位量と周波数を設定する。試験が開始されると、垂
直負荷用油圧シリンダ14に圧油が供給され、上部圧盤
19が供試体を押圧する。垂直荷重検出用ロードセル4
4は垂直荷重を検出し、制御回路40は設定された垂直
荷重となるように駆動回路41を介して油圧シリンダ1
4を駆動制御する。
The operation of the biaxial loading test apparatus thus constructed will be described with reference to FIGS. First, a vertical load, horizontal displacement and frequency are set by a test condition input operation member (not shown). When the test is started, pressure oil is supplied to the vertical load hydraulic cylinder 14, and the upper platen 19 presses the sample. Vertical load detection load cell 4
4 detects the vertical load, and the control circuit 40 controls the hydraulic cylinder 1 via the drive circuit 41 so that the vertical load is set.
4 is driven and controlled.

【0015】一方、水平負荷用油圧シリンダ26の駆動
回路42には図5の(a)で示されるような正弦波信号
が印加されて、油圧シリンダ26は所定の量だけ所定の
周波数で伸縮する。これにより上下圧盤19,22のブ
ラケット24,25の間隔が変更されて供試体1に周期
的に大きさの異なる剪断力が負荷される。
On the other hand, a sine wave signal as shown in FIG. 5A is applied to the drive circuit 42 of the horizontal load hydraulic cylinder 26, so that the hydraulic cylinder 26 expands and contracts by a predetermined amount at a predetermined frequency. . As a result, the interval between the brackets 24 and 25 of the upper and lower platens 19 and 22 is changed, and the shear force of different magnitude is cyclically applied to the sample 1.

【0016】このとき、下圧盤移動用油圧シリンダ29
の駆動回路43には図5の(b)に示すような正弦波信
号が入力される。この正弦波信号は図5(a)の正弦波
信号に対して、逆位相で1/2の振幅を有する。下圧盤
移動用油圧シリンダ29にも駆動回路43を介して圧油
が供給される。
At this time, the hydraulic cylinder 29 for moving the lower platen
A sine wave signal as shown in FIG. 5B is input to the drive circuit 43 of FIG. This sine wave signal has an amplitude of 1/2 in antiphase with respect to the sine wave signal of FIG. Pressure oil is also supplied to the lower platen moving hydraulic cylinder 29 via the drive circuit 43.

【0017】図6において、下圧盤22を固定した状態
でブラケット24,25間に設けた水平負荷用油圧シリ
ンダ26(図6では図示を省略)をSだけ伸ばすと、上
部圧盤19が左にSだけ移動して供試体1に剪断力が働
く。このとき、供試体1の中心点OはO’で示すように
左にS/2だけずれる。そこで、水平負荷用油圧シリン
ダ26をS伸ばすのと同期させて、水平移動用油圧シリ
ンダ29をS/2だけ収縮して下部圧盤22を右にS/
2だけ移動させると、供試体1は2点鎖線で示すように
変形しその中心点が常にO点に位置して垂直負荷軸心V
Xに一致する。これにより、供試体1の剪断変形に伴う
モーメントが負荷ヨーク16に働かないようにできる。
In FIG. 6, when the lower platen 22 is fixed and the horizontal load hydraulic cylinder 26 (not shown in FIG. 6) provided between the brackets 24 and 25 is extended by S, the upper platen 19 is moved to the left by S. A shear force acts on the test piece 1 by moving only. At this time, the center point O of the sample 1 is shifted to the left by S / 2 as indicated by O '. Therefore, in synchronization with extending the horizontal load hydraulic cylinder 26 by S, the horizontal moving hydraulic cylinder 29 is contracted by S / 2 to move the lower platen 22 to the right by S /.
When it is moved by 2, the specimen 1 is deformed as shown by the chain double-dashed line, the center point of which is always located at the O point, and the vertical load axis V
Matches X. As a result, the moment associated with the shear deformation of the sample 1 can be prevented from acting on the load yoke 16.

【0018】このようにして供試体1の軸方向に所定の
荷重を負荷しつつ水平方向に繰り返し変動する剪断力を
負荷する際、水平負荷用油圧シリンダ26の負荷変動が
ロードセル46で、変位量が変位計47でそれぞれ検出
される。図7の曲線aは水平荷重を、曲線bは水平変位
をそれぞれ示す。ここで、ロードセル46で測定される
水平荷重には、上下スライドベアリング18,21の摩
擦力が含まれている。そこで、試験に先立って、所定の
垂直荷重を負荷した状態で、水平移動用油圧シリンダ2
9を動作させてロードセル49の検出値を読取り、不図
示のメモリに垂直荷重と対で格納する。この格納値がス
ライドベアリング18,21の摩擦力である。なお、垂
直荷重を変えて同様に摩擦力を測定してメモリに格納す
るのが好ましいが、一種類の垂直荷重と摩擦力のデータ
から異なる垂直荷重の摩擦力を推定する方式をとっても
よい。
In this way, when a predetermined load is applied in the axial direction of the test piece 1 and a shearing force that repeatedly fluctuates in the horizontal direction is applied, the load fluctuation of the horizontal load hydraulic cylinder 26 causes the load cell 46 to displace. Are respectively detected by the displacement gauge 47. The curve a in FIG. 7 shows the horizontal load, and the curve b shows the horizontal displacement. Here, the horizontal load measured by the load cell 46 includes the frictional force of the vertical slide bearings 18 and 21. Therefore, prior to the test, the hydraulic cylinder 2 for horizontal movement should be loaded with a predetermined vertical load.
9 is operated to read the detected value of the load cell 49 and stored in a memory (not shown) as a pair with the vertical load. This stored value is the frictional force of the slide bearings 18 and 21. It is preferable that the vertical load is changed and the frictional force is similarly measured and stored in the memory, but a method of estimating the frictional force of different vertical loads from one type of vertical load and frictional force data may be adopted.

【0019】そして、ロードセル46で測定した水平負
荷荷重からメモリに格納したスライドベアリング18,
21の摩擦力を差引き、対応する水平変位に対する水平
負荷荷重として表したものが、図8のエネルギ曲線であ
る。この閉曲線内の面積が供試体1の持つ剪断エネルギ
を表す。
The horizontal bearing load measured by the load cell 46 is stored in the slide bearing 18, which is stored in the memory.
The energy curve of FIG. 8 is obtained by subtracting the frictional force of 21 and expressing it as the horizontal load against the corresponding horizontal displacement. The area within this closed curve represents the shear energy of the sample 1.

【0020】このように、軸力をかけながら上下圧盤1
9,22を互いに反対方向に移動させて、供試体1に軸
力と剪断力とを同時に作用させる2軸載荷試験を行なう
際、供試体1の中心点が垂直負荷用油圧シリンダ14の
軸心と常時一致させるような操作を行なうことにより、
鉛直スライドガイド17に不所望な圧縮荷重を発生させ
ずに試験を行なうことが可能となり、その結果、事前に
測定した水平スライドベアリング18,21の摩擦力を
用いた補正演算が正確にでき、測定精度が向上する。
In this way, the upper and lower platens 1 while applying the axial force.
When performing a biaxial loading test in which the axial force and the shearing force are simultaneously applied to the test piece 1 by moving 9 and 22 in opposite directions, the center point of the test piece 1 is the axial center of the vertical load hydraulic cylinder 14. By performing an operation that always matches
It is possible to perform a test without generating an undesired compressive load on the vertical slide guide 17, and as a result, it is possible to accurately perform a correction calculation using the frictional force of the horizontal slide bearings 18 and 21 measured in advance. Accuracy is improved.

【0021】以上の実施例の構成において、垂直負荷用
油圧シリンダ14が軸力負荷手段を、水平負荷用油圧シ
リンダ26が水平負荷手段を、水平移動油圧シリンダ2
9が移動手段をそれぞれ構成する。
In the construction of the above embodiment, the vertical load hydraulic cylinder 14 serves as the axial load means, the horizontal load hydraulic cylinder 26 serves as the horizontal load means, and the horizontal moving hydraulic cylinder 2
9 constitutes the moving means respectively.

【0022】なお、試験機本体の構成は実施例に限定さ
れない。とくに、油圧シリンダ14と油圧シリンダ26
や油圧シリンダ29を一体の試験機本体に組込んでいる
が、軸力負荷機構と水平負荷機構を別々の機構としても
よい。
The structure of the tester main body is not limited to the embodiment. In particular, the hydraulic cylinder 14 and the hydraulic cylinder 26
Although the hydraulic cylinder 29 and the hydraulic cylinder 29 are incorporated in the main body of the test machine, the axial load mechanism and the horizontal load mechanism may be separate mechanisms.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、剪
断力により不所望なモーメントが軸力負荷機構に作用し
ないようにしたので、供試体の上下面の平行度が高い剪
断変形負荷が行なえ、また、剪断力負荷中でも鉛直スラ
イドガイドの圧縮力をほぼ一定にでき、それにともなう
水平スライドベアリングの摩擦力の変動を抑制できるか
ら、従来よりも精度よく試験を行なうことができる。
As described above, according to the present invention, an undesired moment is prevented from acting on the axial load mechanism due to the shearing force, so that the shear deformation load with high parallelism between the upper and lower surfaces of the specimen is high. In addition, the compressive force of the vertical slide guide can be made almost constant even under shearing force, and the fluctuation of the frictional force of the horizontal slide bearing due to it can be suppressed, so that the test can be performed more accurately than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る2軸載荷試験装置を免震ゴムの評
価試験機に適用した場合の一実施例を示すもので、図3
の支柱を除いて示す図である。
FIG. 1 shows an example in which the biaxial loading test apparatus according to the present invention is applied to an evaluation tester for seismic isolation rubber.
It is a figure which removes the support | pillar of FIG.

【図2】本発明の一実施例を示す免震ゴムの評価試験機
の正面図である。
FIG. 2 is a front view of a seismic isolation rubber evaluation test machine showing an embodiment of the present invention.

【図3】図2の右側面図である。FIG. 3 is a right side view of FIG.

【図4】本発明の一実施例を示す免震ゴムの評価試験機
の制御系を示すブロック図である。
FIG. 4 is a block diagram showing a control system of a seismic isolation rubber evaluation tester showing an embodiment of the present invention.

【図5】水平変位を示す図であり、(a)は水平負荷用
油圧シリンダの変位を示し、(b)は水平移動用油圧シ
リンダの変位を示す。
5A and 5B are diagrams showing horizontal displacement, in which FIG. 5A shows the displacement of the horizontal load hydraulic cylinder, and FIG. 5B shows the displacement of the horizontal movement hydraulic cylinder.

【図6】供試体のセンタリングを説明する図FIG. 6 is a diagram illustrating centering of a test piece.

【図7】水平負荷と水平変位を示すグラフである。FIG. 7 is a graph showing horizontal load and horizontal displacement.

【図8】エネルギ曲線を示す図である。FIG. 8 is a diagram showing an energy curve.

【図9】従来の2軸載荷試験機を示す図である。FIG. 9 is a diagram showing a conventional biaxial loading tester.

【符号の説明】[Explanation of symbols]

11 支柱 12 基部 13 クロスヨーク 14 垂直負荷用油圧シリンダ 16 負荷ヨーク 17 鉛直スライドガイド 18,21 水平スライドベアリング 19 上部圧盤 22 下部圧盤 26 水平負荷用油圧シリンダ 29 水平移動用油圧シリンダ 40 制御回路 44,46,49 ロードセル 45,47,48 変位計 11 Struts 12 Base 13 Cross Yoke 14 Vertical Load Hydraulic Cylinder 16 Load Yoke 17 Vertical Slide Guide 18, 21 Horizontal Slide Bearing 19 Upper Platen 22 Lower Platen 26 Horizontal Load Hydraulic Cylinder 29 Horizontal Moving Hydraulic Cylinder 40 Control Circuit 44, 46 , 49 Load cell 45, 47, 48 Displacement meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 上下一対の圧盤に保持された供試体に軸
力を負荷する軸力負荷手段と、前記供試体に軸力を作用
させたまま、前記上下一対の圧盤を相対移動させて前記
軸力に直交する剪断力を繰返し負荷する剪断負荷手段
と、前記供試体に繰返し剪断力を負荷するときに、前記
供試体の中心点が前記軸力の軸心と一致するように前記
上下圧盤を移動させる圧盤移動手段とを具備することを
特徴とする2軸載荷試験装置。
1. An axial force load means for applying an axial force to a test piece held by a pair of upper and lower platens, and the pair of upper and lower platens are relatively moved while applying the axial force to the sample. Shear loading means for repeatedly applying a shearing force orthogonal to the axial force, and the upper and lower platens so that when the shearing force is repeatedly applied to the specimen, the center point of the specimen coincides with the axial center of the axial force. And a platen moving means for moving the two-axis loading test apparatus.
JP6009489A 1994-01-31 1994-01-31 Biaxial loading test equipment Expired - Fee Related JP2825055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6009489A JP2825055B2 (en) 1994-01-31 1994-01-31 Biaxial loading test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6009489A JP2825055B2 (en) 1994-01-31 1994-01-31 Biaxial loading test equipment

Publications (2)

Publication Number Publication Date
JPH07218408A true JPH07218408A (en) 1995-08-18
JP2825055B2 JP2825055B2 (en) 1998-11-18

Family

ID=11721651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6009489A Expired - Fee Related JP2825055B2 (en) 1994-01-31 1994-01-31 Biaxial loading test equipment

Country Status (1)

Country Link
JP (1) JP2825055B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424316A (en) * 2013-08-06 2013-12-04 浙江中重精工机械有限公司 Multifunctional compression and shear test machine
JP2015059917A (en) * 2013-09-20 2015-03-30 オイレス工業株式会社 Triaxial test machine for laminated rubber
CN108344630A (en) * 2018-03-09 2018-07-31 核工业理化工程研究院 Composite drum explosion bulge test special tooling
CN111272583A (en) * 2020-03-31 2020-06-12 河南牛帕力学工程研究院 Compression-shear testing machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126704A (en) * 1991-10-31 1993-05-21 Sumitomo Rubber Ind Ltd Two-axis force application device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126704A (en) * 1991-10-31 1993-05-21 Sumitomo Rubber Ind Ltd Two-axis force application device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424316A (en) * 2013-08-06 2013-12-04 浙江中重精工机械有限公司 Multifunctional compression and shear test machine
JP2015059917A (en) * 2013-09-20 2015-03-30 オイレス工業株式会社 Triaxial test machine for laminated rubber
CN108344630A (en) * 2018-03-09 2018-07-31 核工业理化工程研究院 Composite drum explosion bulge test special tooling
CN108344630B (en) * 2018-03-09 2023-11-28 核工业理化工程研究院 Special tool for composite material tube explosion test
CN111272583A (en) * 2020-03-31 2020-06-12 河南牛帕力学工程研究院 Compression-shear testing machine

Also Published As

Publication number Publication date
JP2825055B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
JP3312503B2 (en) Biaxial loading test equipment
EP3440447B1 (en) Compensated mechanical testing system
CN109357962B (en) Small-load bending fatigue testing device and method
US6058784A (en) Material testing apparatus having separated load generating mechanisms
JPH1073521A (en) Two-axial load testing machine
US5448918A (en) Biaxial compression testing device
CN106289745B (en) Composite material plate spring high/low temperature fatigue and rolling capability testboard bay
CN103528900B (en) Ultrahigh-strain-rate precise-stretching in-situ testing platform
JP2825055B2 (en) Biaxial loading test equipment
CN112846604B (en) Web tensioning device and web tensioning method
CN110186746B (en) Structure test loading device and test method for keeping lateral direction and axial direction vertical
JP2011033380A (en) Force application testing device
JPH10118481A (en) Superhigh pressure generator
CN209911105U (en) Structural test loading device capable of keeping lateral direction and axial direction vertical
US5431061A (en) Deflection testing fixture assembly and methods of testing
JP2001033371A (en) Biaxial material-testing machine
US7493828B2 (en) Simulator for evaluating artifical joint specimens and associated method
JPH10332563A (en) Two-axis load testing apparatus
JP2015059917A (en) Triaxial test machine for laminated rubber
KR20060122743A (en) Form measurement device
JPH0954027A (en) Biaxial loading tester
CN111103108B (en) Pseudo-static multifunctional test system
JP2000002636A (en) Material testing machine
JPH1183714A (en) Material tester driven with plurality of actuators
JP2002131203A (en) Shear testing device for structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20070911

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090911

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100911

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110911

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110911

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120911

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees