JP2011033380A - Force application testing device - Google Patents

Force application testing device Download PDF

Info

Publication number
JP2011033380A
JP2011033380A JP2009177553A JP2009177553A JP2011033380A JP 2011033380 A JP2011033380 A JP 2011033380A JP 2009177553 A JP2009177553 A JP 2009177553A JP 2009177553 A JP2009177553 A JP 2009177553A JP 2011033380 A JP2011033380 A JP 2011033380A
Authority
JP
Japan
Prior art keywords
flexible member
flexible
pressure
force test
test apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009177553A
Other languages
Japanese (ja)
Inventor
Masaki Murakami
正樹 村上
Nobuo Inoue
伸夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009177553A priority Critical patent/JP2011033380A/en
Publication of JP2011033380A publication Critical patent/JP2011033380A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a force application testing device capable of reducing facility cost, and measuring accurately a characteristic value of a flexible member. <P>SOLUTION: Two base isolation rubbers 10a, 10b are arranged vertically in series across a connection member 2, and the lower end of the upper stage side base isolation rubber 10a and the upper end of the lower stage side base isolation rubber 10b are fixed to the connection member 2, respectively. A connection body of the base isolation rubbers 10a, 10b is arranged between pressing members 3, 4, and the lower end of the lower stage side base isolation rubber 10b is fixed to a lower side pressing member 3, and the upper end of the upper stage side base isolation rubber 10a is fixed to an upper side pressing member 4. Then, the upper side pressing member 4 is lowered by a vertical moving device 5, to thereby apply a compressive load onto each base isolation rubber 10a, 10b. Further, the connection member 2 is moved in a horizontal direction by a horizontal moving device 6. Hereby, a shear load is applied to each base isolation rubber 10a, 10b. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、可撓性部材に圧縮荷重を加えつつ該圧縮荷重と直交方向に剪断荷重を加えることにより、該可撓性部材を圧縮剪断変形させて該可撓性部材の特性試験を行うように構成された加力試験装置に係り、特に建物等の構造物の免震構造に用いられる免震ゴムの特性試験を行うのに好適な加力試験装置に関する。   According to the present invention, by applying a compressive load to a flexible member and applying a shear load in a direction orthogonal to the compressive load, the flexible member is subjected to compressive shear deformation to perform a characteristic test of the flexible member. In particular, the present invention relates to a force test apparatus suitable for conducting a characteristic test of a seismic isolation rubber used for a base isolation structure of a structure such as a building.

鋼板等の硬質材料からなる硬質層と、ゴム等の粘弾性的性質を有する材料からなる軟質層とを積層一体化した構成の免震装置(免震ゴム)が建物等の構造物の支承部材として広く用いられている。   A base isolation device (base isolation rubber) with a structure in which a hard layer made of a hard material such as a steel plate and a soft layer made of a material having viscoelastic properties such as rubber are laminated and integrated is a support member for a structure such as a building. Is widely used.

この免震ゴムの特性(例えば横弾性率や耐疲労性など)を調べるための試験装置として、免震ゴムに圧縮荷重を加えつつ該圧縮荷重と直交方向に剪断荷重を加えることにより、該免震ゴムを圧縮剪断変形させるように構成された加力試験装置が広く用いられている。この加力試験装置として、特開2001−41870に記載のものがある。第3図は同号の加力試験装置の正面図である。この加力試験装置100においては、フレーム101に、複数個の鉛直ガイド部材102を介して上側加圧板103が鉛直方向に往復移動可能に取り付けられており、その下方に、複数個の水平ガイド部材104を介して下側加圧板105が水平方向に往復移動可能に設置されている。フレーム101の上部には、上側加圧板103を鉛直方向に往復移動させるための動力源として鉛直シリンダ機構106が設置され、フレーム101の側部には、下側加圧板105を水平方向に往復移動させるための動力源として水平シリンダ機構107が設置されている。   As a test device for investigating the characteristics of the seismic isolation rubber (for example, lateral elastic modulus and fatigue resistance), by applying a shear load in a direction orthogonal to the compression load while applying a compression load to the seismic isolation rubber, A force test apparatus configured to compress and shear the seismic rubber is widely used. There exists a thing of Unexamined-Japanese-Patent No. 2001-41870 as this force test apparatus. FIG. 3 is a front view of the force test apparatus of the same number. In this force test apparatus 100, an upper pressure plate 103 is attached to a frame 101 through a plurality of vertical guide members 102 so as to be reciprocally movable in a vertical direction, and below the plurality of horizontal guide members. A lower pressure plate 105 is installed through 104 so as to be reciprocally movable in the horizontal direction. A vertical cylinder mechanism 106 is installed on the upper portion of the frame 101 as a power source for reciprocating the upper pressure plate 103 in the vertical direction. A horizontal cylinder mechanism 107 is installed as a power source for this.

加力試験を行う場合には、この上側加圧板103と下側加圧板105との間に免震ゴム110を配置し、この免震ゴム110の上端を上側加圧板103に連結すると共に、下端を下側加圧板105に連結する。その後、鉛直シリンダ機構106により上側加圧板103を下方へ移動させ、免震ゴム110を該上側加圧板103と下側加圧板105との間で圧縮する。この状態で水平シリンダ機構107により下側加圧板105を水平方向に移動させることにより、免震ゴム110に水平方向の剪断荷重が加えられる。   When performing a force test, the seismic isolation rubber 110 is disposed between the upper pressure plate 103 and the lower pressure plate 105, the upper end of the seismic isolation rubber 110 is connected to the upper pressure plate 103, and the lower end. Are connected to the lower pressure plate 105. Thereafter, the upper pressure plate 103 is moved downward by the vertical cylinder mechanism 106, and the seismic isolation rubber 110 is compressed between the upper pressure plate 103 and the lower pressure plate 105. In this state, a horizontal shearing load is applied to the seismic isolation rubber 110 by moving the lower pressure plate 105 in the horizontal direction by the horizontal cylinder mechanism 107.

この加圧板103,105の移動を案内するガイド部材102,104としては、例えば、特開2005−54828に記載の直動転がり案内装置がある。同号の直動転がり案内装置は、レールと、このレールに沿って移動可能な移動ブロックと、該レールと移動ブロックとの間に介在したボールとを備えている。この移動ブロックに加圧板103,105が取り付けられる。この直動転がり案内装置にあっては、移動ブロックが移動するのに伴い、該移動ブロックとレールとの間でボールが転がることにより、摩擦抵抗が低減される。   As the guide members 102 and 104 for guiding the movement of the pressure plates 103 and 105, for example, there is a linear motion rolling guide device described in JP-A-2005-54828. The linear motion rolling guide apparatus of the same number includes a rail, a moving block movable along the rail, and a ball interposed between the rail and the moving block. Pressure plates 103 and 105 are attached to the moving block. In this linear motion rolling guide device, as the moving block moves, the ball rolls between the moving block and the rail, thereby reducing the frictional resistance.

特開2001−41870JP2001-41870 特開2005−54828JP-A-2005-54828

一般的に、上記の加力試験装置100において免震ゴム110の加力試験を行う場合には、免震ゴム110が建物等を支承した状態で地震が発生した状況を再現するために、免震ゴム110にかなり大きな圧縮荷重(例えば100t(トン)程度)を加えた状態で下側加圧板105を水平移動させる。そのため、この下側加圧板105を支持している水平ガイド部材104は磨耗が激しく、頻繁にこのガイド部材104を交換することが必要となるため、設備コストが嵩む。特に、ガイド部材104として上記の直動転がり案内装置を用いた場合には、この直動転がり案内装置自体が非常に高価であるため、設備コストが膨大なものとなる。   In general, when the seismic isolation rubber 110 is subjected to a force test in the above-described force testing apparatus 100, in order to reproduce the situation in which an earthquake occurred with the seismic isolation rubber 110 supporting a building or the like, The lower pressure plate 105 is horizontally moved in a state where a considerably large compressive load (for example, about 100 t (ton)) is applied to the seismic rubber 110. For this reason, the horizontal guide member 104 supporting the lower pressure plate 105 is heavily worn, and it is necessary to frequently replace the guide member 104, increasing the equipment cost. In particular, when the linear motion rolling guide device described above is used as the guide member 104, the linear motion rolling guide device itself is very expensive, and the equipment cost becomes enormous.

また、この加力試験装置100にあっては、仮にガイド部材104として直動転がり案内装置を用いた場合でも、下側加圧板105を水平移動させる際には、必ずガイド部材104から摩擦抵抗力を受けるので、正確に免震ゴム110の特性値を計測するのが難しい。   Further, in this force test apparatus 100, even when a linear motion rolling guide apparatus is used as the guide member 104, when the lower pressure plate 105 is moved horizontally, the frictional resistance force is always applied from the guide member 104. Therefore, it is difficult to accurately measure the characteristic value of the seismic isolation rubber 110.

本発明は、設備コストの低減を図ることが可能であり、且つ精度よく可撓性部材の特性値を計測することが可能な加力試験装置を提供することを目的とする。   An object of the present invention is to provide a force test apparatus capable of reducing the equipment cost and accurately measuring the characteristic value of a flexible member.

本発明(請求項1)の加力試験装置は、可撓性部材に圧縮荷重を加えつつ該圧縮荷重と略直交方向に剪断荷重を加えて該可撓性部材を圧縮剪断変形させるように構成された加力試験装置において、少なくとも1対の第1の可撓性部材と第2の可撓性部材との一端同士を直列に連結するための連結部材と、該第1の可撓性部材の他端が連結される第1の加圧部材と、該第2の可撓性部材の他端が連結される第2の加圧部材と、該第1の加圧部材及び第2の加圧部材の少なくとも一方を他方に向って接近させ、これによって該第1の可撓性部材及び第2の可撓性部材にそれぞれ前記圧縮荷重を加えるように構成された圧縮荷重付与手段と、該連結部材を該第1の加圧部材と第2の加圧部材との接近方向と略直交方向に移動させ、これによって該第1の可撓性部材及び第2の可撓性部材にそれぞれ前記剪断荷重を加えるように構成された剪断荷重付与手段とを備えていることを特徴とするものである。   The force test apparatus of the present invention (Claim 1) is configured to apply a compressive load to the flexible member and apply a shear load in a direction substantially orthogonal to the compressive load to cause the flexible member to undergo compressive shear deformation. In the applied force testing apparatus, at least one pair of the first flexible member and the second flexible member are connected in series with one end of the first flexible member, and the first flexible member A first pressure member to which the other end of the second pressure member is connected, a second pressure member to which the other end of the second flexible member is connected, and the first pressure member and the second pressure member. Compression load applying means configured to approach at least one of the pressure members toward the other and thereby apply the compression load to the first flexible member and the second flexible member, respectively, The connecting member is moved in a direction substantially orthogonal to the approaching direction of the first pressure member and the second pressure member, thereby And it is characterized in that it comprises a shear load applying means configured to apply each of the shear load on the flexible member and the second flexible member.

請求項2の加力試験装置は、請求項1において、前記第1の加圧部材は、略鉛直方向に移動可能に設置されており、前記第2の加圧部材は、該第1の加圧部材の下方に固定設置されており、該第1の加圧部材と第2の加圧部材との間に前記第1の可撓性部材と第2の可撓性部材とが上下多段に配置され、該第1の可撓性部材の下端と該第2の可撓性部材の上端とがそれぞれ前記連結部材によって連結されると共に、該第1の可撓性部材の上端が該第1の加圧部材に連結され、該第2の可撓性部材の下端が該第2の加圧部材に連結されるように構成されており、前記圧縮荷重付与手段は、該第1の加圧部材を略鉛直方向に移動させるように構成されており、前記剪断荷重付与手段は、該連結部材を略水平方向に移動させるように構成されていることを特徴とするものである。   According to a second aspect of the present invention, in the force test apparatus according to the first aspect, the first pressure member is installed to be movable in a substantially vertical direction, and the second pressure member is the first pressure member. The first flexible member and the second flexible member are vertically arranged in a plurality of stages between the first pressure member and the second pressure member. Disposed, the lower end of the first flexible member and the upper end of the second flexible member are respectively connected by the connecting member, and the upper end of the first flexible member is the first And the lower end of the second flexible member is connected to the second pressurizing member, and the compressive load applying means is the first pressurizing member. The member is configured to move in a substantially vertical direction, and the shear load applying means is configured to move the connecting member in a substantially horizontal direction. And it is characterized in and.

請求項3の加力試験装置は、請求項1又は2において、前記剪断荷重付与手段は、シリンダ機構により前記連結部材を移動させるように構成されていることを特徴とするものである。   According to a third aspect of the present invention, there is provided the force test apparatus according to the first or second aspect, wherein the shear load applying means is configured to move the connecting member by a cylinder mechanism.

請求項4の加力試験装置は、請求項1又は2において、前記剪断荷重付与手段は、ボールねじ機構により前記連結部材を移動させるように構成されていることを特徴とするものである。   According to a fourth aspect of the present invention, there is provided the force test apparatus according to the first or second aspect, wherein the shear load applying means is configured to move the connecting member by a ball screw mechanism.

請求項5の加力試験装置は、請求項1ないし4のいずれか1項において、該加力試験装置は、さらに、前記第1の加圧部材及び第2の加圧部材の接近移動に追従して、前記剪断荷重付与手段を該第1の加圧部材及び第2の加圧部材から略等距離となる位置に移動させる移動手段を備えていることを特徴とするものである。   A force test apparatus according to a fifth aspect of the present invention is the force test apparatus according to any one of the first to fourth aspects, wherein the force test apparatus further follows an approaching movement of the first pressure member and the second pressure member. Then, a moving means for moving the shear load applying means to a position that is substantially equidistant from the first pressure member and the second pressure member is provided.

請求項6の加力試験装置は、請求項1ないし5のいずれか1項において、前記連結部材の前記第1の加圧部材側に、複数個の前記第1の可撓性部材が並列に配置され、各第1の可撓性部材の前記一端がそれぞれ該連結部材に連結されると共に、各第1の可撓性部材の前記他端がそれぞれ該第1の加圧部材に連結され、該連結部材の前記第2の加圧部材側に、複数個の前記第2の可撓性部材が並列に配置され、各第2の可撓性部材の前記一端がそれぞれ該連結部材に連結されると共に、各第2の可撓性部材の前記他端がそれぞれ該第2の加圧部材に連結されるように構成されていることを特徴とするものである。   A force test apparatus according to a sixth aspect is the force test apparatus according to any one of the first to fifth aspects, wherein a plurality of the first flexible members are arranged in parallel on the first pressure member side of the connecting member. Disposed, the one end of each first flexible member is connected to the connecting member, and the other end of each first flexible member is connected to the first pressure member, A plurality of the second flexible members are arranged in parallel on the second pressing member side of the connecting member, and the one end of each second flexible member is connected to the connecting member. In addition, the other end of each second flexible member is connected to the second pressure member, respectively.

請求項7の加力試験装置は、請求項1ないし6のいずれか1項において、前記第1の可撓性部材及び第2の可撓性部材は、それぞれ、硬質材料からなる硬質層と、粘弾性的性質を有する材料からなる軟質層とを積層一体化してなる免震ゴムであることを特徴とするものである。   The force test apparatus according to claim 7 is the force test apparatus according to any one of claims 1 to 6, wherein each of the first flexible member and the second flexible member includes a hard layer made of a hard material, It is a seismic isolation rubber formed by laminating and integrating a soft layer made of a material having viscoelastic properties.

本発明の加力試験装置により加力試験を行う場合、少なくとも1対の第1の可撓性部材と第2の可撓性部材とを直列に配置し、それらの対向する一端同士を連結部材により連結する。そして、この連結体を第1の加圧部材と第2の加圧部材との間に配置し、該第1の可撓性部材の他端を第1の加圧部材に連結すると共に、第2の可撓性部材の他端を第2の加圧部材に連結する。その後、圧縮荷重付与手段により第1の加圧部材と第2の加圧部材とを接近させ、各可撓性部材にそれぞれ圧縮荷重を加える。この状態において、剪断荷重付与手段により連結部材を該加圧部材同士の接近方向(以下、圧縮方向という。)と略直交方向(以下、剪断方向という。)に移動させる。これにより、第1の可撓性部材及び第2の可撓性部材にそれぞれ剪断荷重が加えられるようになる。   When a force test is performed by the force test apparatus of the present invention, at least one pair of the first flexible member and the second flexible member are arranged in series, and the opposite ends thereof are connected to each other. Connect with The connecting body is disposed between the first pressure member and the second pressure member, and the other end of the first flexible member is connected to the first pressure member. The other end of the second flexible member is connected to the second pressure member. Thereafter, the first pressure member and the second pressure member are brought close to each other by the compression load applying means, and a compression load is applied to each flexible member. In this state, the connecting member is moved by the shearing load applying means in a direction (hereinafter referred to as a compression direction) between the pressure members and a direction substantially orthogonal (hereinafter referred to as a shearing direction). Thereby, a shear load is applied to each of the first flexible member and the second flexible member.

かかる本発明の加力試験装置にあっては、連結部材は、前記圧縮方向の両側から第1の可撓性部材と第2の可撓性部材とによって支持されている。連結部材に剪断荷重付与手段から前記剪断方向への移動力が加えられたときには、各可撓性部材がこの連結部材に引っ張られて剪断変形することにより、連結部材が該剪断方向に移動可能となっている。そのため、本発明では、加圧部材からの圧縮荷重に対抗して連結部材を剪断方向に移動可能に支持する、前記直動転がり案内装置の如きガイド部材が不要である。これにより、従来、このガイド部材の設置及び交換に掛かっていたコストが不要となるので、加力試験装置の設備コストの低減を図ることが可能である。また、このガイド部材からの摩擦抵抗もなくなるので、試験精度の向上を図ることも可能である。   In the force test apparatus of the present invention, the connecting member is supported by the first flexible member and the second flexible member from both sides in the compression direction. When a moving force in the shear direction is applied to the connecting member from the shear load applying means, each flexible member is pulled by the connecting member and undergoes shear deformation, so that the connecting member can move in the shearing direction. It has become. Therefore, in the present invention, a guide member such as the linear motion rolling guide device that supports the connecting member so as to be movable in the shearing direction against the compressive load from the pressure member is unnecessary. As a result, the cost conventionally required for the installation and replacement of the guide member becomes unnecessary, and the equipment cost of the force test apparatus can be reduced. Further, since the frictional resistance from the guide member is eliminated, it is possible to improve the test accuracy.

さらに、本発明によれば、少なくとも2個の可撓性部材の加力試験を同時に行うことができるので、多数の可撓性部材の加力試験を行う場合の処理能力も向上する。   Furthermore, according to the present invention, since the force test of at least two flexible members can be performed at the same time, the processing capability when performing the force test of a large number of flexible members is also improved.

請求項2の通り、本発明の加力試験装置は、第1の可撓性部材と第2の可撓性部材とが上下多段に配置され、これらが上下方向に圧縮される縦型の構成となっていることが好ましい。このように構成することにより、この加力試験装置の省スペース化を図ることが可能である。   As described in claim 2, the force test apparatus according to the present invention has a vertical configuration in which the first flexible member and the second flexible member are arranged in multiple upper and lower stages, and these are compressed in the vertical direction. It is preferable that With this configuration, it is possible to save the space of the force test apparatus.

請求項3,4の通り、剪断荷重付与手段は、シリンダ機構又はボールねじ機構により連結部材を移動させるように構成されていることが好ましい。このシリンダ機構は簡便である。また、ボールねじ機構は、可撓性部材に大きな荷重を加えることができると共に、該可撓性部材の剪断変形時における剪断方向の変位量を高精度にて調節することが可能である。   As described in claims 3 and 4, the shear load applying means is preferably configured to move the connecting member by a cylinder mechanism or a ball screw mechanism. This cylinder mechanism is simple. Further, the ball screw mechanism can apply a large load to the flexible member and can adjust the displacement amount in the shearing direction of the flexible member at the time of shear deformation with high accuracy.

請求項5の態様にあっては、第1の加圧部材及び第2の加圧部材の接近移動に追従して、剪断荷重付与手段が該第1の加圧部材及び第2の加圧部材から略等距離となる位置に移動するので、この剪断荷重付与手段によって連結部材を剪断方向に移動させることにより、第1の可撓性部材と第2の可撓性部材とを略均等に圧縮剪断変形させることが可能となる。   In the aspect of claim 5, following the close movement of the first pressure member and the second pressure member, the shear load applying means is the first pressure member and the second pressure member. Therefore, the first flexible member and the second flexible member are compressed almost uniformly by moving the connecting member in the shearing direction by the shear load applying means. Shear deformation is possible.

請求項6の通り、連結部材の第1の加圧部材側及び第2の加圧部材側にそれぞれ複数個の可撓性部材を並列に配置して加力試験を行うようにしてもよい。このようにすることにより、さらに多くの可撓性部材の加力試験を同時に行うことが可能となるので、この加力試験装置の処理能力が大幅に向上する。   As in claim 6, a plurality of flexible members may be arranged in parallel on the first pressure member side and the second pressure member side of the connecting member to perform the force test. By doing so, it becomes possible to simultaneously perform a force test on a larger number of flexible members, so that the processing capability of this force test apparatus is greatly improved.

請求項7の通り、本発明の加力試験装置は、大きな圧縮荷重が加えられる免震ゴムの加力試験を行うのに好適である。   As described in claim 7, the force test apparatus of the present invention is suitable for performing a force test on seismic isolation rubber to which a large compressive load is applied.

実施の形態に係る加力試験装置の概略的な縦断面図である。It is a schematic longitudinal cross-sectional view of the force test apparatus which concerns on embodiment. 図1の加力試験装置で加力試験を行っている状態を示す概略的な縦断面図である。It is a schematic longitudinal cross-sectional view which shows the state which is performing the force test with the force test apparatus of FIG. 従来例に係る加力試験装置の正面図である。It is a front view of the force test apparatus which concerns on a prior art example.

以下、図面を参照して本発明の実施の形態について説明する。なお、以下の実施の形態では、免震ゴム用の加力試験装置が例示されているが、本発明は、免震ゴム以外の可撓性部材用の加力試験装置にも適用可能である。   Embodiments of the present invention will be described below with reference to the drawings. In addition, in the following embodiment, the force test apparatus for seismic isolation rubber is illustrated, However, This invention is applicable also to the force test apparatus for flexible members other than seismic isolation rubber. .

第1図及び第2図は、実施の形態に係る加力試験装置の概略的な縦断面図である。なお、第1図は加力試験を行う前の状態を示し、第2図は加力試験を行っている状態を示している。第1図及び第2図において、z軸は鉛直方向を示し、x軸及びy軸はそれぞれ水平方向であって且つ互いに直交方向を示している。   FIG. 1 and FIG. 2 are schematic longitudinal sectional views of a force test apparatus according to an embodiment. FIG. 1 shows a state before the force test is performed, and FIG. 2 shows a state where the force test is being performed. 1 and 2, the z-axis indicates the vertical direction, and the x-axis and the y-axis indicate the horizontal direction and the directions orthogonal to each other.

この実施の形態の加力試験装置1は、建物等の構造物の支承部材として用いられる免震ゴム10の加力試験を行うためのものである。この免震ゴム10は、鋼板等の硬質材料からなる硬質層(図示略)と、ゴム等の粘弾性的性質を有する材料からなる軟質層(図示略)とを積層一体化したものである。この免震ゴム10の上端及び下端には、この免震ゴム10を建物等の上部構造物及び基礎等の下部構造物にそれぞれ連結するためのフランジ11,12が設けられている。   The force test apparatus 1 of this embodiment is for performing a force test of a seismic isolation rubber 10 used as a support member for a structure such as a building. The seismic isolation rubber 10 is formed by laminating and integrating a hard layer (not shown) made of a hard material such as a steel plate and a soft layer (not shown) made of a material having viscoelastic properties such as rubber. At the upper and lower ends of the seismic isolation rubber 10, flanges 11 and 12 are provided for connecting the seismic isolation rubber 10 to an upper structure such as a building and a lower structure such as a foundation, respectively.

第1,2図の通り、この加力試験装置1は、少なくとも1対の免震ゴム10(10a,10b)を上下に直列に(即ち同軸状に)配置して加力試験を行うように構成されている。これらの免震ゴム10a,10b同士の間に盤状の連結部材2が配置され、上段側の免震ゴム10aの下端のフランジ12が該連結部材2の上面にボルト(図示略)で固定されると共に、下段側の免震ゴム10bの上端のフランジ11が該連結部材2の下面にボルトで固定されることにより、これらの免震ゴム10a,10b同士が該連結部材2を介して連結される。なお、上段側の免震ゴム10aのフランジ12と下段側の免震ゴム10bのフランジ11とは共通のボルトによって連結部材2に固定されてもよく、別々のボルトによって連結部材2に固定されてもよい。また、これらのフランジ11,12は、ボルト以外の固定手段により連結部材2に固定されてもよい。連結部材2の側面には、後述の水平移動装置6のボールねじ6aの先端が接続される接続部2aが設けられている。   As shown in FIGS. 1 and 2, the force test apparatus 1 performs a force test by arranging at least one pair of seismic isolation rubbers 10 (10a, 10b) in series vertically (that is, coaxially). It is configured. A disc-like connecting member 2 is disposed between the seismic isolation rubbers 10a and 10b, and a flange 12 at the lower end of the upper-stage seismic isolation rubber 10a is fixed to the upper surface of the connecting member 2 with bolts (not shown). At the same time, the flange 11 at the upper end of the lower-stage seismic isolation rubber 10b is fixed to the lower surface of the connecting member 2 with bolts so that the seismic isolation rubbers 10a and 10b are connected to each other via the connecting member 2. The Note that the flange 12 of the upper-stage seismic isolation rubber 10a and the flange 11 of the lower-stage seismic isolation rubber 10b may be fixed to the connecting member 2 by a common bolt, or fixed to the connecting member 2 by separate bolts. Also good. Further, these flanges 11 and 12 may be fixed to the connecting member 2 by fixing means other than bolts. A connection portion 2a to which a tip of a ball screw 6a of a horizontal movement device 6 described later is connected is provided on the side surface of the connecting member 2.

加力試験装置1は、この免震ゴム10a,10bの連結体の上側及び下側にそれぞれ配置される盤状の上側加圧部材3及び下型加圧部材4と、該上側加圧部材3を下降させて該免震ゴム10a,10bに圧縮荷重を加えるための圧縮荷重付与手段としての鉛直移動装置5と、前記連結部材2を略水平方向に移動させて各免震ゴム10a,10bに剪断荷重を加えるための剪断荷重付与手段としての水平移動装置6等を備えている。上側加圧部材3は、この加力試験装置1のフレームFに対し鉛直ガイド部材7を介して略鉛直方向に往復移動可能に取り付けられている。下側加圧部材4は、この上側加圧部材3の下方に固定設置されている。これらの加圧部材3,4は、それぞれ盤面を略水平とし、且つ各々の盤面の中心が略合致するように配置されている。なお、各加圧部材3,4の設置構造はこれに限定されない。   The force test apparatus 1 includes a disk-shaped upper pressure member 3 and a lower mold pressure member 4 disposed on the upper side and the lower side of the connected body of the seismic isolation rubbers 10 a and 10 b, and the upper pressure member 3. The vertical movement device 5 as a compressive load applying means for applying a compressive load to the seismic isolation rubbers 10a, 10b and the connecting member 2 are moved in a substantially horizontal direction to each seismic isolation rubber 10a, 10b. A horizontal movement device 6 is provided as a shear load applying means for applying a shear load. The upper pressurizing member 3 is attached to the frame F of the force test apparatus 1 so as to be reciprocally movable in a substantially vertical direction via a vertical guide member 7. The lower pressure member 4 is fixedly installed below the upper pressure member 3. These pressurizing members 3 and 4 are arranged so that the respective board surfaces are substantially horizontal and the centers of the respective board surfaces substantially coincide. In addition, the installation structure of each pressurizing member 3 and 4 is not limited to this.

鉛直ガイド部材7としては、例えば前述の直動転がり案内装置や、直線滑り軸受等を用いることができる。ただし、鉛直ガイド部材7は、特定の構成のものに限定されない。   As the vertical guide member 7, for example, the above-mentioned linear motion rolling guide device, a linear sliding bearing, or the like can be used. However, the vertical guide member 7 is not limited to a specific configuration.

この実施の形態では、鉛直移動装置5としては、油圧によりピストンを進退させる油圧シリンダ機構が用いられている。なお、このシリンダ機構の動力源は油圧に限定されるものではなく、空気圧などであってもよい。また、水平移動装置6としては、電動モータ等のモータMの回転駆動力によりボールねじ6aを進退(螺進)させるボールねじ機構が用いられている。ただし、鉛直移動装置5及び水平移動装置6の構成はこれに限定されない。例えば、これらの移動装置5,6の双方にシリンダ機構が用いられてもよく、これらの双方にボールねじ機構が用いられてもよい。なお、移動装置5,6としてボールねじ機構を用いることにより、免震ゴム10の圧縮剪断変形時における圧縮方向及び剪断方向の変位量を高精度にて調節することが可能となる。   In this embodiment, as the vertical movement device 5, a hydraulic cylinder mechanism that moves the piston back and forth by hydraulic pressure is used. The power source of this cylinder mechanism is not limited to hydraulic pressure, and may be pneumatic pressure or the like. Further, as the horizontal moving device 6, a ball screw mechanism is used in which the ball screw 6a is advanced and retracted (screwed) by the rotational driving force of the motor M such as an electric motor. However, the configuration of the vertical movement device 5 and the horizontal movement device 6 is not limited to this. For example, a cylinder mechanism may be used for both of these moving devices 5 and 6, and a ball screw mechanism may be used for both of these. In addition, by using a ball screw mechanism as the moving devices 5 and 6, it is possible to adjust the amount of displacement in the compression direction and the shear direction when the seismic isolation rubber 10 is compressed and deformed with high accuracy.

この鉛直移動装置5は、ピストンを下向きにしてフレームFの上部に設置され、該ピストンの下端が上側加圧部材3の上面に連結されている。水平移動装置6は、ボールねじ6aの先端側を加圧部材3,4同士の間に略水平に(この実施の形態では第1,2図におけるx軸方向に)差し向けた姿勢でフレームFの側部に設置されている。この水平移動装置6は、高さ調節可能な支持部材(図示略)により支持されている。この支持部材は、上側加圧部材3の昇降に連動して、常にボールねじ6aの先端側が上側加圧部材3の下面及び下側加圧部材4の上面から略等距離となる高さに位置するように水平移動装置6を昇降させるよう構成されている。なお、この水平移動装置6の高さ調節機構及びその制御方法は、特定の機構及び方法に限定されない。例えば、この水平移動装置6の高さ調節は、上側加圧部材3の昇降と連動して自動的に行われるようにしてもよく、作業者が手動にて行うようにしてもよい。   The vertical movement device 5 is installed on the upper portion of the frame F with the piston facing downward, and the lower end of the piston is connected to the upper surface of the upper pressure member 3. The horizontal movement device 6 has a frame F in a posture in which the tip end side of the ball screw 6a is directed substantially horizontally between the pressure members 3 and 4 (in this embodiment, in the x-axis direction in FIGS. 1 and 2). It is installed on the side. The horizontal movement device 6 is supported by a support member (not shown) whose height can be adjusted. This support member is always positioned at a height at which the tip side of the ball screw 6a is substantially equidistant from the lower surface of the upper pressure member 3 and the upper surface of the lower pressure member 4 in conjunction with the elevation of the upper pressure member 3. The horizontal moving device 6 is configured to move up and down. In addition, the height adjustment mechanism and the control method of the horizontal movement device 6 are not limited to a specific mechanism and method. For example, the height adjustment of the horizontal movement device 6 may be automatically performed in conjunction with the elevation of the upper pressure member 3, or may be manually performed by an operator.

このように構成された加力試験装置1により免震ゴム10の加力試験を行う場合、まず、上記の通り、2個の免震ゴム10(10a,10b)を、連結部材2を挟んで上下に直列に配置し、上段側の免震ゴム10aの下端のフランジ12及び下段側の免震ゴム10bの上端のフランジ11をそれぞれ連結部材2の上面及び下面にボルトで固定する。次に、第1図の通り、この免震ゴム10a,10bの連結体を加圧部材3,4間に配置し、上段側の免震ゴム10aの上端のフランジ11を上側加圧部材3の下面にボルトで固定すると共に、下段側の免震ゴム10bの下端のフランジ12を下側加圧部材4の上面にボルトで固定する。なお、加圧部材3,4に対するフランジ11,12の固定方法は、ボルトによる固定に限定されない。その後、連結部材2の接続部2aに水平移動装置6のボールねじ6aを接続する。なお、下側加圧部材4上に下段側の免震ゴム10bを載せ、その上に連結部材2を載せ、その後、この連結部材2の上に上段側の免震ゴム10aを載せるようにして免震ゴム10a,10bを設置してもよい。   When the force test of the seismic isolation rubber 10 is performed by the force test apparatus 1 configured as described above, first, as described above, the two seismic isolation rubbers 10 (10a, 10b) are sandwiched between the connecting members 2. The flange 12 at the lower end of the seismic isolation rubber 10a on the upper side and the flange 11 at the upper end of the seismic isolation rubber 10b on the lower side are respectively fixed to the upper and lower surfaces of the connecting member 2 with bolts. Next, as shown in FIG. 1, the coupling body of the seismic isolation rubbers 10 a and 10 b is disposed between the pressure members 3 and 4, and the upper flange 11 of the upper seismic isolation rubber 10 a is connected to the upper pressure member 3. While fixing to the lower surface with bolts, the lower end flange 12 of the lower-stage seismic isolation rubber 10 b is fixed to the upper surface of the lower pressure member 4 with bolts. In addition, the fixing method of the flanges 11 and 12 with respect to the pressurizing members 3 and 4 is not limited to fixing with a volt | bolt. Thereafter, the ball screw 6 a of the horizontal moving device 6 is connected to the connecting portion 2 a of the connecting member 2. The lower-stage seismic isolation rubber 10b is placed on the lower pressure member 4, the connecting member 2 is placed thereon, and then the upper-stage seismic isolation rubber 10a is placed on the connecting member 2. You may install seismic isolation rubber | gum 10a, 10b.

その後、第2図の通り、鉛直移動装置5により上側加圧部材3を下降させ、各免震ゴム10a,10bに圧縮荷重を加える。また、水平移動装置6により、連結部材2を水平方向に移動させる。これにより、各免震ゴム10a,10bに剪断荷重が加えられるようになる。なお、必要に応じ、連結部材2を水平方向に往復移動させてもよい。   Thereafter, as shown in FIG. 2, the upper pressurizing member 3 is lowered by the vertical movement device 5, and a compressive load is applied to the seismic isolation rubbers 10a and 10b. Further, the connecting member 2 is moved in the horizontal direction by the horizontal movement device 6. Thereby, a shear load is applied to each seismic isolation rubber 10a, 10b. If necessary, the connecting member 2 may be reciprocated in the horizontal direction.

この加力試験装置1にあっては、各免震ゴム10a,10bにより、これらの圧縮方向の両側から連結部材2が支持されている。連結部材2に水平移動装置6から水平方向への移動力が加えられたときには、各免震ゴム10a,10bがこの連結部材2に引っ張られて剪断変形することにより、連結部材2が水平方向に移動可能となっている。そのため、この加力試験装置1にあっては、上側加圧部材3からの圧縮荷重に対抗して連結部材2を水平方向に移動可能に支持する、前記直動転がり案内装置の如きガイド部材が不要である。これにより、従来、このガイド部材の設置及び交換に掛かっていたコストが不要となるので、加力試験装置1の設備コストの低減を図ることが可能である。また、このガイド部材からの摩擦抵抗もなくなるので、試験精度の向上を図ることも可能である。   In the force test apparatus 1, the connecting member 2 is supported from both sides in the compression direction by the seismic isolation rubbers 10a and 10b. When a horizontal movement force is applied to the connecting member 2 from the horizontal moving device 6, the seismic isolation rubbers 10a and 10b are pulled by the connecting member 2 and are subjected to shear deformation, thereby causing the connecting member 2 to move horizontally. It is movable. Therefore, in this force test apparatus 1, a guide member such as the linear motion rolling guide apparatus that supports the connecting member 2 so as to be movable in the horizontal direction against the compressive load from the upper pressure member 3 is provided. It is unnecessary. Thereby, since the cost conventionally required for the installation and replacement of the guide member is not necessary, the equipment cost of the force test apparatus 1 can be reduced. Further, since the frictional resistance from the guide member is eliminated, it is possible to improve the test accuracy.

さらに、この加力試験装置1によれば、少なくとも2個の免震ゴム10a,10bの加力試験を同時に行うことができるので、多数の免震ゴム10の加力試験を行う場合の処理能力も向上する。   Furthermore, according to this force test apparatus 1, since the force test of at least two seismic isolation rubbers 10a and 10b can be performed at the same time, the processing capability in the case of performing a force test of a large number of seismic isolation rubbers 10 Will also improve.

この実施の形態では、水平移動装置6は、高さ調節可能な支持部材(図示略)により、上側加圧部材3の昇降に追従して常に該上側加圧部材3の下面と下側加圧部材4の上面とから略等距離となる高さに位置するように支持されている。これにより、該水平移動装置6によって連結部材2が水平方向に移動したときに、上段側の免震ゴム10aと下段側の免震ゴム10bとが略均等に圧縮剪断変形するようになる。   In this embodiment, the horizontal movement device 6 is always supported by a height-adjustable support member (not shown) so as to follow up and down of the upper pressure member 3 and always press the lower surface of the upper pressure member 3 and the lower pressure. It is supported so as to be positioned at a height that is substantially equidistant from the upper surface of the member 4. As a result, when the connecting member 2 is moved in the horizontal direction by the horizontal movement device 6, the upper-stage seismic isolation rubber 10a and the lower-stage seismic isolation rubber 10b are compressed and sheared substantially uniformly.

[その他の構成]
上記の実施の形態は、本発明の一例を示すものであり、本発明は上記の実施の形態に限定されない。
[Other configurations]
The above embodiment shows an example of the present invention, and the present invention is not limited to the above embodiment.

例えば、上記の実施の形態では免震ゴム10の加力試験を行っているが、本発明の加力試験装置により試験される可撓性部材は、免震ゴムに限定されない。例えば、本発明の加力試験装置は、免震ゴム以外のゴム製品、例えば防舷材や防振ゴム等の加力試験を行うための加力試験装置にも適用可能である。もちろん、ゴム製品以外の可撓性部材の加力試験を行うための加力試験装置にも適用可能である。   For example, although the force test of the seismic isolation rubber 10 is performed in the above embodiment, the flexible member to be tested by the force test apparatus of the present invention is not limited to the seismic isolation rubber. For example, the force test apparatus of the present invention can also be applied to a force test apparatus for performing a force test on rubber products other than the seismic isolation rubber, such as fenders and vibration-proof rubbers. Of course, the present invention can also be applied to a force test apparatus for performing a force test on flexible members other than rubber products.

上記の実施の形態では、連結部材2の上側及び下側にそれぞれ1個の免震ゴム10を配置して加力試験を行っているが、連結部材2の上側及び下側にそれぞれ2個以上の免震ゴム10を並列に配置して加力試験を行ってもよい。このようにすれば、より多数の免震ゴム10の加力試験を同時に行うことができるので、処理能力が大幅に向上する。   In the above embodiment, one seismic isolation rubber 10 is arranged on each of the upper side and the lower side of the connecting member 2 to perform the force test, but two or more are provided on the upper side and the lower side of the connecting member 2 respectively. The seismic isolation rubber 10 may be arranged in parallel to perform a force test. In this way, since a force test of a larger number of seismic isolation rubbers 10 can be performed at the same time, the processing capability is greatly improved.

上記の実施の形態では、連結部材2の水平方向の移動を案内するガイド部材は設けられていないが、このようなガイド部材が設けられてもよい。本発明では、仮に連結部材2の水平方向の移動を案内するガイド部材を設けた場合でも、このガイド部材は、上側加圧部材3からの荷重に対抗して連結部材2を支持する必要がないので、磨耗が少なく、加力試験装置1の設備コストが過度に増大することはない。   In the above embodiment, the guide member for guiding the horizontal movement of the connecting member 2 is not provided, but such a guide member may be provided. In the present invention, even when a guide member for guiding the horizontal movement of the connecting member 2 is provided, the guide member does not need to support the connecting member 2 against the load from the upper pressure member 3. Therefore, there is little abrasion and the installation cost of the force test apparatus 1 does not increase excessively.

上記の実施の形態では、加力試験装置1は、免震ゴム10をz軸方向に圧縮しつつ、連結部材2をx軸方向に移動させて剪断荷重を加える構成となっているが、必要に応じ、さらにy軸方向にも連結部材2を移動させうるように構成してもよい。さらに、免震ゴム10にねじり荷重を加えうるように構成してもよい。   In the above-described embodiment, the force test apparatus 1 is configured to apply a shear load by moving the connecting member 2 in the x-axis direction while compressing the seismic isolation rubber 10 in the z-axis direction. Accordingly, the connecting member 2 may be further moved in the y-axis direction. Furthermore, you may comprise so that a torsional load can be added to the seismic isolation rubber 10. FIG.

上記の実施の形態では、加力試験装置1は、免震ゴム10が上下多段に配置され、これらを上下方向に圧縮する縦型の構成となっているが、免震ゴム10が水平方向に直列に配置され、これらを水平方向に圧縮する横型の構成としてもよい。   In the above-described embodiment, the force test apparatus 1 has a vertical configuration in which the seismic isolation rubbers 10 are arranged in multiple upper and lower stages and compress them vertically, but the seismic isolation rubber 10 is in the horizontal direction. It is good also as a horizontal structure which arrange | positions in series and compresses these in a horizontal direction.

1 加力試験装置
2 連結部材
3 上側加圧部材
4 下側加圧部材
5 鉛直移動装置
6 水平移動装置
7 鉛直ガイド部材
10 免震ゴム
11,12 フランジ
DESCRIPTION OF SYMBOLS 1 Force test apparatus 2 Connecting member 3 Upper pressure member 4 Lower pressure member 5 Vertical moving device 6 Horizontal moving device 7 Vertical guide member 10 Seismic isolation rubber 11, 12 Flange

Claims (7)

可撓性部材に圧縮荷重を加えつつ該圧縮荷重と略直交方向に剪断荷重を加えて該可撓性部材を圧縮剪断変形させるように構成された加力試験装置において、
少なくとも1対の第1の可撓性部材と第2の可撓性部材との一端同士を直列に連結するための連結部材と、
該第1の可撓性部材の他端が連結される第1の加圧部材と、
該第2の可撓性部材の他端が連結される第2の加圧部材と、
該第1の加圧部材及び第2の加圧部材の少なくとも一方を他方に向って接近させ、これによって該第1の可撓性部材及び第2の可撓性部材にそれぞれ前記圧縮荷重を加えるように構成された圧縮荷重付与手段と、
該連結部材を該第1の加圧部材と第2の加圧部材との接近方向と略直交方向に移動させ、これによって該第1の可撓性部材及び第2の可撓性部材にそれぞれ前記剪断荷重を加えるように構成された剪断荷重付与手段とを備えていることを特徴とする加力試験装置。
In a force test apparatus configured to compress and shear the flexible member by applying a shear load in a direction substantially orthogonal to the compressive load while applying a compressive load to the flexible member,
A connecting member for connecting one ends of at least one pair of the first flexible member and the second flexible member in series;
A first pressure member to which the other end of the first flexible member is coupled;
A second pressure member to which the other end of the second flexible member is coupled;
At least one of the first pressure member and the second pressure member is brought closer to the other, thereby applying the compressive load to the first flexible member and the second flexible member, respectively. A compressive load applying means configured as follows:
The connecting member is moved in a direction substantially orthogonal to the approaching direction of the first pressure member and the second pressure member, whereby the first flexible member and the second flexible member are respectively moved. A force test apparatus comprising: a shear load applying means configured to apply the shear load.
請求項1において、前記第1の加圧部材は、略鉛直方向に移動可能に設置されており、
前記第2の加圧部材は、該第1の加圧部材の下方に固定設置されており、
該第1の加圧部材と第2の加圧部材との間に前記第1の可撓性部材と第2の可撓性部材とが上下多段に配置され、該第1の可撓性部材の下端と該第2の可撓性部材の上端とがそれぞれ前記連結部材によって連結されると共に、該第1の可撓性部材の上端が該第1の加圧部材に連結され、該第2の可撓性部材の下端が該第2の加圧部材に連結されるように構成されており、
前記圧縮荷重付与手段は、該第1の加圧部材を略鉛直方向に移動させるように構成されており、
前記剪断荷重付与手段は、該連結部材を略水平方向に移動させるように構成されていることを特徴とする加力試験装置。
In Claim 1, the said 1st pressurization member is installed so that movement in a substantially perpendicular direction is possible,
The second pressure member is fixedly installed below the first pressure member,
The first flexible member and the second flexible member are arranged between the first pressure member and the second pressure member in upper and lower stages, and the first flexible member. The lower end of the first flexible member is connected to the upper end of the second flexible member by the connecting member, and the upper end of the first flexible member is connected to the first pressure member, and the second The lower end of the flexible member is connected to the second pressure member,
The compression load applying means is configured to move the first pressure member in a substantially vertical direction,
The force test apparatus, wherein the shear load applying means is configured to move the connecting member in a substantially horizontal direction.
請求項1又は2において、前記剪断荷重付与手段は、シリンダ機構により前記連結部材を移動させるように構成されていることを特徴とする加力試験装置。   The force test apparatus according to claim 1, wherein the shear load applying unit is configured to move the connecting member by a cylinder mechanism. 請求項1又は2において、前記剪断荷重付与手段は、ボールねじ機構により前記連結部材を移動させるように構成されていることを特徴とする加力試験装置。   The force test apparatus according to claim 1, wherein the shear load applying unit is configured to move the connecting member by a ball screw mechanism. 請求項1ないし4のいずれか1項において、該加力試験装置は、さらに、前記第1の加圧部材及び第2の加圧部材の接近移動に追従して、前記剪断荷重付与手段を該第1の加圧部材及び第2の加圧部材から略等距離となる位置に移動させる移動手段を備えていることを特徴とする加力試験装置。   5. The force test apparatus according to claim 1, wherein the force test apparatus further follows the approaching movement of the first pressurizing member and the second pressurizing member to set the shear load applying unit to the shearing force applying unit. A force test apparatus comprising a moving means for moving the first pressure member and the second pressure member to a position that is substantially equidistant from the first pressure member and the second pressure member. 請求項1ないし5のいずれか1項において、前記連結部材の前記第1の加圧部材側に、複数個の前記第1の可撓性部材が並列に配置され、各第1の可撓性部材の前記一端がそれぞれ該連結部材に連結されると共に、各第1の可撓性部材の前記他端がそれぞれ該第1の加圧部材に連結され、
該連結部材の前記第2の加圧部材側に、複数個の前記第2の可撓性部材が並列に配置され、各第2の可撓性部材の前記一端がそれぞれ該連結部材に連結されると共に、各第2の可撓性部材の前記他端がそれぞれ該第2の加圧部材に連結されるように構成されていることを特徴とする加力試験装置。
6. The first flexible member according to claim 1, wherein a plurality of the first flexible members are arranged in parallel on the first pressure member side of the connecting member. The one end of each member is connected to the connecting member, and the other end of each first flexible member is connected to the first pressure member,
A plurality of the second flexible members are arranged in parallel on the second pressing member side of the connecting member, and the one end of each second flexible member is connected to the connecting member. And the other end of each second flexible member is connected to the second pressure member, respectively.
請求項1ないし6のいずれか1項において、前記第1の可撓性部材及び第2の可撓性部材は、それぞれ、硬質材料からなる硬質層と、粘弾性的性質を有する材料からなる軟質層とを積層一体化してなる免震ゴムであることを特徴とする加力試験装置。   7. The first flexible member and the second flexible member according to claim 1, wherein the first flexible member and the second flexible member are a hard layer made of a hard material and a soft material made of a material having viscoelastic properties, respectively. A force test device characterized by being a seismic isolation rubber formed by laminating layers.
JP2009177553A 2009-07-30 2009-07-30 Force application testing device Pending JP2011033380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177553A JP2011033380A (en) 2009-07-30 2009-07-30 Force application testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177553A JP2011033380A (en) 2009-07-30 2009-07-30 Force application testing device

Publications (1)

Publication Number Publication Date
JP2011033380A true JP2011033380A (en) 2011-02-17

Family

ID=43762608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177553A Pending JP2011033380A (en) 2009-07-30 2009-07-30 Force application testing device

Country Status (1)

Country Link
JP (1) JP2011033380A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543076A (en) * 2012-07-13 2014-01-29 广州海宁橡胶有限公司 Method for testing shear compression performance of rubber fender
JP2015059917A (en) * 2013-09-20 2015-03-30 オイレス工業株式会社 Triaxial test machine for laminated rubber
JP2015072190A (en) * 2013-10-03 2015-04-16 株式会社アドヴィックス Shear characteristic measuring apparatus
CN107621421A (en) * 2017-10-25 2018-01-23 北京富力通达科技有限公司 The pressure-shear test machine of side guide and Plumb load oil cylinder
WO2018052132A1 (en) * 2016-09-15 2018-03-22 国立大学法人東京工業大学 Triaxial dynamic testing machine
CN110220795A (en) * 2019-06-17 2019-09-10 河南交通职业技术学院 A kind of pressure testing machine
CN110220804A (en) * 2019-06-17 2019-09-10 河南交通职业技术学院 A kind of pressure-shear test machine
CN113324841A (en) * 2021-05-31 2021-08-31 武汉大学 Compression-shear separation anti-seismic test loading device and using method thereof
CN117147322A (en) * 2023-10-30 2023-12-01 四川省公路规划勘察设计研究院有限公司 Pier stud load test device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543076A (en) * 2012-07-13 2014-01-29 广州海宁橡胶有限公司 Method for testing shear compression performance of rubber fender
JP2015059917A (en) * 2013-09-20 2015-03-30 オイレス工業株式会社 Triaxial test machine for laminated rubber
JP2015072190A (en) * 2013-10-03 2015-04-16 株式会社アドヴィックス Shear characteristic measuring apparatus
WO2018052132A1 (en) * 2016-09-15 2018-03-22 国立大学法人東京工業大学 Triaxial dynamic testing machine
CN107621421A (en) * 2017-10-25 2018-01-23 北京富力通达科技有限公司 The pressure-shear test machine of side guide and Plumb load oil cylinder
CN107621421B (en) * 2017-10-25 2024-04-12 北京富力通达科技有限公司 Pressure shear testing machine for lateral guide rail and vertical loading oil cylinder
CN110220804A (en) * 2019-06-17 2019-09-10 河南交通职业技术学院 A kind of pressure-shear test machine
CN110220795A (en) * 2019-06-17 2019-09-10 河南交通职业技术学院 A kind of pressure testing machine
CN110220804B (en) * 2019-06-17 2024-05-03 河南交通职业技术学院 Pressure shear testing machine
CN110220795B (en) * 2019-06-17 2024-05-03 河南交通职业技术学院 Pressure testing machine
CN113324841A (en) * 2021-05-31 2021-08-31 武汉大学 Compression-shear separation anti-seismic test loading device and using method thereof
CN117147322A (en) * 2023-10-30 2023-12-01 四川省公路规划勘察设计研究院有限公司 Pier stud load test device
CN117147322B (en) * 2023-10-30 2023-12-29 四川省公路规划勘察设计研究院有限公司 Pier stud load test device

Similar Documents

Publication Publication Date Title
JP2011033380A (en) Force application testing device
CN106680079B (en) Piezoelectric stack direct-driven macro-micro combined biaxial stretching-fatigue testing system
CN103487315B (en) A kind of material mechanical performance proving installation
CN203643254U (en) Material performance in-situ test platform based on tension/pressure, bending and fatigue compound loads
CN104354129B (en) The method that the flexible pressing device of weak hard parts and assembling thereof compress
CN104237015B (en) The device of high speed dynamic compressive test
CN106370532B (en) Outdoor environment-tension, compression and bending load coupling test device in alpine climate
CN108344632A (en) A kind of extremely low modulus composite material interlayer shearing clamp and test method
CN104237014B (en) High-speed dynamic compression test device
CN103884495A (en) Enclosed loading framework for multidimensional bearing test on large-scale structural member
CN108169036B (en) Mechanical type sheet metal bidirectional shearing device
CN105466768B (en) A kind of pretightning force landing impact testing machine plate test coupon fixture of size adjustable
JP4219095B2 (en) Compression / shear test method and test apparatus
US9116079B2 (en) Dynamic test fixture
WO2011015171A3 (en) Device for performing component and material tests on samples
CN113138071B (en) Test device for applying bidirectional compression load
CN204613032U (en) A kind of test unit measuring the distortion of reactor fuel assemblies base
CN208270318U (en) Loading device for structure compresses test
KR101506908B1 (en) Anti-bucking device of a sheet metal specimen in fatigue testiung machine
CN204065333U (en) Probe mounting structure in a kind of pressure resistant test tool
CN111624154A (en) Interface bonding performance single shear test testing device
KR102106451B1 (en) Multiaxial test apparatus for battery crush and penetration test
CN204422191U (en) Mechanical load of photovoltaic module testing apparatus
CN103645133A (en) Hydraulic fixing device used for measuring bond properties of steel bar with concrete
CN114323956B (en) Four-way composite loading fatigue test device for rubber elastic element