JPH07218380A - Heavy-piston driving type shock wind-tunnel and control method thereof - Google Patents

Heavy-piston driving type shock wind-tunnel and control method thereof

Info

Publication number
JPH07218380A
JPH07218380A JP3304894A JP3304894A JPH07218380A JP H07218380 A JPH07218380 A JP H07218380A JP 3304894 A JP3304894 A JP 3304894A JP 3304894 A JP3304894 A JP 3304894A JP H07218380 A JPH07218380 A JP H07218380A
Authority
JP
Japan
Prior art keywords
pressure
chamber
pressure chamber
low
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3304894A
Other languages
Japanese (ja)
Other versions
JP3189928B2 (en
Inventor
Fumio Tono
文男 東野
Koji Matsunaga
康二 松永
Naoyuki Matsumoto
尚之 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP03304894A priority Critical patent/JP3189928B2/en
Publication of JPH07218380A publication Critical patent/JPH07218380A/en
Application granted granted Critical
Publication of JP3189928B2 publication Critical patent/JP3189928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the heavy-piston driving type shock wind-tunnel, which can form supersonic gas stream, whose Mach number is about 1-4 at the normal temperature and normal pressure, and to provide the control method of the heavy-piston driving type shock wind tunnel. CONSTITUTION:In a heavy-piston driving type shock wind tunnel, a driving tube 15 is provided, and a piston 16, which is freely slid, is provided in the inside. The piston 16 is moved at a high speed by breaking a a bursting film 17, which partitions an actuating tube 18 connected to the driving tube 15. High-pressure gas is generated in the actuating tube 18. The generated supersonic high pressure gas stream is jetted into a vacuum measuring chamber 21, which is connected to a blowing nozzle 20, by opening a quick closing valve 19 provided in a nozzle 20 at the end part of the actuating tube 18. In this heavy-piston driving type shock wind tunnel, a plenum chamber 23 having an orifice 22 controlling the temperature and the pressure of the high pressure gas generated in the actuating tube 18 is provided between the actuating tube 18 and the blowing nozzle 19 beforehand. Thus, the temperature and the pressure of the supersonic gas stream jetted into the measuring chamber 21 are controlled at the normal temperature and the normal pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般的にガンタンネル
といわれる重ピストン駆動型衝撃風洞およびその制御方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heavy piston drive type impact wind tunnel generally called a gun tunnel and a control method thereof.

【0002】[0002]

【従来の技術】周知のように、風洞は、風速を制御され
た一様な気流を発生させ、この気流を航空機、自動車さ
らには船舶等の空気中を運動する物体の模型に吹き付け
ることにより、前記物体の実物への気流の影響を相似法
則を用いて調査する実験装置である。
2. Description of the Related Art As is well known, a wind tunnel generates a uniform air flow whose wind speed is controlled, and blows this air flow on a model of an object moving in the air, such as an aircraft, a car, and even a ship. This is an experimental device for investigating the influence of the air flow on the real thing of the object by using a similarity law.

【0003】風洞は、発生する風速の大きさに応じて様
々な種類のものがこれまでに提案されてきた。
Various types of wind tunnels have been proposed so far according to the magnitude of the wind velocity generated.

【0004】そのなかでも、高マッハ数の実験を行うこ
とができる高速風洞としては、当初、図2に示すよう
に、高圧空気を充填された高圧室1に先細型のラバール
管を用いた吹出しノズル2を介して低圧室または排気装
置3を接続しておき、高圧室1と吹出しノズル2との間
に設けられた調圧弁4を開くことにより、低圧室または
排気装置3の内部に、300m/s 以上の音速を越えた気
流を発生させるという構成が提案された。
Among them, as a high-speed wind tunnel capable of conducting a high Mach number experiment, initially, as shown in FIG. 2, a blowout using a tapered Laval tube in a high-pressure chamber 1 filled with high-pressure air. By connecting the low pressure chamber or the exhaust device 3 via the nozzle 2 and opening the pressure regulating valve 4 provided between the high pressure chamber 1 and the blowout nozzle 2, 300 m can be provided inside the low pressure chamber or the exhaust device 3. A configuration has been proposed in which an airflow exceeding a sound velocity of / s or more is generated.

【0005】しかし、この風洞には、大規模な設備とな
るとともにその設備費がかさんでしまうという問題があ
った。
However, this wind tunnel has a problem in that it requires large-scale equipment and the equipment cost is high.

【0006】そこで、図3に示す風洞が提案された。こ
れは、高圧の駆動ガスを充填された高圧室5と低圧の作
動ガスを充填された低圧室6とを破裂膜(ラプチャディ
スク)7を介して接続するとともに、低圧室6のもう一
方の端部側には吹出しノズル8を設けておき、破裂膜7
を破ることにより、高圧室5と低圧室6との間の圧力差
により音速を越えた気流を発生させるものである。
Therefore, the wind tunnel shown in FIG. 3 has been proposed. This connects the high-pressure chamber 5 filled with the high-pressure drive gas and the low-pressure chamber 6 filled with the low-pressure working gas via the rupture membrane (rupture disk) 7, and the other end of the low-pressure chamber 6 is connected. A blow-out nozzle 8 is provided on the side of the portion, and the burst film 7
When the pressure is broken, the pressure difference between the high-pressure chamber 5 and the low-pressure chamber 6 causes an air flow exceeding the sonic velocity.

【0007】この風洞によれば、低マッハ数領域の気流
を形成することは可能であるが、気流の持続時間が短い
という問題があった。
According to this wind tunnel, it is possible to form an air flow in the low Mach number region, but there is a problem that the duration of the air flow is short.

【0008】そこで、図4に示す風洞が提案された。こ
れは、一般に衝撃風洞とよばれるものであり、高圧の駆
動ガスを充填された駆動筒たる高圧室9と低圧の作動ガ
スを充填された作動筒たる低圧室10とを破裂膜11を
介して接続するとともに低圧室10のもう一方の端部側
には急速開閉弁12aおよびラバール管を用いた吹出し
ノズル12を介して、真空ポンプ13aにより真空吸引
される測定室13を配置しておき、破裂膜11を破るこ
とにより、高圧室9の内部の駆動ガスが急激に膨脹して
低圧室10に衝撃波を発生させ、発生した衝撃波が低圧
室10の管端で反射する間に、この管端付近に高温高圧
ガス(3000K、100気圧程度)を生成させ、この
高温高圧ガスをノズル12から測定室13に吹き込むこ
とにより、数ms程度の時間だけ、極超音速流を形成する
ものである。
Therefore, the wind tunnel shown in FIG. 4 has been proposed. This is generally called an impact wind tunnel, and a high pressure chamber 9 as a driving cylinder filled with a high pressure driving gas and a low pressure chamber 10 as a working cylinder filled with a low pressure working gas are connected via a rupture membrane 11. A measurement chamber 13 that is vacuum-sucked by a vacuum pump 13a is arranged on the other end side of the low-pressure chamber 10 via a rapid opening / closing valve 12a and a blow-out nozzle 12 using a Laval tube, and is ruptured. By breaking the membrane 11, the driving gas inside the high pressure chamber 9 rapidly expands to generate a shock wave in the low pressure chamber 10, and while the generated shock wave is reflected at the pipe end of the low pressure chamber 10, the vicinity of this pipe end A high-temperature high-pressure gas (3000 K, about 100 atm) is generated in the chamber, and this high-temperature high-pressure gas is blown into the measurement chamber 13 from the nozzle 12 to form a hypersonic flow for a time of about several ms.

【0009】しかし、この衝撃風洞は得られる高温高圧
ガスの温度が高くなるが、高温高圧ガスの圧力を上昇す
ることは難しいために、極超音速気流の持続時間を数ms
超に延長することは難しいという問題があった。
However, in this shock wind tunnel, the temperature of the obtained high-temperature high-pressure gas becomes high, but it is difficult to increase the pressure of the high-temperature high-pressure gas. Therefore, the duration of the hypersonic airflow is several ms.
There was a problem that it was difficult to extend beyond.

【0010】そこで、衝撃風洞の改良型として、図5に
示すように、低圧室10の内部に摺動自在のピストン1
4を内設しておき、破裂膜11を破った際の衝撃波で高
温高圧ガスを形成するのではなく、ピストン14により
熱的に損失が少ない等エンタルピ圧縮を行うことによ
り、気流の持続時間を200ms程度に拡大する風洞が提
案された。本明細書では、このような型式の風洞を重ピ
ストン駆動型衝撃風洞(ガンタンネル)と称する。
Therefore, as an improved type of impact wind tunnel, as shown in FIG. 5, a piston 1 slidable inside the low pressure chamber 10 is provided.
4 is internally provided, the high-temperature high-pressure gas is not formed by the shock wave when the rupturable membrane 11 is broken, and the enthalpy compression such as the thermal loss is reduced by the piston 14 so that the duration of the air flow is increased. A wind tunnel was proposed that expands to around 200 ms. In this specification, this type of wind tunnel is referred to as a heavy piston drive type impact wind tunnel (gantannel).

【0011】重ピストン駆動型衝撃風洞の作動条件は、
ピストン重量とピストン駆動圧比とにより決定される。
この種の重ピストン駆動型衝撃風洞では、熱的に損失が
少ない等エンタルピ圧縮を行っているために、衝撃風洞
に比較すると、得られる高温高圧ガスの温度を上げずに
圧力を上げることができるため、気流の持続時間を拡大
できる。
The operating conditions of the heavy piston drive type impact wind tunnel are as follows:
It is determined by the piston weight and the piston drive pressure ratio.
In this type of heavy piston drive type impact wind tunnel, since equal enthalpy compression with low thermal loss is performed, the pressure can be increased without raising the temperature of the obtained high temperature high pressure gas as compared with the impact wind tunnel. Therefore, the duration of the airflow can be expanded.

【0012】[0012]

【発明が解決しようとする課題】ところで、実験対象に
よっては例えばマッハ数が1〜4程度の常温および常圧
の超音速気流を測定室に形成して実験を行いたい場合が
ある。
By the way, there is a case where it is desired to conduct an experiment by forming a supersonic airflow at room temperature and atmospheric pressure having a Mach number of about 1 to 4 in the measurement chamber depending on the experiment subject.

【0013】ところが、図2または図3に示す風洞で
は、マッハ数が1〜4程度の超音速気流を形成すること
はできるが、吹出しノズルから噴出される気流の温度が
常温以下に極端に低下してしまう。気流の温度を常温程
度とするには、高圧室内における高圧ガスの温度を例え
ばヒータ等を用いることにより上昇させればよいが、ヒ
ータの加熱能力等を勘案すると、確実に所定の温度に加
熱を行うことは容易ではない。
However, in the wind tunnel shown in FIG. 2 or 3, although a supersonic air flow having a Mach number of about 1 to 4 can be formed, the temperature of the air flow ejected from the blowing nozzle is extremely lowered to room temperature or lower. Resulting in. To bring the temperature of the airflow to about room temperature, the temperature of the high-pressure gas in the high-pressure chamber may be raised by using, for example, a heater, etc. Not easy to do.

【0014】また、図4に示す衝撃風洞や図5に示す重
ピストン駆動型衝撃風洞では総エンタルピが高く成り過
ぎるために、気流の温度および圧力が高く成り過ぎてし
まい、風洞実験において実在気体効果の影響を消去する
のが困難になってしまう。
Further, in the impact wind tunnel shown in FIG. 4 and the heavy piston drive type impact wind tunnel shown in FIG. 5, since the total enthalpy becomes too high, the temperature and pressure of the air flow become too high, and the actual gas effect in the wind tunnel experiment. It becomes difficult to eliminate the effect of.

【0015】本発明は、上記の従来の技術が有する問題
を解決するためになされたものであり、例えばマッハ数
が1〜4程度であって常温および常圧の超音速気流を形
成することができる重ピストン駆動型衝撃風洞と、常温
および常圧の超音速気流を形成することができる重ピス
トン駆動型衝撃風洞の制御方法とを提供することを目的
とするものである。
The present invention has been made in order to solve the problems of the above-mentioned conventional techniques, and can form a supersonic airflow at room temperature and atmospheric pressure, for example, having a Mach number of about 1 to 4. An object of the present invention is to provide a heavy piston drive type impact wind tunnel that can be performed and a method for controlling a heavy piston drive type impact wind tunnel that can form a supersonic airflow at room temperature and atmospheric pressure.

【0016】[0016]

【課題を解決するための手段】本発明にかかる重ピスト
ン駆動型衝撃風洞は、高圧の駆動ガスを充填される高圧
室と、内部に摺動自在のピストンを有するとともに低圧
の作動ガスを充填され、前記高圧室に接続される筒状の
低圧室と、前記高圧室および低圧室を区切る破裂膜と、
前記低圧室の両端部のうちの前記高圧室との接続側でな
い側の端部に設けられた急速開閉弁付の吹出しノズル
と、前記吹出しノズルに接続された真空吸引される測定
室とを備える重ピストン駆動型衝撃風洞であって、さら
に、前記低圧室と前記吹出しノズルとの間に設けられ
る、前記低圧室に発生する高圧ガスの吹出し前の温度お
よび圧力を制御するオリフィスを有するプレナムチャン
バを備えることを特徴とするものである。
A heavy piston drive type impact wind tunnel according to the present invention has a high pressure chamber filled with a high pressure drive gas and a slidable piston inside and is filled with a low pressure working gas. A tubular low-pressure chamber connected to the high-pressure chamber, and a rupture membrane separating the high-pressure chamber and the low-pressure chamber,
A blowout nozzle with a quick opening / closing valve provided at an end of the both ends of the low pressure chamber that is not connected to the high pressure chamber, and a vacuum suction measurement chamber connected to the blowout nozzle. A heavy piston drive type impact wind tunnel, further comprising a plenum chamber provided between the low pressure chamber and the blowout nozzle, the plenum chamber having an orifice for controlling the temperature and pressure of the high pressure gas generated in the low pressure chamber before the blowout. It is characterized by being provided.

【0017】本発明にかかる重ピストン駆動型衝撃風洞
の制御方法は、高圧の駆動ガスを充填された高圧室と、
内部に摺動自在のピストンを有するとともに低圧の作動
ガスを充填され、前記高圧室に接続された筒状の低圧室
とを区切る破裂膜を破ることにより前記低圧室の内部に
衝撃波を発生させて前記ピストンを駆動することにより
前記低圧室の両端部のうちの前記高圧室との接続側でな
い側の端部に接続された急速開閉弁付の吹出しノズル側
の内部に高圧ガスを発生させ、発生した高圧ガスを前記
急速開閉弁を開くことにより前記吹出しノズルに接続さ
れた真空吸引される測定室に超音速の気流として噴出す
る重ピストン駆動型衝撃風洞の制御方法であって、予
め、前記低圧室と前記吹出しノズルとの間に前記低圧室
に発生する高圧ガスの吹出し前の温度および圧力を制御
するオリフィスを有するプレナムチャンバを設けること
により、前記測定室へ噴出される前記気流の温度および
圧力を制御することを特徴とするものである。
A method for controlling a heavy piston drive type impact wind tunnel according to the present invention comprises: a high pressure chamber filled with a high pressure drive gas;
A shock wave is generated inside the low-pressure chamber by breaking a rupture film that has a slidable piston inside and is filled with a low-pressure working gas and separates from a cylindrical low-pressure chamber connected to the high-pressure chamber. By driving the piston, high-pressure gas is generated inside the blow-out nozzle side with the quick opening / closing valve connected to the end of the both ends of the low-pressure chamber that is not the side connected to the high-pressure chamber, and is generated. A method for controlling a heavy piston drive type impact wind tunnel in which the high pressure gas is ejected as a supersonic air flow into a vacuum suctioned measurement chamber connected to the blowout nozzle by opening the rapid on-off valve, and the low pressure is previously set. The measurement chamber by providing a plenum chamber having an orifice for controlling the temperature and pressure of the high-pressure gas generated in the low-pressure chamber before the gas is blown, between the chamber and the blow-out nozzle. And it is characterized in controlling the temperature and pressure of the air flow ejected.

【0018】[0018]

【作用】本発明にかかる重ピストン駆動型衝撃風洞およ
びその制御方法では、予め、低圧室と吹出しノズルとの
間に、低圧室に発生する高温高圧ガスの温度および圧力
を例えば常温および常圧に制御するオリフィスを有する
プレナムチャンバを設けてあるため、当該プレナムチャ
ンバ内のオリフィスにより高圧ガスに圧力損失が与えら
れるために、吹出しノズルに設けられた急速開閉弁から
噴出される超音速の気流の温度および圧力が制御され
る。
In the heavy piston drive type impact wind tunnel and the control method therefor according to the present invention, the temperature and pressure of the high temperature and high pressure gas generated in the low pressure chamber between the low pressure chamber and the blowing nozzle are set in advance to, for example, normal temperature and normal pressure. Since a plenum chamber having an orifice to be controlled is provided, the temperature of the supersonic airflow ejected from the quick opening / closing valve provided in the blowing nozzle because pressure loss is given to the high pressure gas by the orifice in the plenum chamber. And the pressure is controlled.

【0019】また、本発明にかかる重ピストン駆動型衝
撃風洞では、前記オリフィスは交換可能に設置されるた
め、オリフィス口径は変更可能である。
Further, in the heavy piston drive type impact wind tunnel according to the present invention, since the orifice is installed in a replaceable manner, the orifice diameter can be changed.

【0020】そのため、オリフィスを交換してオリフィ
ス口径を変更することにより測定室内のよどみ点状態が
調節されて、極めて高い自由度で風洞の作動条件が制御
されることになり、測定室内の気流を例えば常温および
常圧の状態に制御する。
Therefore, the stagnation state of the measurement chamber is adjusted by exchanging the orifice and changing the orifice diameter, so that the operating condition of the wind tunnel is controlled with extremely high degree of freedom, and the air flow in the measurement chamber is controlled. For example, the temperature is controlled at room temperature and pressure.

【0021】[0021]

【実施例】本発明の一実施例を添付図面を参照しながら
詳細に説明する。図1は、本発明にかかる重ピストン駆
動型衝撃風洞の構成の一例を示す説明図であり、図1
(a)は全体図、図1(b)は図1(a)の破線で囲ま
れた部分の拡大図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is an explanatory view showing an example of the configuration of a heavy piston drive type impact wind tunnel according to the present invention.
1A is an overall view, and FIG. 1B is an enlarged view of a portion surrounded by a broken line in FIG.

【0022】図1(a)に示すように、高圧の駆動ガス
を充填される高圧室たる駆動筒15が配置され、この駆
動筒15に対して、破裂膜17を介して区切られて、内
部に摺動自在のピストン16を有するとともに低圧の作
動ガスを充填される低圧室たる作動筒18が接続され
る。駆動筒15、作動筒18ともに中空の筒状部材であ
り、破裂膜17を破ることにより駆動筒15および作動
筒18それぞれの内部の圧力差により、作動筒18内に
衝撃波が発生する。
As shown in FIG. 1A, a drive cylinder 15 which is a high-pressure chamber filled with a high-pressure drive gas is arranged, and is separated from the drive cylinder 15 through a rupturable membrane 17 so that the inside of the drive cylinder 15 is separated. An operating cylinder 18, which has a slidable piston 16 and is a low-pressure chamber filled with a low-pressure working gas, is connected. Both the drive cylinder 15 and the operation cylinder 18 are hollow cylindrical members, and a shock wave is generated in the operation cylinder 18 due to the pressure difference inside the drive cylinder 15 and the operation cylinder 18 when the rupture film 17 is broken.

【0023】作動筒18の内部には、内面に対して摺動
しながら作動筒18の長手方向に、前述の衝撃波を駆動
源として移動するピストン16が設置される。
Inside the operating cylinder 18, a piston 16 is installed which slides on the inner surface and moves in the longitudinal direction of the operating cylinder 18 by using the above-mentioned shock wave as a drive source.

【0024】図1(a)および図1(b)に示すよう
に、作動筒18の両端部のうちの駆動筒15との接続側
でない側の端部には、ピストン16により圧縮されて発
生する例えば80〜100気圧程度の高温高圧ガスの温
度および圧力を制御するオリフィス22を有するプレナ
ムチャンバ23を備える。
As shown in FIGS. 1 (a) and 1 (b), one of both ends of the actuating cylinder 18 which is not connected to the drive cylinder 15 is compressed by the piston 16 and is generated. A plenum chamber 23 having an orifice 22 for controlling the temperature and pressure of high-temperature high-pressure gas of, for example, about 80 to 100 atm is provided.

【0025】本実施例ではオリフィス22はプレナムチ
ャンバ23のフランジ面に締結されており、口径の異な
る他のオリフィスに交換可能である。オリフィス22の
口径は高温高圧ガスの制御条件に応じて適宜設定する。
In this embodiment, the orifice 22 is fastened to the flange surface of the plenum chamber 23 and can be replaced with another orifice having a different diameter. The diameter of the orifice 22 is appropriately set according to the control conditions for the high temperature and high pressure gas.

【0026】オリフィス22は、作動筒18に発生する
高圧ガスの流量を絞り、後述する吹出しノズル20から
吹出されて測定室21内に形成される気流の条件を制御
する機能を有する。
The orifice 22 has a function of restricting the flow rate of the high-pressure gas generated in the operating cylinder 18 and controlling the conditions of the air flow blown out from the blow-out nozzle 20 described later and formed in the measurement chamber 21.

【0027】図1(a)に示すように、プレナムチャン
バ23には、急速開閉弁19付の吹出しノズル20が設
置される。急速開閉弁としては、電磁弁を用いた無隔膜
弁を用いたが、破裂膜を用いてもよい。また、吹出しノ
ズル20としては公知のラバール管を用いたものを用い
る。
As shown in FIG. 1A, the plenum chamber 23 is provided with a blowing nozzle 20 having a quick opening / closing valve 19. As the rapid opening / closing valve, a diaphragmless valve using a solenoid valve is used, but a rupturable membrane may be used. As the blowing nozzle 20, a known Laval tube is used.

【0028】吹出しノズル20に真空の測定室21が接
続される。測定室21は、測定の際には真空ポンプ24
により真空吸引され、気流の持続時間が200ms程度に
維持される。
A vacuum measuring chamber 21 is connected to the blowing nozzle 20. The measurement chamber 21 has a vacuum pump 24 for measurement.
Vacuum suction is performed, and the duration of the airflow is maintained at about 200 ms.

【0029】測定室21内には航空機等の測定対象の模
型が配置される。本実施例では、模型(図示しない)は
治具により保持するようにして構成したが、気流の発生
タイミングに対応させて、自然落下または飛行させるよ
うにしてもよい。治具等を用いないことによりより高精
度の実験結果が得られる。
A model to be measured such as an aircraft is arranged in the measuring room 21. In this embodiment, the model (not shown) is configured to be held by a jig, but it may be naturally dropped or flown in accordance with the timing of airflow generation. Higher precision experimental results can be obtained by not using a jig or the like.

【0030】以上のような構成を有する本発明にかかる
重ピストン駆動型衝撃風洞を用いて風洞実験を行う手
順、すなわち本発明にかかる重ピストン駆動型衝撃風洞
の制御方法を、前述した図1(a)および図1(b)を
参照しながら説明する。
The procedure for conducting a wind tunnel experiment using the heavy piston drive type impact wind tunnel according to the present invention having the above-mentioned configuration, that is, the method for controlling the heavy piston drive type impact wind tunnel according to the present invention, is described with reference to FIG. A description will be given with reference to a) and FIG.

【0031】駆動筒15の内部を高圧に加圧するととも
に、作動筒18の内部を低圧に加圧しておく。また、ピ
ストン16は作動筒18内の駆動筒15側の所定の位置
に配置しておく。さらに、急速開閉弁19は閉じておく
とともに、測定室21内を真空ポンプ24により真空吸
引しておく。
The inside of the drive cylinder 15 is pressurized to a high pressure, and the inside of the actuation cylinder 18 is pressurized to a low pressure. Further, the piston 16 is arranged in a predetermined position on the side of the drive cylinder 15 in the operation cylinder 18. Further, the quick opening / closing valve 19 is closed and the inside of the measurement chamber 21 is vacuumed by the vacuum pump 24.

【0032】この状態で破裂膜17を破る。すると、駆
動筒15と作動筒18との間に生じる圧力差により駆動
筒15内の駆動ガスが作動筒18内へ向けて急激に膨脹
して、作動筒18の内部に衝撃波が発生し、この衝撃波
によりピストン16が作動筒18の内部を高速で摺動
し、作動筒18の測定室21側に設けられたプレナムチ
ャンバ23内であってオリフィス22によって区切られ
る二つの空間のうちの作動筒18側に80〜100気圧
程度の高圧ガスを滞留させる。
In this state, the rupturable film 17 is broken. Then, due to the pressure difference generated between the drive cylinder 15 and the operating cylinder 18, the drive gas in the drive cylinder 15 expands rapidly toward the operating cylinder 18, and a shock wave is generated inside the operating cylinder 18. The shock wave causes the piston 16 to slide at high speed inside the operating cylinder 18, so that the operating cylinder 18 in the plenum chamber 23 provided on the measurement chamber 21 side of the operating cylinder 18 is divided into two spaces by the orifice 22. A high pressure gas of about 80 to 100 atm is retained on the side.

【0033】このようにして、プレナムチャンバ23内
であってオリフィス22によって区切られる二つの空間
のうちの作動筒18側に、高温および高圧ガスが蓄えら
れるが、この高温高圧ガスは急速開閉弁19を開くこと
により吹出しノズル20から測定室21内に噴出され
て、超音速気流を形成する。吹出しノズル20からの噴
出に先立って、高温高圧ガスはプレナムチャンバ23内
に設けられたオリフィス22を通過するため、このオリ
フィス22により圧力損失が与えられて、気流の圧力お
よび温度が常温および常圧に制御される。
In this way, the high temperature and high pressure gas is stored in the working cylinder 18 side of the two spaces in the plenum chamber 23 which are divided by the orifice 22. Is opened to blow out from the blow-out nozzle 20 into the measurement chamber 21 to form a supersonic airflow. Prior to ejection from the blow-out nozzle 20, the high-temperature high-pressure gas passes through an orifice 22 provided in the plenum chamber 23, so that a pressure loss is given by this orifice 22 and the pressure and temperature of the air flow are kept at room temperature and atmospheric pressure. Controlled by.

【0034】このようにして、本発明にかかる重ピスト
ン駆動型衝撃風洞において形成される気流の圧力および
温度が制御され、例えば、常温および常圧の気流を発生
することが可能となる。
In this way, the pressure and temperature of the air flow formed in the heavy piston drive type impact wind tunnel according to the present invention are controlled, and it becomes possible to generate, for example, an air flow at normal temperature and normal pressure.

【0035】なお、高圧室に充填される駆動ガスの条件
が異なる場合等には、オリフィスを交換してオリフィス
口径を適宜変更することにより、得られる気流を常温お
よび常圧に制御する。
When the conditions of the driving gas filled in the high-pressure chamber are different, the orifice is exchanged and the orifice diameter is appropriately changed to control the obtained airflow at room temperature and atmospheric pressure.

【0036】[0036]

【発明の効果】以上詳細に説明したように、本発明にか
かる重ピストン駆動型衝撃風洞では、低圧室と吹出しノ
ズルとの間にオリフィスを有するプレナムチャンバを設
けたため、吹出しノズルから噴出される高温高圧ガスの
エンタルピのうちの温度および圧力を制御することが可
能となる。また、オリフィスは交換可能である。したが
って、オリフィスを交換してオリフィス口径を変更する
ことにより、測定室内の風洞のよどみ点状態が調節され
て、極めて高い自由度で風洞の作動条件を制御すること
が可能となって、測定室内の気流を常温および常圧に制
御することが可能となる。
As described above in detail, in the heavy piston drive type impact wind tunnel according to the present invention, since the plenum chamber having the orifice is provided between the low pressure chamber and the blowing nozzle, the high temperature ejected from the blowing nozzle is high. It is possible to control the temperature and pressure of the enthalpy of the high-pressure gas. Also, the orifice is replaceable. Therefore, by replacing the orifice and changing the orifice diameter, the stagnation state of the wind tunnel inside the measurement chamber can be adjusted, and it becomes possible to control the operating conditions of the wind tunnel with extremely high degrees of freedom. It is possible to control the air flow at room temperature and pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる重ピストン駆動型衝撃風洞の構
造を示す説明図であり、図1(a)は全体図、図1
(b)は図1(a)の破線部の拡大図である。
1 is an explanatory view showing the structure of a heavy piston drive type impact wind tunnel according to the present invention, FIG. 1 (a) is an overall view, FIG.
FIG. 1B is an enlarged view of a broken line portion of FIG.

【図2】従来の高速風洞の構造の一例を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing an example of a structure of a conventional high speed wind tunnel.

【図3】従来の高速風洞の構造の他の一例を示す説明図
である。
FIG. 3 is an explanatory diagram showing another example of the structure of a conventional high-speed wind tunnel.

【図4】従来の衝撃風洞の構造を示す説明図である。FIG. 4 is an explanatory view showing a structure of a conventional impact wind tunnel.

【図5】ガンタンネルといわれる従来の重ピストン駆動
型衝撃風洞の構造を示す説明図である。
FIG. 5 is an explanatory view showing a structure of a conventional heavy piston drive type impact wind tunnel called a gun tannel.

【符号の説明】[Explanation of symbols]

15 駆動筒(高圧室) 16 ピストン 17 破裂膜 18 作動筒(低圧室) 19 急速開閉弁 20 吹出しノズル 21 測定室 22 オリフィス 23 プレナムチャンバ 24 真空ポンプ 15 Drive Cylinder (High Pressure Chamber) 16 Piston 17 Bursting Membrane 18 Working Cylinder (Low Pressure Chamber) 19 Quick Open / Close Valve 20 Blow-out Nozzle 21 Measuring Chamber 22 Orifice 23 Plenum Chamber 24 Vacuum Pump

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高圧の駆動ガスを充填される高圧室と、
内部に摺動自在のピストンを有するとともに低圧の作動
ガスを充填され、前記高圧室に接続される筒状の低圧室
と、前記高圧室および低圧室を区切る破裂膜と、前記低
圧室の両端部のうちの前記高圧室との接続側でない側の
端部に設けられた急速開閉弁付の吹出しノズルと、前記
吹出しノズルに接続された真空吸引される測定室とを備
える重ピストン駆動型衝撃風洞であって、さらに、前記
低圧室と前記吹出しノズルとの間に設けられる、前記低
圧室に発生する高圧ガスの吹出し前の温度および圧力を
制御するオリフィスを有するプレナムチャンバを備える
ことを特徴とする重ピストン駆動型衝撃風洞。
1. A high-pressure chamber filled with high-pressure drive gas,
A cylindrical low-pressure chamber having a slidable piston therein and filled with a low-pressure working gas, and connected to the high-pressure chamber, a rupture film separating the high-pressure chamber and the low-pressure chamber, and both ends of the low-pressure chamber. A heavy-piston-driven impact wind tunnel including a blow-out nozzle with a quick opening / closing valve provided at an end portion on the side not connected to the high-pressure chamber, and a vacuum suctioned measurement chamber connected to the blow-out nozzle. A plenum chamber provided between the low pressure chamber and the blowout nozzle, the plenum chamber having an orifice for controlling the temperature and the pressure of the high pressure gas generated in the low pressure chamber before the blowout is provided. Heavy piston drive type impact wind tunnel.
【請求項2】 前記オリフィスは交換可能である請求項
1記載の重ピストン駆動型衝撃風洞。
2. The heavy piston drive type impact wind tunnel according to claim 1, wherein the orifice is replaceable.
【請求項3】 高圧の駆動ガスを充填された高圧室と、
内部に摺動自在のピストンを有するとともに低圧の作動
ガスを充填され、前記高圧室に接続された筒状の低圧室
とを区切る破裂膜を破ることにより前記低圧室の内部に
衝撃波を発生させて前記ピストンを駆動することにより
前記低圧室の両端部のうちの前記高圧室との接続側でな
い側の端部に接続された急速開閉弁付の吹出しノズル側
の内部に高圧ガスを発生させ、発生した高圧ガスを前記
急速開閉弁を開くことにより前記吹出しノズルに接続さ
れた真空吸引される測定室に超音速の気流として噴出す
る重ピストン駆動型衝撃風洞の制御方法であって、予
め、前記低圧室と前記吹出しノズルとの間に前記低圧室
に発生する高圧ガスの吹出し前の温度および圧力を制御
するオリフィスを有するプレナムチャンバを設けること
により、前記測定室へ噴出される前記気流の温度および
圧力を制御することを特徴とする重ピストン駆動型衝撃
風洞の制御方法。
3. A high-pressure chamber filled with a high-pressure drive gas,
A shock wave is generated inside the low-pressure chamber by breaking a rupture film that has a slidable piston inside and is filled with a low-pressure working gas and separates from a cylindrical low-pressure chamber connected to the high-pressure chamber. By driving the piston, high-pressure gas is generated inside the blow-out nozzle side with the quick opening / closing valve connected to the end of the both ends of the low-pressure chamber that is not the side connected to the high-pressure chamber, and is generated. A method for controlling a heavy piston drive type impact wind tunnel in which the high pressure gas is ejected as a supersonic air flow into a vacuum suctioned measurement chamber connected to the blowout nozzle by opening the rapid on-off valve, and the low pressure is previously set. The measurement chamber by providing a plenum chamber having an orifice for controlling the temperature and pressure of the high-pressure gas generated in the low-pressure chamber before the gas is blown, between the chamber and the blow-out nozzle. The method of the heavy piston driven shock tunnel, characterized by controlling the temperature and pressure of the air flow ejected.
JP03304894A 1994-02-04 1994-02-04 Heavy piston driven shock wind tunnel and control method thereof Expired - Fee Related JP3189928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03304894A JP3189928B2 (en) 1994-02-04 1994-02-04 Heavy piston driven shock wind tunnel and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03304894A JP3189928B2 (en) 1994-02-04 1994-02-04 Heavy piston driven shock wind tunnel and control method thereof

Publications (2)

Publication Number Publication Date
JPH07218380A true JPH07218380A (en) 1995-08-18
JP3189928B2 JP3189928B2 (en) 2001-07-16

Family

ID=12375896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03304894A Expired - Fee Related JP3189928B2 (en) 1994-02-04 1994-02-04 Heavy piston driven shock wind tunnel and control method thereof

Country Status (1)

Country Link
JP (1) JP3189928B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1588591B1 (en) * 2003-01-28 2006-10-25 Commissariat A L'energie Atomique Device for injection of a pulsed supersonic gas stream
CN103604580A (en) * 2013-11-27 2014-02-26 武汉航空仪表有限责任公司 Stabilizing method for icing wind tunnel vacuum degree
JP2015137477A (en) * 2014-01-22 2015-07-30 公益財団法人鉄道総合技術研究所 Compression wave generation method, compression wave generator, and calibration method for hot-wire anemometer using the same
CN106763413A (en) * 2016-12-21 2017-05-31 中国航天空气动力技术研究院 A kind of free-piston two-stage buffering stop stop mechanism
CN106840580A (en) * 2016-12-07 2017-06-13 中国航天空气动力技术研究院 A kind of diaphragm positioning clamping device
CN107806977A (en) * 2017-11-29 2018-03-16 中国航空工业集团公司沈阳空气动力研究所 A kind of high enthalpy impulse wind tunnel pipe structure of the wide Mach number of combined type
CN112945510A (en) * 2021-05-07 2021-06-11 中国空气动力研究与发展中心超高速空气动力研究所 Total pressure rapid regulation and control method for reducing hypersonic wind tunnel starting impact
CN112985741A (en) * 2021-02-07 2021-06-18 中国空气动力研究与发展中心超高速空气动力研究所 Piston type wind tunnel special gas inflation method utilizing compressed air power
CN116380367A (en) * 2023-06-06 2023-07-04 中国空气动力研究与发展中心超高速空气动力研究所 Hydrogen leakage monitoring device and monitoring method for shock tube of high-pressure hydrogen driver

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1588591B1 (en) * 2003-01-28 2006-10-25 Commissariat A L'energie Atomique Device for injection of a pulsed supersonic gas stream
CN103604580A (en) * 2013-11-27 2014-02-26 武汉航空仪表有限责任公司 Stabilizing method for icing wind tunnel vacuum degree
JP2015137477A (en) * 2014-01-22 2015-07-30 公益財団法人鉄道総合技術研究所 Compression wave generation method, compression wave generator, and calibration method for hot-wire anemometer using the same
CN106840580B (en) * 2016-12-07 2019-01-15 中国航天空气动力技术研究院 A kind of diaphragm positioning clamping device
CN106840580A (en) * 2016-12-07 2017-06-13 中国航天空气动力技术研究院 A kind of diaphragm positioning clamping device
CN106763413A (en) * 2016-12-21 2017-05-31 中国航天空气动力技术研究院 A kind of free-piston two-stage buffering stop stop mechanism
CN107806977A (en) * 2017-11-29 2018-03-16 中国航空工业集团公司沈阳空气动力研究所 A kind of high enthalpy impulse wind tunnel pipe structure of the wide Mach number of combined type
CN107806977B (en) * 2017-11-29 2024-04-09 中国航空工业集团公司沈阳空气动力研究所 Combined wide Mach number high enthalpy pulse wind tunnel tube structure
CN112985741A (en) * 2021-02-07 2021-06-18 中国空气动力研究与发展中心超高速空气动力研究所 Piston type wind tunnel special gas inflation method utilizing compressed air power
CN112985741B (en) * 2021-02-07 2022-05-10 中国空气动力研究与发展中心超高速空气动力研究所 Piston type wind tunnel special gas inflation method utilizing compressed air power
CN112945510A (en) * 2021-05-07 2021-06-11 中国空气动力研究与发展中心超高速空气动力研究所 Total pressure rapid regulation and control method for reducing hypersonic wind tunnel starting impact
CN116380367A (en) * 2023-06-06 2023-07-04 中国空气动力研究与发展中心超高速空气动力研究所 Hydrogen leakage monitoring device and monitoring method for shock tube of high-pressure hydrogen driver
CN116380367B (en) * 2023-06-06 2023-08-01 中国空气动力研究与发展中心超高速空气动力研究所 Hydrogen leakage monitoring device and monitoring method for shock tube of high-pressure hydrogen driver

Also Published As

Publication number Publication date
JP3189928B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
JPH07218380A (en) Heavy-piston driving type shock wind-tunnel and control method thereof
CN107806977B (en) Combined wide Mach number high enthalpy pulse wind tunnel tube structure
Downey et al. A rapid opening sleeve valve for a diaphragmless shock tube
KR20120010339A (en) Moving Model Rig for Ultra-Speed Tube Train
CN201326477Y (en) Two-control-in-one-position pneumatic pilot-valve used in gelled-propellant supply system
CN106353180A (en) Explosive wave simulating device with adjustable positive pressure acting time
US3940981A (en) Projectile recovery system with quick opening valves
CN113884267B (en) Transient jet flow test device for pulse wind tunnel
CN114166455B (en) Transient jet flow test method for pulse wind tunnel
CN115165289A (en) Ultrasonic explosion phenomenon wind tunnel test simulation system and method
KR20130024120A (en) Airtight structure of tunnel exit for keeping partial vaccum in tunnel on moving model test rig
JPH07218381A (en) Apparatus and method for controlling waveform in shock wind-tunnel
US3019601A (en) Pen-shaped nozzle with thrust deflector
Dunsworth et al. Ramjet engine testing and simulation techniques
US3853003A (en) Wind tunnel flow generation section
US4898028A (en) Piston for a high-enthalpy wind tunnel
JPH08178092A (en) Piston release valve for free piston impulse pipe/tunnel
JP2002071508A (en) Inpact type wind tunnel equipment
Porzio et al. Experimental study of a confined jet thrust vector control nozzle
US3505867A (en) High enthalpy air for hypersonic shock tunnel testing
JP2022553136A (en) Pressure wave generator and method of operating the pressure wave generator
JPH08226868A (en) Constant pressure air source for supersonic wind tunnel
Juhany et al. AT0 Ludwieg tube wind tunnel at KAU
US4017055A (en) Pneumatic valve apparatus
JP2004150959A (en) Opening and closing valve and wind tunnel equipment equipped with opening and closing valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees