JPH07218381A - Apparatus and method for controlling waveform in shock wind-tunnel - Google Patents

Apparatus and method for controlling waveform in shock wind-tunnel

Info

Publication number
JPH07218381A
JPH07218381A JP3304994A JP3304994A JPH07218381A JP H07218381 A JPH07218381 A JP H07218381A JP 3304994 A JP3304994 A JP 3304994A JP 3304994 A JP3304994 A JP 3304994A JP H07218381 A JPH07218381 A JP H07218381A
Authority
JP
Japan
Prior art keywords
pressure chamber
low
pressure
speed
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3304994A
Other languages
Japanese (ja)
Other versions
JP3224062B2 (en
Inventor
Fumio Tono
文男 東野
Koji Matsunaga
康二 松永
Naoyuki Matsumoto
尚之 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP03304994A priority Critical patent/JP3224062B2/en
Publication of JPH07218381A publication Critical patent/JPH07218381A/en
Application granted granted Critical
Publication of JP3224062B2 publication Critical patent/JP3224062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To provide a waveform control apparatus and the waveform control method for a shock wind-tunnel which can elongate the duration of steady air flow and can form the air flow accompanying high-frequency pressure fluctuation by controlling the waveforms before and after expansion. CONSTITUTION:A porous plate 21 is provided in front of the moving end of a low-pressure chamber 9, wherein a piston is moved at a high speed. High-frequency pressure fluctuation is formed of a shock wave formed at the output side of many holes and the reflected wave from the end of the low pressure chamber. The compressive high-speed air flow generating the high-frequency pressure fluctuation is formed by expanding the pressure fluctuation. Thus, the waveform of the air flow formed in the shock wind tunnel can be simply controlled, and the air flow and the like accompanying the high-frequency pressure can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は衝撃風洞の波形制御装
置および波形制御方法に関し、衝撃波の波形を制御して
定常流以外の高周波圧力変動を伴う気流や波形を乱す反
射波の影響を無くし持続時間の延長を図るようにしたも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shock wave tunnel waveform control device and waveform control method, and controls the waveform of a shock wave to eliminate the effects of air flow accompanied by high frequency pressure fluctuations other than steady flow and reflected waves which disturb the waveform and maintain the waveform. It is designed to extend the time.

【0002】[0002]

【従来の技術】風洞は風速を制御された一様な気流を発
生させ、この気流の中に航空機、自動車、船舶等の空気
中を運動する物体や建造物などの模型を入れることによ
り、気流の影響を調査する実験装置であり、発生する風
速の大きさに応じて様々な種類の風洞がこれまでに提案
されてきた。
2. Description of the Related Art A wind tunnel generates a uniform air flow whose wind speed is controlled, and a model such as an object moving in the air such as an aircraft, an automobile, a ship or a model such as a building is put in the air flow to generate an air flow. This is an experimental device for investigating the influence of the above, and various kinds of wind tunnels have been proposed so far according to the magnitude of the generated wind speed.

【0003】そのなかでも、高マッハ数の気流を作るこ
とができる高速風洞としては、図4(a)に示すよう
に、高圧空気が充填される高圧室1に先細形などの吹出
しノズル2を介して低圧室または排気装置3を接続して
おき、高圧室1と吹出しノズル2との間に設けた調圧弁
4を開くことにより、低圧室または排気装置3の内部
に、300m/s 以上の音速を越えた気流を発生させるよ
うにしたものがある。
Among them, as a high-speed wind tunnel capable of producing a high Mach number air flow, as shown in FIG. 4 (a), a high pressure chamber 1 filled with high pressure air is provided with a blowing nozzle 2 of a tapered shape or the like. The low pressure chamber or the exhaust device 3 is connected through the opening, and the pressure regulating valve 4 provided between the high pressure chamber 1 and the blowing nozzle 2 is opened, so that the inside of the low pressure chamber or the exhaust device 3 is 300 m / s or more. Some are designed to generate an air flow that exceeds the speed of sound.

【0004】しかし、この高速風洞では、マッハ数の大
きい気流を作ろうとすると、高圧室1に充填する空気の
圧力を大きくしなければならず、高圧圧縮機を必要とす
るなど大規模な設備となるとともに、その設備費がかさ
んでしまうという問題があった。
However, in this high-speed wind tunnel, in order to create an air flow with a large Mach number, the pressure of the air with which the high-pressure chamber 1 is filled must be increased, which requires a large-scale facility such as a high-pressure compressor. However, there was a problem that the equipment cost would be expensive.

【0005】そこで、高速気流を比較的簡単に得ること
ができる高速風洞として、図4(b)に示す風洞が提案
され、高圧のガスを充填する高圧室5と低圧にした低圧
室6とを隔膜7を介して連結しておき、隔膜7を破るこ
とにより高圧室5と低圧室6との間の圧力差によって高
圧室5内のガスを低圧室6内に膨脹させ、音速を越えた
気流を発生させるようにしている。
Therefore, a wind tunnel shown in FIG. 4 (b) has been proposed as a high-speed wind tunnel capable of obtaining a high-speed air flow relatively easily. A high-pressure chamber 5 for filling high-pressure gas and a low-pressure chamber 6 for reducing the pressure are proposed. The gas in the high-pressure chamber 5 is expanded into the low-pressure chamber 6 by the pressure difference between the high-pressure chamber 5 and the low-pressure chamber 6 by connecting the membrane 7 through the diaphragm 7, and the air flow exceeding the sonic velocity. I am trying to generate.

【0006】この高速風洞によれば、低マッハ数領域の
気流を形成することは可能であるが、高速気流の持続時
間が短く、マッハ数の大きい高速気流を得ようとする
と、高圧室5に充填するガスの圧力を高くしなければな
らず、しかも隔膜7が破られたのち高圧室5側へのガス
の膨脹も起こり効率が悪いという問題があった。
According to this high-speed wind tunnel, it is possible to form an air flow in a low Mach number region, but if an attempt is made to obtain a high-speed air flow having a short duration of the high-speed air flow and a large Mach number, the high pressure chamber 5 There is a problem that the pressure of the gas to be filled must be increased, and further, the gas expands to the high pressure chamber 5 side after the diaphragm 7 is broken, resulting in poor efficiency.

【0007】そこで、高速気流の持続時間を長くするこ
とができる風洞として図4(c)に示すものが提案さ
れ、一般に衝撃風洞とよばれている。
Therefore, a wind tunnel shown in FIG. 4 (c) has been proposed as a wind tunnel capable of lengthening the duration of high-speed airflow, and is generally called an impact wind tunnel.

【0008】この衝撃風洞では、高圧のガスを充填する
高圧室8と低圧室9とを隔膜10を介して連結し、さら
に、低圧室9の先端部に急速開閉弁11およびラバール
管を用いた吹出しノズル12を介して真空ポンプ13に
より真空吸引される測定室14を配置するようにしてお
り、隔膜10を破ることにより、高圧室8の内部の駆動
ガスが急激に膨脹して低圧室9に衝撃波を発生させ、発
生した衝撃波で低圧室9内のガスを圧縮して、この管端
付近に高温高圧ガス(3000K、100気圧程度)を
生成させ、この高温高圧ガスをノズル12から測定室1
4に膨脹させることにより、数ms程度の時間だけ、極超
音速流を形成するようにしている。
In this shock wind tunnel, a high pressure chamber 8 for filling high pressure gas and a low pressure chamber 9 are connected via a diaphragm 10, and a rapid opening / closing valve 11 and a Laval tube are used at the tip of the low pressure chamber 9. A measurement chamber 14 that is vacuum-sucked by a vacuum pump 13 via a blow-out nozzle 12 is arranged, and when the diaphragm 10 is broken, the driving gas inside the high-pressure chamber 8 expands rapidly to the low-pressure chamber 9. A shock wave is generated and the generated shock wave compresses the gas in the low pressure chamber 9 to generate a high temperature and high pressure gas (3000 K, about 100 atm) near the tube end, and the high temperature and high pressure gas is supplied from the nozzle 12 to the measurement chamber 1
By expanding it to 4, a hypersonic flow is formed for a time of several ms.

【0009】さらに、マッハ数の高い気流を必要とする
とともに、持続時間の延長を図る必要がある場合の衝撃
風洞としては、図4(d)に示すように、低圧室9の内
部に摺動自在の軽いピストン15を装着しておき、隔膜
10を破った際の衝撃波で高温高圧ガスを形成するので
はなく、ピストン15を高速駆動することにより熱的に
損失が少ない圧縮を行なって一層高温高圧のガスを得る
ようにし、これを膨脹して高速気流を得るようにしてお
り、持続時間を200ms程度まで拡大するようにしてい
る。
Furthermore, as an impact wind tunnel in the case of requiring an air flow with a high Mach number and extending the duration, as shown in FIG. 4 (d), it slides inside the low pressure chamber 9. Rather than forming a high-temperature high-pressure gas with a shock wave when the diaphragm 10 is breached, the piston 15 is driven at a high speed to perform compression with less thermal loss to achieve higher temperature. A high-pressure gas is obtained, which is expanded to obtain a high-speed air stream, and the duration is extended to about 200 ms.

【0010】このような衝撃風洞では、ピストン15に
より熱的に損失が少ない等エントロピ圧縮を行なってい
るために容易に高温高圧ガスが得ることができ、マッハ
数の高い定常気流を得ることができる。
In such an impact wind tunnel, high-temperature high-pressure gas can be easily obtained because the piston 15 performs isentropic compression with less thermal loss, and a steady air flow with a high Mach number can be obtained. .

【0011】[0011]

【発明が解決しようとする課題】ところが、このような
2種類の衝撃風洞を用いて行う実験対象によっては、定
常高速気流だけでなく、衝撃波中を運動するものもあ
り、衝撃風洞で作られる気流を高周波圧力変動を伴うも
のにしたい場合があるが、これまでの衝撃風洞では、定
常気流を得るための工夫は成されているものの、高周波
圧力変動を伴う気流を作ることは出来なかった。
However, not only the steady high-speed air flow but also the one moving in the shock wave depending on the object to be tested using such two types of shock wind tunnels, the air flow created in the shock wind tunnel There is a case where it is desired to make the high frequency pressure fluctuation, but in the conventional shock wind tunnel, the air flow accompanied by the high frequency pressure fluctuation could not be created although the device for obtaining the steady flow was made.

【0012】また、ピストンを用いて断熱圧縮を行うこ
れまでの衝撃風洞では、膨脹波の一部がピストンで反射
して気流を乱すため定常流の持続時間が短く、安定して
実験を行うためには、より持続時間を長くすることが望
まれている。
In the conventional shock wind tunnel in which the piston is used for adiabatic compression, part of the expansion wave is reflected by the piston and disturbs the air flow, so that the steady flow has a short duration and stable experiments are performed. It is desired to have a longer duration.

【0013】この発明は上記の従来の技術が有する課題
を解決するためになされたものであり、定常気流だけで
なく、高周波圧力変動を伴う気流を作ることができる衝
撃風洞の波形制御装置及び波形制御方法を提供しようと
するものである。
The present invention has been made in order to solve the problems of the above-mentioned conventional techniques, and a shock wave tunnel waveform control device and waveform capable of producing not only a steady air flow but also an air flow accompanied by a high frequency pressure fluctuation. It is intended to provide a control method.

【0014】また、この発明は、持続時間に影響を及ぼ
す反射波の到達を遅らすことで持続時間を延長すること
ができる衝撃風洞の波形制御装置及び波形制御方法を提
供しようとするものである。
Another object of the present invention is to provide a shock wave tunnel waveform control device and waveform control method capable of extending the duration by delaying the arrival of a reflected wave that affects the duration.

【0015】[0015]

【課題を解決するための手段】この発明の請求項1記載
の衝撃風洞の波形制御装置は、高圧室内の高圧駆動ガス
を急激に膨脹させ低圧室内のピストンを高速移動させて
高温高圧の流体を得て、この流体を膨脹させて高速気流
を得る衝撃風洞において、前記ピストンが高速移動する
低圧室の移動端手前に、多孔の出側に形成される衝撃波
と低圧室端からの反射波とで高周波圧力変動波形を有す
る気流を作る多孔板を設けたことを特徴とするものであ
る。
According to a first aspect of the present invention, there is provided a shock wave tunnel waveform control device in which a high-pressure drive gas in a high-pressure chamber is rapidly expanded to rapidly move a piston in the low-pressure chamber to generate a high-temperature and high-pressure fluid. Then, in a shock wind tunnel that expands this fluid to obtain a high-speed airflow, a shock wave formed on the exit side of the porous body and a reflected wave from the end of the low-pressure chamber are formed in front of the moving end of the low-pressure chamber in which the piston moves at high speed. It is characterized in that a perforated plate that creates an air flow having a high-frequency pressure fluctuation waveform is provided.

【0016】また、この発明の請求項2記載の衝撃風洞
の波形制御方法は、高圧室内の高圧駆動ガスを急激に膨
脹させ低圧室内のピストンを高速移動させて高温高圧の
流体を得て、この流体を膨脹させて高速気流を得る衝撃
風洞において、前記ピストンが高速移動する低圧室の移
動端手前に多孔板を設けて、これら多孔の出側に形成さ
れる衝撃波と低圧室端で反射する反射波とで高周波圧力
変動を作り、この流体を膨脹させて高周波圧力変動を生
じる圧縮性高速気流を作るようにしたことを特徴とする
ものである。
According to a second aspect of the present invention, there is provided a shock wave tunnel waveform control method in which the high-pressure drive gas in the high-pressure chamber is rapidly expanded, the piston in the low-pressure chamber is moved at high speed, and a high-temperature and high-pressure fluid is obtained. In an impact wind tunnel that expands a fluid to obtain a high-speed air flow, a perforated plate is provided in front of the moving end of the low-pressure chamber in which the piston moves at high speed, and the shock wave formed on the exit side of these perforations and the reflection reflected at the end of the low-pressure chamber It is characterized in that high-frequency pressure fluctuations are created by waves and the fluid is expanded to create a compressible high-speed airflow that causes high-frequency pressure fluctuations.

【0017】さらに、この発明の請求項3記載の衝撃風
洞の波形制御装置は、高圧室内の高圧駆動ガスを急激に
膨脹させ低圧室内のピストンを高速移動させて高温高圧
の流体を得て、この流体を膨脹させて高速気流を得る衝
撃風洞において、前記低圧室の端部に第2低圧室を連結
するとともに、前記低圧室のピストンが高速移動する移
動端手前に、1乃至複数の孔が形成され第2低圧室への
前記流体の膨脹に伴なう膨脹波の当該ピストンでの反射
波の高速気流への到達時間を遅らせて波形の乱れ防止に
よる持続時間の延長を図る孔板を設けたことを特徴とす
るものである。
Further, according to the third aspect of the present invention, the waveform control device for an impact wind tunnel rapidly expands the high pressure driving gas in the high pressure chamber to move the piston in the low pressure chamber at high speed to obtain a high temperature and high pressure fluid. In an impact wind tunnel for expanding a fluid to obtain a high-speed airflow, a second low-pressure chamber is connected to an end of the low-pressure chamber, and one or more holes are formed in front of a moving end of a piston of the low-pressure chamber that moves at high speed. A perforated plate is provided to delay the time for the expansion wave accompanying the expansion of the fluid to the second low-pressure chamber to reach the high-speed airflow of the reflected wave at the piston, and to extend the duration by preventing the waveform from being disturbed. It is characterized by that.

【0018】また、この発明の請求項4記載の衝撃風洞
の波形制御方法は、高圧室内の高圧駆動ガスを急激に膨
脹させ低圧室内のピストンを高速移動させて高温高圧の
流体を得て、この流体を第2低圧室へ膨脹させて衝撃波
を作ったのち、得られた流体をさらに膨脹させて高速気
流を得る衝撃風洞において、前記ピストンが高速移動す
る低圧室の移動端手前に1乃至複数の孔が形成された孔
板を設けて第2低圧室への前記流体の膨脹に伴なう膨脹
波が当該ピストンで反射して高速流体に到達する時間を
遅らせて高速気流の持続時間の延長を図るようにしたこ
とを特徴とするものである。
According to a fourth aspect of the present invention, there is provided a shock wave tunnel waveform control method, wherein the high-pressure drive gas in the high-pressure chamber is rapidly expanded, the piston in the low-pressure chamber is moved at high speed, and a high-temperature and high-pressure fluid is obtained. In a shock wind tunnel in which a fluid is expanded into a second low pressure chamber to generate a shock wave, and then the obtained fluid is further expanded to obtain a high-speed airflow, one or a plurality of pressures are provided before the moving end of the low-pressure chamber in which the piston moves at high speed. A perforated plate having holes is provided to delay the time when the expansion wave accompanying the expansion of the fluid to the second low pressure chamber is reflected by the piston and reaches the high speed fluid to extend the duration of the high speed air flow. It is characterized by being designed.

【0019】[0019]

【作用】この発明の請求項1及び2記載の衝撃風洞の波
形制御装置および波形制御方法によれば、高圧室内の高
圧駆動ガスを急激に膨脹させ低圧室内のピストンを高速
移動させて高温高圧の圧縮流体を得て、この圧縮流体を
膨脹させて高速気流を得る場合に、ピストンが高速移動
する低圧室の移動端手前に多孔板を設けようにしてお
り、これら多孔の出側に形成される衝撃波と低圧室端で
反射する反射波とで高周波圧力変動を作り、これを膨脹
させることで、高周波圧力変動を生じる圧縮性高速気流
を作るようにしている。
According to the waveform control device and the waveform control method for an impact wind tunnel according to the first and second aspects of the present invention, the high-pressure drive gas in the high-pressure chamber is rapidly expanded to move the piston in the low-pressure chamber at high speed to generate a high-temperature and high-pressure gas. When a compressed fluid is obtained and the compressed fluid is expanded to obtain a high-speed air flow, a perforated plate is provided in front of the moving end of the low-pressure chamber in which the piston moves at high speed. A high-frequency pressure fluctuation is created by the shock wave and the reflected wave reflected at the end of the low-pressure chamber, and by expanding this, a compressible high-speed airflow that causes the high-frequency pressure fluctuation is created.

【0020】これにより、衝撃風洞で作られる気流の波
形を簡単に制御でき、高周波圧力変動を伴う気流を得る
ことができるようになる。
Thus, the waveform of the air flow created in the impact wind tunnel can be easily controlled, and the air flow accompanied by the high frequency pressure fluctuation can be obtained.

【0021】また、この発明の請求項3及び4記載の衝
撃風洞の波形制御装置及び波形制御方法によれば、高圧
室内の高圧駆動ガスを急激に膨脹させ低圧室内のピスト
ンを高速移動させて高温高圧の流体を得て、この流体を
第2低圧室へ膨脹させて衝撃波を作ったのち、得られた
流体をさらに膨脹させて高速気流を得る場合に、ピスト
ンが高速移動する低圧室の移動端手前に1乃至複数の孔
が形成された孔板を設けるようにしており、低圧室から
第2低圧室に向かって膨脹する気流の一部が低圧室のピ
ストンで反射して高速流体に到達する時間を孔板の孔で
遅らせることで、高速気流の持続時間の延長を図るよう
にしている。
According to the waveform control device and the waveform control method for an impact wind tunnel according to claims 3 and 4 of the present invention, the high-pressure drive gas in the high-pressure chamber is rapidly expanded, and the piston in the low-pressure chamber is moved at high speed to increase the temperature. After obtaining a high-pressure fluid and expanding the fluid into the second low-pressure chamber to create a shock wave, and further expanding the obtained fluid to obtain a high-speed airflow, the moving end of the low-pressure chamber in which the piston moves at high speed A perforated plate having one or a plurality of holes formed in front is provided, and a part of the air flow expanding from the low pressure chamber toward the second low pressure chamber is reflected by the piston of the low pressure chamber to reach the high speed fluid. By delaying the time with holes in the perforated plate, the duration of the high-speed airflow is extended.

【0022】[0022]

【実施例】以下、この発明の実施例を図面に基づき詳細
に説明する。図1はこの発明の請求項1記載の衝撃風洞
の波形制御装置の一実施例にかかる主要部の概略構成図
であり、図4(d)に示した衝撃風洞の吹出しノズルの
前後を示すものである。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a main part according to an embodiment of a waveform control device for an impact wind tunnel according to claim 1 of the present invention, showing front and rear of a blowout nozzle of the impact wind tunnel shown in FIG. 4 (d). Is.

【0023】この衝撃風洞の波形制御装置20では、既
に説明した図4(d)の衝撃風洞のピストン15が装着
された低圧室9の移動端手前(図1での右端)に多孔板
21が取付けられている。
In this shock wind tunnel waveform control device 20, the porous plate 21 is provided in front of the moving end (right end in FIG. 1) of the low pressure chamber 9 in which the piston 15 of the shock wind tunnel shown in FIG. 4 (d) is mounted. Installed.

【0024】そして、この多孔板21の前方の低圧室9
の先端に急速開閉弁11が取付けられるとともに、吹出
しノズル12が取付けてある。
The low-pressure chamber 9 in front of the perforated plate 21
A quick opening / closing valve 11 is attached to the tip of the nozzle and a blowout nozzle 12 is attached.

【0025】なお、図1では図示省略したが、低圧室9
の上流側に隔膜を介して配置される高圧室や吹出しノズ
ル12の下流に設けられて真空ポンプで真空吸引される
測定室の構成等は、既に説明した図4(d)のものと同
一であり、以下、その番号を用いて説明する(図4参
照)。
Although not shown in FIG. 1, the low pressure chamber 9
The configuration of the high-pressure chamber arranged on the upstream side of the membrane through the diaphragm and the measurement chamber provided downstream of the blowout nozzle 12 and vacuum-sucked by the vacuum pump are the same as those in FIG. 4 (d) already described. Yes, and will be described below using the numbers (see FIG. 4).

【0026】このように構成した衝撃風洞の波形制御装
置20の動作とともに、衝撃風洞の波形制御方法につい
て説明する。
A description will be given of the operation of the shock-tunnel waveform control device 20 configured as described above and a method of controlling the shock-tunnel waveform.

【0027】まず、実験前の準備として、高圧室8内に
小型コンプレッサ等を用いて駆動ガスとして圧縮空気を
充填する。この高圧室8への圧縮空気の充填圧力は、最
終的に必要な高速気流などの測定条件によって適宜決定
される。また、低圧室9内のピストン15を高圧室8側
の端部に移動するとともに、高圧室8との間に隔膜10
を取付けて塞いだ状態にするとともに、低圧室9先端の
急速開閉弁11は閉じた状態にする。
First, as a preparation before the experiment, the high pressure chamber 8 is filled with compressed air as a driving gas by using a small compressor or the like. The pressure for filling the high-pressure chamber 8 with compressed air is appropriately determined according to the measurement conditions such as the finally required high-speed air flow. Further, the piston 15 in the low-pressure chamber 9 is moved to the end portion on the high-pressure chamber 8 side, and the diaphragm 10 is formed between the piston 15 and the high-pressure chamber 8.
Is attached and closed, and the rapid opening / closing valve 11 at the tip of the low pressure chamber 9 is closed.

【0028】さらに、測定室14内に測定対象となる模
型を設置した後、測定室14内を真空ポンプ13により
真空吸引するとともに、低圧室9内も所定の低圧状態に
する。
Further, after the model to be measured is installed in the measuring chamber 14, the inside of the measuring chamber 14 is vacuum-sucked by the vacuum pump 13 and the inside of the low pressure chamber 9 is also brought to a predetermined low pressure state.

【0029】こうして準備が完了した後、高圧室8と低
圧室9とを仕切る隔膜10を破る。
After the preparation is completed in this way, the diaphragm 10 that divides the high pressure chamber 8 and the low pressure chamber 9 is broken.

【0030】すると、高圧室8と低圧室9との間の圧力
差によって高圧室8内の圧縮空気が急激に膨脹し、これ
によってピストン15が高速で駆動され、ピストン15
の前方の低圧室9内の空気が急激に圧縮され、熱的な損
失が少ない断熱圧縮状態の高温高圧状態のガスが作られ
る。
Then, the pressure difference between the high pressure chamber 8 and the low pressure chamber 9 causes the compressed air in the high pressure chamber 8 to rapidly expand, thereby driving the piston 15 at a high speed and the piston 15
The air in the low-pressure chamber 9 in front of is rapidly compressed, and a high-temperature high-pressure gas in an adiabatic compression state with less thermal loss is produced.

【0031】この高温高圧状態のガスが低圧室9の移動
端の手前の多孔板21のところに来ると、多孔部分を通
過する際の膨脹によって多孔板21の前方に衝撃波が形
成されるとともに、各孔からの衝撃波が低圧室9の先端
で反射され、衝撃波と反射波とが合成されて高周波の圧
力変動を伴う高温高圧ガスが低圧室9の先端に作られ
る。
When this high-temperature and high-pressure gas reaches the porous plate 21 before the moving end of the low-pressure chamber 9, a shock wave is formed in front of the porous plate 21 due to expansion when passing through the porous portion. The shock wave from each hole is reflected at the tip of the low-pressure chamber 9, and the shock wave and the reflected wave are combined to generate high-temperature high-pressure gas with high-frequency pressure fluctuation at the tip of the low-pressure chamber 9.

【0032】こうして高周波圧力変動を伴う高温高圧ガ
スが作られた状態で急速開閉弁11を開いて吹出しノズ
ル12で膨脹させる。
In this way, the rapid opening / closing valve 11 is opened and the blow-out nozzle 12 expands it while the high-temperature high-pressure gas accompanied by the high-frequency pressure fluctuation is produced.

【0033】すると、高周波圧力変動をともなったガス
が膨脹して測定室14内に超音速気流が作られ、この超
音速気流にもそのまま高周波圧力変動が含まれた状態と
なり、高周波圧力変動を伴う気流を作ることができる。
Then, the gas accompanied by the high-frequency pressure fluctuation expands to form a supersonic airflow in the measurement chamber 14, and the supersonic airflow also contains the high-frequency pressure fluctuation as it is. Can create an air flow.

【0034】したがって、筒状のガイドから打ち出され
る高速飛行体が衝撃波中を飛行する状態などを再現しな
がら実験を行うことができる。
Therefore, it is possible to conduct an experiment while reproducing a state in which a high-speed flying body launched from a tubular guide flies in a shock wave.

【0035】また、高周波圧力変動を伴う気流を作るた
め、多孔板21を設置するだけで良く、構造が簡単であ
り、高圧ガスに対する考慮も簡単にできる。
Further, since an air flow accompanied by high-frequency pressure fluctuations is created, it suffices to install the perforated plate 21, the structure is simple, and high-pressure gas can be easily considered.

【0036】さらに、多孔板21の孔の数や大きさ、あ
るいは低圧室9の移動端からの距離などによって測定室
14内に作られる高周波圧力変動波形を制御することが
でき、異なる圧力変動を作り出すことができる。
Further, it is possible to control the high frequency pressure fluctuation waveform generated in the measurement chamber 14 by the number and size of the holes of the perforated plate 21, the distance from the moving end of the low pressure chamber 9 or the like, and different pressure fluctuations can be controlled. Can be produced.

【0037】次に、この発明の衝撃風洞の波形制御装置
の他の一実施例について、図2により説明する。
Next, another embodiment of the waveform control device for an impact wind tunnel according to the present invention will be described with reference to FIG.

【0038】この衝撃風洞の波形制御装置30では、上
記実施例装置20から急速開閉弁11を取除くようにし
た構成のみが異なり、かかる構成によっても多孔板21
を通過する際の衝撃波と低圧室9先端で反射する反射波
とで高周波圧力変動をともなった高温高圧ガスが低圧室
9の先端に作られ、このガスが吹出しノズル12から膨
脹することとなり、測定室14に高周波圧力変動を伴う
超音速気流を作り出すことができる。
The waveform control device 30 of the impact wind tunnel is different from the device 20 of the embodiment only in the structure in which the quick opening / closing valve 11 is removed.
A high-temperature high-pressure gas accompanied by high-frequency pressure fluctuations is created at the tip of the low-pressure chamber 9 by the shock wave when passing through the chamber and the reflected wave reflected at the tip of the low-pressure chamber 9, and this gas expands from the blowout nozzle 12 A supersonic airflow with high frequency pressure fluctuations can be created in the chamber 14.

【0039】したがって、一層構造が簡単になるととも
に、高周波圧力変動波形を制御して高周波圧力変動を伴
う気流を測定室14に作り出すことができる。
Therefore, the structure is further simplified, and the high-frequency pressure fluctuation waveform can be controlled to create an air flow with high-frequency pressure fluctuation in the measurement chamber 14.

【0040】次に、この発明の請求項3及び4に記載の
衝撃風洞の波形制御装置及び波形制御方法の一実施例に
ついて図3(a)により説明する。
Next, one embodiment of the waveform control device and the waveform control method for an impact wind tunnel according to claims 3 and 4 of the present invention will be described with reference to FIG.

【0041】この実施例では、波形を制御することによ
り測定室14に作り出される定常気流の持続時間を延長
しようとしている。
In this embodiment, by controlling the waveform, the duration of the stationary air flow created in the measuring chamber 14 is extended.

【0042】この衝撃風洞の波形制御装置40では、低
圧室9の先端に隔膜41を介してさらに第2低圧室42
が連結され、この第2低圧室42の先端に吹出しノズル
12や測定室14などが設置され、他の基本的な構造に
おいては、図4(d)の衝撃風洞と同一である。
In the shock wave tunnel waveform control device 40, the second low pressure chamber 42 is further provided at the tip of the low pressure chamber 9 via the diaphragm 41.
Are connected, and the blowing nozzle 12 and the measurement chamber 14 are installed at the tip of the second low-pressure chamber 42. The other basic structure is the same as that of the impact wind tunnel of FIG. 4D.

【0043】この衝撃風洞の波形制御装置40では、波
形制御のため、低圧室9のピストン15の移動端(図中
右端)の手前に1つ乃至複数の孔が開けられた孔板43
(図示例では、多孔板としてある。)が取付けてある。
なお、他の構成は上記実施例と同一であるので、その説
明は省略する。
In the percussion wind tunnel waveform control device 40, one or a plurality of holes are formed in front of the moving end (the right end in the figure) of the piston 15 in the low pressure chamber 9 in order to control the waveform.
(In the illustrated example, it is a perforated plate.).
The rest of the configuration is the same as that of the above-mentioned embodiment, so its explanation is omitted.

【0044】このように構成した衝撃風洞の波形制御装
置40の動作とともに、衝撃風洞の波形制御方法につい
て説明する。
The operation of the waveform control device 40 for an impact wind tunnel thus configured and the method for controlling the waveform of an impact wind tunnel will be described.

【0045】まず、実験前の準備として、高圧室8内に
小型コンプレッサ等を用いて駆動ガスとして圧縮空気を
充填する。この高圧室8への圧縮空気の充填圧力は、最
終的に必要な高速気流などの測定条件によって適宜決定
される。また、低圧室9内のピストン15を高圧室9側
の端部に移動するとともに、高圧室8との間及び低圧室
9と第2低圧室42との間にそれぞれ隔膜10,41を
取付けて塞いだ状態にする。
First, as a preparation before the experiment, the high pressure chamber 8 is filled with compressed air as a driving gas by using a small compressor or the like. The pressure for filling the high-pressure chamber 8 with compressed air is appropriately determined according to the measurement conditions such as the finally required high-speed air flow. Further, the piston 15 in the low pressure chamber 9 is moved to the end on the high pressure chamber 9 side, and the diaphragms 10 and 41 are attached to the high pressure chamber 8 and between the low pressure chamber 9 and the second low pressure chamber 42, respectively. Put it in a closed state.

【0046】さらに、測定室14内に測定対象となる模
型を設置した後、測定室14内を真空ポンプ13により
真空吸引するとともに、低圧室9内及び第2低圧室42
内も所定の低圧状態にする。
Further, after the model to be measured is installed in the measuring chamber 14, the inside of the measuring chamber 14 is vacuum-sucked by the vacuum pump 13, and the inside of the low pressure chamber 9 and the second low pressure chamber 42 are also sucked.
The inside is also set to a predetermined low pressure.

【0047】こうして準備が完了した後、高圧室8と低
圧室9とを仕切る隔膜10を破る。
After the preparation is completed in this way, the diaphragm 10 that divides the high pressure chamber 8 and the low pressure chamber 9 is broken.

【0048】すると、高圧室8と低圧室9との間の圧力
差によって高圧室8内の圧縮空気が急激に膨脹し、これ
によってピストン15が高速で駆動され、ピストン15
の前方の低圧室9内の空気が急激に圧縮され、熱的な損
失が少ない断熱圧縮状態の高温高圧状態のガスが作られ
る。
Then, due to the pressure difference between the high pressure chamber 8 and the low pressure chamber 9, the compressed air in the high pressure chamber 8 expands rapidly, which drives the piston 15 at high speed and the piston 15
The air in the low-pressure chamber 9 in front of is rapidly compressed, and a high-temperature high-pressure gas in an adiabatic compression state with less thermal loss is produced.

【0049】この高温高圧状態のガスが低圧室9の移動
端の手前の孔板43の多孔部分を通過した後、さらに隔
膜41を破って第2低圧室42に向かって膨脹させる。
After passing through the porous portion of the perforated plate 43 before the moving end of the low pressure chamber 9, the high temperature and high pressure gas further breaks the diaphragm 41 and expands toward the second low pressure chamber 42.

【0050】すると、前方に衝撃波が形成され、これに
よって圧縮されて高温高圧ガスが第2低圧室42の先端
に作られ、この高温高圧ガスが吹出しノズル12で膨脹
されて測定室14に定常の高速気流が形成される。
Then, a shock wave is formed in the forward direction, which is compressed and high-temperature high-pressure gas is produced at the tip of the second low-pressure chamber 42. This high-temperature high-pressure gas is expanded by the blow-out nozzle 12 and is kept stationary in the measurement chamber 14. A high velocity air stream is formed.

【0051】この測定室14に形成される高速気流の持
続時間は低圧室9と第2低圧室42との間の隔膜41が
破られて衝撃波が発生すると同時に、ピストン15の先
端に向かって膨脹した反射膨脹波が第2低圧室42の先
端に到達するまでの時間によって決まり、従来の孔板4
3を設置しない場合には、図3(b)に示す膨脹波によ
って持続時間はT1 となって極めて短い。
The duration of the high-speed airflow formed in the measuring chamber 14 is such that the diaphragm 41 between the low pressure chamber 9 and the second low pressure chamber 42 is broken to generate a shock wave, and at the same time, the piston 15 expands toward the tip. The time required for the reflected expansion wave to reach the tip of the second low pressure chamber 42 is determined by the conventional perforated plate 4
When No. 3 is not installed, the duration becomes T1 due to the expansion wave shown in FIG.

【0052】これに対し、この衝撃風洞の波形制御装置
40では、低圧室9のピストン15の移動端の手前に孔
板43が設置してあるので、隔膜41で膨脹する膨脹波
は孔板43の孔を通過したのちピストン15の表面で反
射して反射膨脹波になるが、孔板43の孔を通過するの
に要する抵抗分だけ膨脹波の発達を抑えることができ、
反射膨脹波の第2低圧室42先端に達する時間を遅らす
ことができ、これによって図3(a)に示すように、持
続時間をTまで延長することができる。
On the other hand, in this shock wind tunnel waveform control device 40, since the hole plate 43 is installed in front of the moving end of the piston 15 in the low pressure chamber 9, the expansion wave expanding by the diaphragm 41 is applied to the hole plate 43. After passing through the hole of No. 4, the surface of the piston 15 reflects and becomes a reflected expansion wave, but the development of the expansion wave can be suppressed by the resistance required to pass through the hole of the hole plate 43.
It is possible to delay the time for the reflected expansion wave to reach the tip of the second low pressure chamber 42, whereby the duration time can be extended to T, as shown in FIG.

【0053】このように、孔板43を設置することで、
反射膨脹波の波形を制御することができ、これによって
測定室14に形成する定常気流の持続時間を延長するこ
とができる。
By installing the perforated plate 43 in this way,
The waveform of the reflected expansion wave can be controlled, and thus the duration of the steady air flow formed in the measurement chamber 14 can be extended.

【0054】したがって、これまでの衝撃風洞に比べて
持続時間の延長を図ることができ、一層衝撃風洞での実
験が容易になる。
Therefore, the duration can be extended as compared with the conventional impact wind tunnel, and the experiment in the impact wind tunnel becomes easier.

【0055】また、持続時間の延長のため孔板43を設
置するだけで良く、構造が簡単であり、高圧ガスに対す
る考慮も簡単にできる。
Further, since it is only necessary to install the perforated plate 43 for extending the duration, the structure is simple and the high pressure gas can be easily considered.

【0056】[0056]

【発明の効果】以上実施例とともに具体的に説明したよ
うに、この発明の請求項1及び2記載の衝撃風洞の波形
制御装置および波形制御方法によれば、高圧室内の高圧
駆動ガスを急激に膨脹させ低圧室内のピストンを高速移
動させて高温高圧の圧縮流体を得て、この圧縮流体を膨
脹させて高速気流を得る場合に、ピストンが高速移動す
る低圧室の移動端手前に多孔板を設けようにしたので、
これら多孔の出側に形成される衝撃波と低圧室端で反射
する反射波とで高周波圧力変動を作り、これを膨脹させ
ることで、高周波圧力変動を生じる圧縮性高速気流を簡
単に作ることができる。
As described above in detail with reference to the embodiments, according to the waveform control device and the waveform control method for an impact wind tunnel according to claims 1 and 2 of the present invention, the high-pressure drive gas in the high-pressure chamber is rapidly changed. When expanding and moving the piston in the low pressure chamber at high speed to obtain high temperature and high pressure compressed fluid and expanding this compressed fluid to obtain high speed air flow, a perforated plate is provided in front of the moving end of the low pressure chamber where the piston moves at high speed. I did so,
A high-frequency pressure fluctuation is created by the shock wave formed on the exit side of these perforations and the reflected wave reflected at the end of the low-pressure chamber, and by expanding this, a compressible high-speed air flow that causes the high-frequency pressure fluctuation can be easily created. .

【0057】これにより、衝撃風洞で作られる気流の波
形を簡単に制御でき、高周波圧力変動を伴う気流を得て
風洞実験を行うことができる。
Thus, the waveform of the air flow created in the shock wind tunnel can be easily controlled, and the air flow accompanied by the high frequency pressure fluctuation can be obtained to conduct the wind tunnel experiment.

【0058】また、この発明の請求項3及び4記載の衝
撃風洞の波形制御装置及び波形制御方法によれば、高圧
室内の高圧駆動ガスを急激に膨脹させ低圧室内のピスト
ンを高速移動させて高温高圧の流体を得て、この流体を
第2低圧室へ膨脹させて衝撃波を作ったのち、得られた
流体をさらに膨脹させて高速気流を得る場合に、ピスト
ンが高速移動する低圧室の移動端手前に1乃至複数の孔
が形成された孔板を設けるようにしたので、この孔板に
よる反射膨脹派の制御によって低圧室から第2低圧室に
向かって膨脹する気流の一部が低圧室のピストンで反射
して高速流体に到達する時間を孔板の孔で遅らせること
ができ、定常な高速気流の持続時間の延長を図ることが
できる。
According to the waveform control device and the waveform control method for an impact wind tunnel according to claims 3 and 4 of the present invention, the high-pressure drive gas in the high-pressure chamber is rapidly expanded to move the piston in the low-pressure chamber at a high speed to increase the temperature. After obtaining a high-pressure fluid and expanding the fluid into the second low-pressure chamber to create a shock wave, and further expanding the obtained fluid to obtain a high-speed airflow, the moving end of the low-pressure chamber in which the piston moves at high speed Since the perforated plate having one or a plurality of holes formed in front is provided, a part of the air flow expanding from the low pressure chamber toward the second low pressure chamber is controlled by the control of the reflective expansion group by the perforated plate. It is possible to delay the time required for the high-speed fluid to be reflected by the piston to reach the high-speed fluid, and to extend the duration of the steady high-speed air flow.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の請求項1記載の衝撃風洞の波形制御
装置の一実施例にかかる主要部の概略構成図であり、図
4(d)に示した衝撃風洞の吹出しノズルの前後を示す
ものである。
1 is a schematic configuration diagram of a main portion according to an embodiment of a waveform control device for an impact wind tunnel according to claim 1 of the present invention, showing the front and rear of a blowout nozzle of the impact wind tunnel shown in FIG. 4 (d). It is a thing.

【図2】この発明の請求項1記載の衝撃風洞の波形制御
装置の他の一実施例にかかる主要部の概略構成図であ
り、図4(d)に示した衝撃風洞の吹出しノズルの前後
を示すものである。
FIG. 2 is a schematic configuration diagram of a main part according to another embodiment of the waveform control device for an impact wind tunnel according to claim 1 of the present invention, which is before and after the blowing nozzle of the impact wind tunnel shown in FIG. 4 (d). Is shown.

【図3】この発明の請求項3記載の衝撃風洞の波形制御
装置の一実施例の概略構成図および従来装置との持続時
間を比較した説明図である。
FIG. 3 is a schematic configuration diagram of an embodiment of a waveform control device for an impact wind tunnel according to claim 3 of the present invention and an explanatory diagram comparing the duration with a conventional device.

【図4】従来の高速風洞および衝撃風洞の構造を示す説
明図である。
FIG. 4 is an explanatory view showing structures of a conventional high speed wind tunnel and impact wind tunnel.

【符号の説明】[Explanation of symbols]

8 高圧室 9 低圧室 10 隔膜 11 急速開閉弁 12 吹出しノズル 13 真空ポンプ 14 測定室 15 ピストン 20 衝撃風洞の波形制御装置 21 多孔板 30 衝撃風洞の波形制御装置 40 衝撃風洞の波形制御装置 41 隔膜 42 第2低圧室 43 孔板 T 持続時間 8 High-pressure chamber 9 Low-pressure chamber 10 Diaphragm 11 Rapid opening / closing valve 12 Blow-out nozzle 13 Vacuum pump 14 Measuring chamber 15 Piston 20 Waveform controller for shock wind tunnel 21 Perforated plate 30 Waveform controller for shock wind tunnel 41 Waveform controller for shock wind tunnel 41 Septum 42 Second low-pressure chamber 43 Perforated plate T Duration

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高圧室内の高圧駆動ガスを急激に膨脹さ
せ低圧室内のピストンを高速移動させて高温高圧の流体
を得て、この流体を膨脹させて高速気流を得る衝撃風洞
において、前記ピストンが高速移動する低圧室の移動端
手前に、多孔の出側に形成される衝撃波と低圧室端から
の反射波とで高周波圧力変動波形を有する気流を作る多
孔板を設けたことを特徴とする衝撃風洞の波形制御装
置。
1. A shock wind tunnel in which a high-pressure drive gas in a high-pressure chamber is rapidly expanded to move a piston in a low-pressure chamber at high speed to obtain a high-temperature and high-pressure fluid, and the fluid is expanded to obtain a high-speed air flow, wherein the piston is A shock characterized in that a perforated plate is provided in front of the moving end of the low-pressure chamber that moves at high speed to create an air flow having a high-frequency pressure fluctuation waveform by the shock wave formed on the exit side of the porous and the reflected wave from the end of the low-pressure chamber. Wind tunnel waveform controller.
【請求項2】 高圧室内の高圧駆動ガスを急激に膨脹さ
せ低圧室内のピストンを高速移動させて高温高圧の流体
を得て、この流体を膨脹させて高速気流を得る衝撃風洞
において、前記ピストンが高速移動する低圧室の移動端
手前に多孔板を設けて、これら多孔の出側に形成される
衝撃波と低圧室端で反射する反射波とで高周波圧力変動
を作り、この流体を膨脹させて高周波圧力変動を生じる
圧縮性高速気流を作るようにしたことを特徴とする衝撃
風洞の波形制御方法。
2. An impact wind tunnel in which a high-pressure drive gas in a high-pressure chamber is rapidly expanded to move a piston in a low-pressure chamber at high speed to obtain a high-temperature and high-pressure fluid, and the fluid is expanded to obtain a high-speed air flow A perforated plate is provided in front of the moving end of the low-pressure chamber that moves at high speed, and a high-frequency pressure fluctuation is created by the shock wave formed on the exit side of these perforations and the reflected wave reflected at the end of the low-pressure chamber, and this fluid is expanded to generate high-frequency waves. A method for controlling a waveform of an impact wind tunnel, characterized in that a compressible high-speed air flow that causes pressure fluctuation is created.
【請求項3】 高圧室内の高圧駆動ガスを急激に膨脹さ
せ低圧室内のピストンを高速移動させて高温高圧の流体
を得て、この流体を膨脹させて高速気流を得る衝撃風洞
において、前記低圧室の端部に第2低圧室を連結すると
ともに、前記低圧室のピストンが高速移動する移動端手
前に、1乃至複数の孔が形成され第2低圧室への前記流
体の膨脹に伴なう膨脹波の当該ピストンでの反射波の高
速気流への到達時間を遅らせて波形の乱れ防止による持
続時間の延長を図る孔板を設けたことを特徴とする衝撃
風洞の波形制御装置。
3. A low pressure chamber in an impact wind tunnel for rapidly expanding a high pressure driving gas in a high pressure chamber to move a piston in a low pressure chamber at a high speed to obtain a high temperature and high pressure fluid and expanding the fluid to obtain a high speed airflow. The second low pressure chamber is connected to the end of the low pressure chamber, and one or a plurality of holes are formed in front of the moving end of the low pressure chamber where the piston moves at high speed, so that the second low pressure chamber expands with the expansion of the fluid. A waveform control device for an impact wind tunnel, characterized in that a perforated plate is provided for delaying the arrival time of the reflected wave of the wave at the high-speed airflow to prevent the waveform from being disturbed, thereby extending the duration.
【請求項4】 高圧室内の高圧駆動ガスを急激に膨脹さ
せ低圧室内のピストンを高速移動させて高温高圧の流体
を得て、この流体を第2低圧室へ膨脹させて衝撃波を作
ったのち、得られた流体をさらに膨脹させて高速気流を
得る衝撃風洞において、前記ピストンが高速移動する低
圧室の移動端手前に1乃至複数の孔が形成された孔板を
設けて第2低圧室への前記流体の膨脹に伴なう膨脹波が
当該ピストンで反射して高速流体に到達する時間を遅ら
せて高速気流の持続時間の延長を図るようにしたことを
特徴とする衝撃風洞の波形制御方法。
4. A high-pressure drive gas in the high-pressure chamber is rapidly expanded to move a piston in the low-pressure chamber at a high speed to obtain a high-temperature and high-pressure fluid, and the fluid is expanded to a second low-pressure chamber to generate a shock wave. In an impact wind tunnel that further expands the obtained fluid to obtain a high-speed airflow, a hole plate having one or a plurality of holes is provided in front of the moving end of the low-pressure chamber in which the piston moves at high speed, A method for controlling a waveform of an impact wind tunnel, characterized in that the expansion wave resulting from the expansion of the fluid is reflected by the piston and is delayed in reaching the high-speed fluid to extend the duration of the high-speed air stream.
JP03304994A 1994-02-04 1994-02-04 Shock tunnel waveform control device and waveform control method Expired - Fee Related JP3224062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03304994A JP3224062B2 (en) 1994-02-04 1994-02-04 Shock tunnel waveform control device and waveform control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03304994A JP3224062B2 (en) 1994-02-04 1994-02-04 Shock tunnel waveform control device and waveform control method

Publications (2)

Publication Number Publication Date
JPH07218381A true JPH07218381A (en) 1995-08-18
JP3224062B2 JP3224062B2 (en) 2001-10-29

Family

ID=12375924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03304994A Expired - Fee Related JP3224062B2 (en) 1994-02-04 1994-02-04 Shock tunnel waveform control device and waveform control method

Country Status (1)

Country Link
JP (1) JP3224062B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499427A (en) * 2013-09-27 2014-01-08 北京航空航天大学 Alcohol/kerosene system of vacuum plume effect experiment system
CN104502054A (en) * 2014-12-21 2015-04-08 中国航空工业集团公司沈阳空气动力研究所 Device and method for deicing corner of icing wind tunnel
JP2015137477A (en) * 2014-01-22 2015-07-30 公益財団法人鉄道総合技術研究所 Compression wave generation method, compression wave generator, and calibration method for hot-wire anemometer using the same
CN106979852A (en) * 2017-03-24 2017-07-25 中国空气动力研究与发展中心高速空气动力研究所 A kind of flow field control method for being applied to bury weapon-bay high wind tunnel testing in full-scale
CN113916492A (en) * 2021-12-15 2022-01-11 中国空气动力研究与发展中心超高速空气动力研究所 Diaphragm-free shock tunnel throat device and test method thereof
CN114354124A (en) * 2022-03-11 2022-04-15 中国空气动力研究与发展中心超高速空气动力研究所 High-precision synchronous control method for impulse wind tunnel jet flow interference test
CN117782515A (en) * 2024-02-28 2024-03-29 中国空气动力研究与发展中心计算空气动力研究所 Aerodynamic heat data uncertainty evaluation method for impact of shock tunnel inflow parameters

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499427A (en) * 2013-09-27 2014-01-08 北京航空航天大学 Alcohol/kerosene system of vacuum plume effect experiment system
CN103499427B (en) * 2013-09-27 2016-04-06 北京航空航天大学 vacuum plume effect experiment system alcohol/kerosene system
JP2015137477A (en) * 2014-01-22 2015-07-30 公益財団法人鉄道総合技術研究所 Compression wave generation method, compression wave generator, and calibration method for hot-wire anemometer using the same
CN104502054A (en) * 2014-12-21 2015-04-08 中国航空工业集团公司沈阳空气动力研究所 Device and method for deicing corner of icing wind tunnel
CN106979852A (en) * 2017-03-24 2017-07-25 中国空气动力研究与发展中心高速空气动力研究所 A kind of flow field control method for being applied to bury weapon-bay high wind tunnel testing in full-scale
CN113916492A (en) * 2021-12-15 2022-01-11 中国空气动力研究与发展中心超高速空气动力研究所 Diaphragm-free shock tunnel throat device and test method thereof
CN113916492B (en) * 2021-12-15 2022-02-25 中国空气动力研究与发展中心超高速空气动力研究所 Diaphragm-free shock tunnel throat device and test method thereof
CN114354124A (en) * 2022-03-11 2022-04-15 中国空气动力研究与发展中心超高速空气动力研究所 High-precision synchronous control method for impulse wind tunnel jet flow interference test
CN114354124B (en) * 2022-03-11 2022-07-29 中国空气动力研究与发展中心超高速空气动力研究所 High-precision synchronous control method for jet flow interference test of pulse wind tunnel
CN117782515A (en) * 2024-02-28 2024-03-29 中国空气动力研究与发展中心计算空气动力研究所 Aerodynamic heat data uncertainty evaluation method for impact of shock tunnel inflow parameters
CN117782515B (en) * 2024-02-28 2024-05-07 中国空气动力研究与发展中心计算空气动力研究所 Aerodynamic heat data uncertainty evaluation method for impact of shock tunnel inflow parameters

Also Published As

Publication number Publication date
JP3224062B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
Shaw Active control for cavity acoustics
Kinzie et al. Measurements of supersonic helium/air mixture jets
CN107829841B (en) Dynamic boundary control system for dynamic and stable propagation of detonation in supersonic airflow
CN102384834B (en) Detonation-driving shock tunnel explosive discharge device
Anthoine et al. Effect of nozzle cavity on resonance in large SRM: theoretical modeling
Gokoglu et al. Numerical studies of an array of fluidic diverter actuators for flow control
JP3224062B2 (en) Shock tunnel waveform control device and waveform control method
CN112857732B (en) Method for quickly closing shock tunnel throat
Mettenleiter et al. Adaptive control of aeroacoustic instabilities
CN114354124B (en) High-precision synchronous control method for jet flow interference test of pulse wind tunnel
Carpenter et al. The aeroacoustics and aerodynamics of high-speed Coanda devices, part 1: Conventional arrangement of exit nozzle and surface
CN111024357B (en) Method for simulating flight environment by large-size free piston high-enthalpy shock tunnel
Anderson et al. Flow oscillations in a duct with a rectangular cross-section
Raman et al. Innovative actuators for active flow and noise control
JPH07218380A (en) Heavy-piston driving type shock wind-tunnel and control method thereof
Qin et al. On the structures of compressible vortex rings generated by the compressible starting jet from converging and diverging nozzles
Sugimoto et al. Verification of acoustic solitary waves
Juhany et al. AT0 Ludwieg tube wind tunnel at KAU
Brouillette et al. Experimental study of shock-generated vortex rings
Vermeulen et al. Air ejector pumping enhancement through pulsing primary flow
Abdel-Fattah et al. Duct resonance and its effect on the performance of high-pressure ratio axisymmetric ejectors
Sebourn et al. Research summary on the AEDC ASTF C-2 aeroacoustic resonance phenomenon
DAVIS A shock tube technique for producing subsonic, transonic, and supersonic flows with extremely high Reynolds numbers
Freund et al. Experimental investigation of outflow boundary conditions used in unsteady inlet flow computations
Mull et al. Survey of the acoustic near field of three nozzles at a pressure ratio of 30

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees