JPH0721472B2 - Displacement measuring device for hot ceramics - Google Patents

Displacement measuring device for hot ceramics

Info

Publication number
JPH0721472B2
JPH0721472B2 JP61293348A JP29334886A JPH0721472B2 JP H0721472 B2 JPH0721472 B2 JP H0721472B2 JP 61293348 A JP61293348 A JP 61293348A JP 29334886 A JP29334886 A JP 29334886A JP H0721472 B2 JPH0721472 B2 JP H0721472B2
Authority
JP
Japan
Prior art keywords
sample
laser
measuring device
digital
displacement measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61293348A
Other languages
Japanese (ja)
Other versions
JPS63148154A (en
Inventor
禎一 藤原
歳貞 三村
幸宏 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP61293348A priority Critical patent/JPH0721472B2/en
Publication of JPS63148154A publication Critical patent/JPS63148154A/en
Publication of JPH0721472B2 publication Critical patent/JPH0721472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は主にセラミックスの高温下での変位〔たとえ
ば、熱間線膨張率(以下熱膨張率という)あるいはクリ
ープ変形量等〕をレーザ変位測定器を使い非接触で精度
良く自動測定するセラミックスの熱間における変位測定
装置に関するものである。
TECHNICAL FIELD The present invention mainly relates to a laser displacement measuring device for measuring the displacement of ceramics at a high temperature (for example, the coefficient of linear thermal expansion (hereinafter referred to as thermal expansion coefficient) or the amount of creep deformation). The present invention relates to a hot-displacement measuring device for ceramics, which automatically measures with high accuracy in a non-contact manner.

従来技術 ファインセラミックス、耐火物、陶磁器、ガラスまたは
これらと、金属との複合材料等のセラミックスの熱膨張
率、特に耐火物の熱膨張率は熱間で使用される窯炉の内
張り耐火物の膨張代決定等の指針となる極めて重要な特
性である。
Prior art The coefficient of thermal expansion of fine ceramics, refractories, ceramics, glass or ceramics such as composite materials of these and metals, especially the coefficient of thermal expansion of refractories is the expansion of refractory linings of kilns used hot It is a very important characteristic that serves as a guide for decision making.

従来技術として、発明の名称「熱膨張率測定装置」(特
開昭60−39540号公報)、発明の名称「セラミック等の
熱間における変位測定装置」(特開昭61−7452号公
報)、発明の名称「セラミック等の熱間における変位測
定装置」(特開昭61−172041号公報)等がある。
As prior arts, the title of the invention is "thermal expansion coefficient measuring device" (JP-A-60-39540), the title of the invention is "displacement measuring device during hot of ceramics, etc." (JP-A-61-7452), The title of the invention is "a device for measuring the displacement of ceramics or the like during heat" (JP-A-61-172041).

これらの一例として特開昭60−39540号公報の「熱膨張
率測定装置」を第5図に示す。この熱膨張率測定装置
は、固体走査受光素子を内蔵し、レンズ系8と組み合せ
たカメラ9とカメラコントロール部10よりなる変位測定
装置と照明装置4を各2組組合せて、試料の変位を自動
的に測定するものである。加熱炉1内の試料2の変位
は、試料2の軸に対して直角方向より照明装置4で照明
し、試料2により光がさえぎられた暗部と光が直接届く
明部を固体走査受光素子面に望遠レンズ8により拡大投
影し、明部と暗部の比率より変位を計測するものであ
る。
As an example of these, the "thermal expansion coefficient measuring device" of JP-A-60-39540 is shown in FIG. This thermal expansion coefficient measuring device incorporates a solid-state scanning light-receiving element, and combines two sets of displacement measuring devices each consisting of a camera 9 combined with a lens system 8 and a camera control unit 10 and an illuminating device 4 to automatically measure the displacement of a sample. It is a measure to measure. The displacement of the sample 2 in the heating furnace 1 is illuminated by the illuminating device 4 from the direction perpendicular to the axis of the sample 2, and the dark part in which the light is blocked by the sample 2 and the bright part in which the light directly reaches reach the solid scanning light receiving element surface. Then, the image is enlarged and projected by the telephoto lens 8 and the displacement is measured from the ratio of the bright portion and the dark portion.

この場合各カメラコントロールユニット10の出力を加算
して、変位に応じたデイジタル出力信号で出力する。
In this case, the outputs of the respective camera control units 10 are added and output as a digital output signal according to the displacement.

この出力とデイジタル温度計6のデイジタル出力信号を
インターフェイス12を介してコンピュータ13に入力し、
記憶演算を行わせデイジタルプロッタ14により温度と熱
膨張率の関係をグラフに書込ませるものである。
This output and the digital output signal of the digital thermometer 6 are input to the computer 13 via the interface 12,
A memory operation is performed and the relationship between the temperature and the coefficient of thermal expansion is written in a graph by the digital plotter 14.

発明が解決しようとする問題点 しかし、この方法ではカメラ9の1台の測定範囲は測定
分解能を1μmとした場合3mm程度である。また測定精
度を上げるためカメラ9を2台使用して測定するため2
台並べた場合、カメラ中心間で80mmあり試料寸法は80mm
以上のものしか測定できない。
However, in this method, the measurement range of one camera 9 is about 3 mm when the measurement resolution is 1 μm. In addition, in order to improve the measurement accuracy, two cameras 9 are used for measurement.
When arranged side by side, the center of the camera is 80 mm and the sample size is 80 mm.
Only the above can be measured.

最近ファインセラミックス等の開発にともない小型試料
での測定が要望されている。これに対応するためカメラ
9の先端に第6図のようにプルズム15を取り付けるか、
特開昭61−172041号公報の「セラミック等の熱間におけ
る変位測定装置」に記載しているように、カメラ9を対
向させて80mm以下の試料の測定を行っている。しかし固
体走査受光素子カメラ9の分解能は1μmが限度であ
り、小型試料の場合膨張量が小さいため最近ではサブミ
クロンオーダーの分解能が要求されている。
Recently, along with the development of fine ceramics and the like, measurement with a small sample has been demanded. To cope with this, attach the prism 15 to the tip of the camera 9 as shown in FIG. 6, or
As described in "Hot Displacement Measuring Device for Ceramics and the Like" in JP-A-61-172041, the camera 9 is opposed to measure a sample of 80 mm or less. However, the resolution of the solid-state scanning light-receiving element camera 9 is limited to 1 μm, and since a small sample has a small expansion amount, a resolution on the order of submicrons has recently been required.

また固体走査受光素子を使ったカメラ9の1台の測定範
囲は3mm程度であるため異常膨張する試料や収縮の大き
な試料が測定出来ないという問題がある。
Further, since the measuring range of one of the cameras 9 using the solid-state scanning light receiving element is about 3 mm, there is a problem that a sample that abnormally expands or a sample that greatly contracts cannot be measured.

問題点を解決する手段 本発明の要旨とするところは、試料加熱炉の一側にレー
ザ変位測定器のレーザ送光部を配設し、対向側にレーザ
受光部を配設したレーザ走査方式とし、試料加熱炉の計
測窓ガラスの断面がクサビ形をしたガラスをクサビ形断
面角度を加熱炉の両側対称に構成し、レーザ受光部の電
圧信号をデジタル表示する表示器、試料の温度を測定す
るデジタル温度計、前記表示器のデジタル出力信号と前
記デジタル温度計のデジタル出力信号とをインターフェ
イスを介して試料の温度及び電圧信号を記憶、演算する
パーソナルコンピュータ及び温度と熱膨張率の関係を曲
線表示するデジタルプロッタを具備することを特徴とす
るセラミックスの熱間における変位測定装置にある。
Means for Solving the Problems The gist of the present invention is to provide a laser scanning system in which a laser transmitting section of a laser displacement measuring device is arranged on one side of a sample heating furnace and a laser receiving section is arranged on the opposite side. , The measurement window of the sample heating furnace has a wedge-shaped cross-section glass, the wedge-shaped cross-section angle is configured symmetrically on both sides of the heating furnace, the display that digitally displays the voltage signal of the laser receiving part, the sample temperature is measured Digital thermometer, a personal computer that stores and calculates the temperature and voltage signals of the sample through an interface between the digital output signal of the display and the digital output signal of the digital thermometer, and a curve display of the relationship between the temperature and the coefficient of thermal expansion An apparatus for measuring a displacement of ceramics during hot is provided with a digital plotter.

本発明のセラミックスの熱間における変位測定装置を熱
膨張測定装置に適用した具体例を第1図に基いて詳述す
る。
A specific example in which the hot displacement measuring device for ceramics of the present invention is applied to a thermal expansion measuring device will be described in detail with reference to FIG.

小寸法の試料をサブミクロンオーダーの分解能で精度良
く変位を計測する方法として、加熱炉1内の試料2を支
持する炉芯管21の両端部に計測窓(石英ガラス)19を設
けて炉芯管21内を気密にできる構造とし、炉芯管21の両
端に排気口22及びガス導入口23を設けて、各種の雰囲気
で試料2の変位を測定できるようにしたものである。
As a method for accurately measuring the displacement of a small-sized sample with a resolution of the submicron order, a measurement window (quartz glass) 19 is provided at both ends of a furnace core tube 21 that supports the sample 2 in the heating furnace 1, and the furnace core is provided. The tube 21 is made airtight, and an exhaust port 22 and a gas inlet 23 are provided at both ends of the furnace core tube 21 so that the displacement of the sample 2 can be measured in various atmospheres.

試料2の変位は第1図に示すように炉芯管21の両端開口
部に取付た断面がクサビ形をした計測窓(石英ガラス)
19の一側にレーザ変位測定器のレーザ送光部16を配設
し、対向側の計測窓(石英ガラス)19にレーザ受光部17
を配設し、レーザ送光部16より一定速度で水平に試料2
の長さ以上の幅で走査したれレーザビームを発射する
と、試料2によてレーザビームがさえ切られた時はレー
ザ受光部17には第2図Aのように電圧信号は発生せず、
レーザビームが試料から外れた場合はBのように電圧信
号が発生する。変位計測は試料2によってレーザビーム
がさえぎられている時間、すなわち、レーザ受光部17の
電圧信号Oの時間を電気的に高精度で測定し、表示器18
にデジタル表示すると共にデイジタル出力信号を出力す
る。この出力信号と試料温度測定用デイジタル温度形6
のデイジタル出力信号をインターフェイス12を介してパ
ーソナルコンピュータ13に入力し記憶演算を行なわせ、
デイジタルプロッタ14に温度と熱膨張率の関係を曲線に
書かせるものである。
The displacement of sample 2 is a measurement window (quartz glass) with a wedge-shaped cross section attached to the openings of both ends of the furnace core tube 21 as shown in FIG.
The laser transmitting unit 16 of the laser displacement measuring device is arranged on one side of the laser displacement measuring device 19, and the laser receiving unit 17 is disposed on the measurement window (quartz glass) 19 on the opposite side.
Is installed, and the sample 2 is moved horizontally from the laser transmitter 16 at a constant speed.
When a laser beam is emitted by scanning with a width greater than or equal to the length, when the laser beam is cut off by the sample 2, no voltage signal is generated in the laser light receiving portion 17 as shown in FIG. 2A,
When the laser beam deviates from the sample, a voltage signal is generated like B. In the displacement measurement, the time when the laser beam is blocked by the sample 2, that is, the time of the voltage signal O of the laser receiving unit 17 is electrically measured with high accuracy, and the display 18
It is digitally displayed on and digital output signal is output. This output signal and digital temperature type 6 for measuring sample temperature
The digital output signal of is input to the personal computer 13 through the interface 12 to perform a memory operation,
The digital plotter 14 is made to write the relationship between the temperature and the coefficient of thermal expansion in a curve.

本発明装置において炉芯管21の両端の開口部に取付た計
測窓(石英ガラス19)の断面構造をクサビ形にする理由
としては、石英ガラスの断面が平行な場合石英ガラス面
に対してレーザ光が直角に入射すると石英ガラス内部で
一部のレーザ光が反射し、石英ガラスを直接通過しレー
ザ受光部17に届く主レーザ光と石英ガラス内で反射し時
間的に主レーザ光より遅れてレーザ受光部17に入るレー
ザ光が生じ試料の長さが正確に測定出来ない。
In the device of the present invention, the reason why the cross-sectional structure of the measurement windows (quartz glass 19) attached to the openings at both ends of the furnace core tube 21 is wedge-shaped is that when the cross section of the quartz glass is parallel, the laser beam is applied to the quartz glass surface. When the light is incident at a right angle, a part of the laser light is reflected inside the quartz glass, and the main laser light that directly passes through the quartz glass and reaches the laser receiving section 17 and is reflected inside the quartz glass, and is later than the main laser light in time. A laser beam enters the laser receiving section 17 and the length of the sample cannot be measured accurately.

石英ガラス断面をクサビ形にすることによりレーザ光を
石英ガラス面に対して角度を持たせて入射させることに
より石英ガラス内で反射したレーザ光を主光路外に出
し、レーザ受光部17に入射させないようにすることによ
り測定精度を上げたものである。
By making the cross section of the quartz glass into a wedge shape, the laser light is made incident at an angle with respect to the quartz glass surface, so that the laser light reflected in the quartz glass is emitted outside the main optical path and is not made incident on the laser receiving section 17. By doing so, the measurement accuracy is improved.

石英ガラスのクサビ形断面の角度はあまり小さいと目的
の効果がなく反対に大きすぎると、レーザ送光部と、レ
ーザ受光部の位置関係、すなわち、芯出しが困難にな
る。したがって角度としては1〜5度が望ましい。
If the angle of the wedge-shaped cross section of the quartz glass is too small, the desired effect is not obtained, but if it is too large, the positional relationship between the laser light transmitting portion and the laser light receiving portion, that is, centering becomes difficult. Therefore, the angle is preferably 1 to 5 degrees.

また石英ガラスの配設はレーザ光軸に対し第3図に示す
如く石英ガラスのクサビ形断面角度を加熱炉の両側に対
称的に配設するものである。
Further, the quartz glass is arranged such that the wedge-shaped cross-section angle of the quartz glass is symmetrically arranged on both sides of the heating furnace with respect to the laser optical axis as shown in FIG.

また、加熱炉炉芯管内は温度上昇により対流がおこり、
レーザ光にゆらぎが発生し、測定精度が低下する場合が
ある。炉芯管内温度上昇により雰囲気ガスの部分的な温
度差による密度の相違等から対流がおこるのが原因と考
えられる。炉芯管容積を小さく、かつ等温帯を広くする
ことが好ましいが、 ○その対策として炉芯管内を気密にする構造にし、余分
な空気の出入りをなくすることが好ましい。
In addition, convection occurs in the furnace core tube due to temperature rise,
Fluctuations may occur in the laser light and the measurement accuracy may decrease. It is considered that convection occurs due to the difference in density due to the partial temperature difference of the atmospheric gas due to the temperature rise in the furnace core tube. It is preferable to reduce the volume of the furnace core tube and widen the isothermal zone, but as a countermeasure against this, it is preferable to make the inside of the furnace core tube airtight so that extra air does not come in and out.

○常圧の測定においては、該炉芯管内温度上昇によるガ
ス膨張分のみ排出口より排出することが好ましい。
In the measurement of normal pressure, it is preferable to discharge only the gas expansion due to the temperature rise in the furnace core tube from the discharge port.

○また、排出口より雰囲気ガスを排出し、炉芯管内を減
圧することによってもレーザ光のゆらぎは抑制できる。
The fluctuation of the laser beam can also be suppressed by discharging the atmospheric gas from the discharge port and reducing the pressure inside the furnace core tube.

○特定ガス雰囲気による測定においては、該特定ガスの
供給量を少なくし、少量置換することが好ましい。
In the measurement in a specific gas atmosphere, it is preferable to reduce the supply amount of the specific gas and replace it with a small amount.

等によりレーザ光のゆらぎを防ぐことで、高精度の測定
が可能になる。
By preventing the fluctuation of the laser beam by such as the above, highly accurate measurement becomes possible.

実施例 第1図に示す本発明装置の計測窓19にクサビ形断面角度
2度の石英ガラスを配設し、加熱炉炉芯管21内にアルミ
ナ質試料で幅10mm、高さ10mm、長さ40mmのものをセット
して真空ポンプ20で10-1mmHgに減圧し測定範囲0.5〜55m
m、送光部16、受光部17間の距離700mmのレーザ変位測定
器を使用して、昇温速度を毎分4℃で、常温から1600℃
までの間5℃毎にデータを取り込み温度と熱膨張率の関
係を書かせた結果を第4図に示す。
Example A quartz glass having a wedge-shaped cross-section angle of 2 degrees is arranged in a measuring window 19 of the device of the present invention shown in FIG. 1, and a heating furnace core tube 21 is made of an alumina sample and has a width of 10 mm, a height of 10 mm and a length. Set 40 mm and reduce the pressure to 10 -1 mmHg with vacuum pump 20 and measure range 0.5 to 55 m
m, the distance between the light-transmitting part 16 and the light-receiving part 17 is 700mm, and the temperature rise rate is 4 ℃ / min.
Figure 4 shows the results of taking in the data every 5 ° C and writing the relationship between the temperature and the coefficient of thermal expansion.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明装置の一例を略図的に示し、第2図はレ
ーザ受光部の電圧記号を示し、第3図はクサビ形ガラス
の断面図の一例を示し、第4図は本発明装置による測定
結果の一例を示し、第5図は固体走査受光素子を用いた
熱膨張測定装置の一例を略図的に示し、第6図はプリズ
ムを使用された熱膨張測定装置の一例を略図的に示す。 図中、1:加熱炉,2:試料,3:発熱体,4:照明装置,5:熱電
対,6:デイジタル温度計,7:フィルター,8:望遠レンズ,9:
固体走査受光素子カメラ,10:コントロールユニット,11:
オシロスコープ,12:インターフェイス,13:コンピュー
タ,14:デイジタルプロッタ,15:プリズム,16:レーザ寸法
測定器レーザ送光部,17:レーザ寸法測定器レーザ受光
部,18:表示器,18:計測窓,20:真空ポンプ,21:炉芯管,22:
排気口,23:ガス導入口,24:レーザ光。
FIG. 1 schematically shows an example of the device of the present invention, FIG. 2 shows a voltage symbol of a laser receiving portion, FIG. 3 shows an example of a sectional view of wedge-shaped glass, and FIG. 4 shows the device of the present invention. 5 shows an example of the measurement result according to FIG. 5, FIG. 5 schematically shows an example of a thermal expansion measuring device using a solid-state scanning light receiving element, and FIG. 6 schematically shows an example of a thermal expansion measuring device using a prism. Show. In the figure, 1: heating furnace, 2: sample, 3: heating element, 4: lighting device, 5: thermocouple, 6: digital thermometer, 7: filter, 8: telephoto lens, 9:
Solid-state scanning light receiving device camera, 10: control unit, 11:
Oscilloscope, 12: Interface, 13: Computer, 14: Digital plotter, 15: Prism, 16: Laser dimension measuring instrument, Laser transmitter, 17: Laser dimension measuring instrument, Laser receiver, 18: Display, 18: Measuring window, 20: Vacuum pump, 21: Furnace core tube, 22:
Exhaust port, 23: Gas inlet port, 24: Laser light.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭49−70649(JP,A) 特開 昭60−39540(JP,A) 特開 昭61−7452(JP,A) 特開 昭61−172041(JP,A) 特開 昭60−231146(JP,A) 特開 昭53−36262(JP,A) 特公 昭50−30469(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-49-70649 (JP, A) JP-A-60-39540 (JP, A) JP-A-61-7452 (JP, A) JP-A-61- 172041 (JP, A) JP 60-231146 (JP, A) JP 53-36262 (JP, A) JP 50-30469 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】試料加熱炉の一側にレーザ変位測定器のレ
ーザ送光部を配設し、対向側にレーザ受光部を配設した
レーザ走査方式とし、試料加熱炉の計測窓ガラスの断面
がクサビ形をしたガラスをクサビ形断面角度を加熱炉の
両側対称に構成し、レーザ受光部の電圧信号をデジタル
表示する表示器、試料の温度を測定するデジタル温度
計、前記表示器のデジタル出力信号と前記デジタル温度
計のデジタル出力信号とをインターフェイスを介して試
料の温度及び電圧信号を記憶、演算するパーソナルコン
ピュータ及び温度と熱膨張率の関係を曲線表示するデジ
タルプロッタを具備することを特徴とするセラミックス
の熱間における変位測定装置。
1. A laser scanning system in which a laser transmitting section of a laser displacement measuring device is arranged on one side of a sample heating furnace and a laser receiving section is arranged on the opposite side, and a cross section of a measurement window glass of the sample heating furnace. Is a wedge-shaped glass, the wedge-shaped cross-section angle is configured symmetrically on both sides of the heating furnace, a display that digitally displays the voltage signal of the laser receiving part, a digital thermometer that measures the temperature of the sample, a digital output of the display A digital computer that stores and calculates a temperature and voltage signal of a sample through an interface between a signal and a digital output signal of the digital thermometer and a digital plotter that displays the relationship between the temperature and the thermal expansion coefficient in a curve. Displacement Measuring Device for Hot Ceramics.
【請求項2】前記試料加熱炉内に炉芯管を配置し、該炉
芯管内を真空雰囲気としうる構成とした特許請求の範囲
第1項記載のセラミックスの熱間における変位測定装
置。
2. A hot displacement measuring device for ceramics according to claim 1, wherein a furnace core tube is arranged in the sample heating furnace so that a vacuum atmosphere can be formed in the furnace core tube.
JP61293348A 1986-12-11 1986-12-11 Displacement measuring device for hot ceramics Expired - Fee Related JPH0721472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61293348A JPH0721472B2 (en) 1986-12-11 1986-12-11 Displacement measuring device for hot ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61293348A JPH0721472B2 (en) 1986-12-11 1986-12-11 Displacement measuring device for hot ceramics

Publications (2)

Publication Number Publication Date
JPS63148154A JPS63148154A (en) 1988-06-21
JPH0721472B2 true JPH0721472B2 (en) 1995-03-08

Family

ID=17793633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61293348A Expired - Fee Related JPH0721472B2 (en) 1986-12-11 1986-12-11 Displacement measuring device for hot ceramics

Country Status (1)

Country Link
JP (1) JPH0721472B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924477A (en) * 1989-01-24 1990-05-08 Eastman Kodak Company Assembly and method for determining the coefficient of thermal expansion of a workpiece
JPH0640078B2 (en) * 1989-08-21 1994-05-25 品川白煉瓦株式会社 Displacement measuring device for hot ceramics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788746A (en) * 1972-10-02 1974-01-29 Hewlett Packard Co Optical dilatometer
JPS5317388B2 (en) * 1973-07-17 1978-06-08
JPS5336262A (en) * 1976-09-16 1978-04-04 Gakei Denki Seisakusho Method of and apparatus for measuring thermal expansion
JPS6039540A (en) * 1983-08-15 1985-03-01 Shinagawa Refract Co Ltd Measuring device of coefficient of thermal expansion
JPS617452A (en) * 1984-06-22 1986-01-14 Shinagawa Refract Co Ltd Apparatus for measurement of displacement of ceramic in hot processing
JPS60231146A (en) * 1984-05-01 1985-11-16 Rigaku Denki Kk Apparatus for measuring thermal expansivity
JPS61172041A (en) * 1985-01-28 1986-08-02 Shinagawa Refract Co Ltd Apparatus for measuring hot displacement of ceramic

Also Published As

Publication number Publication date
JPS63148154A (en) 1988-06-21

Similar Documents

Publication Publication Date Title
EP0145115B1 (en) Thermal deformation measuring system of ceramics and the like
EP0160359B1 (en) Tuyere pyrometer
US5209569A (en) Apparatus for measuring thermal dimensional change of ceramics or the like
JPH0721472B2 (en) Displacement measuring device for hot ceramics
JPS62118224A (en) Detection module for dual spectrum optical type pyrometer
JPS617452A (en) Apparatus for measurement of displacement of ceramic in hot processing
JPH0663988B2 (en) Displacement measuring device for hot ceramics
US4955979A (en) Optical pyrometer with at least one fibre
JPS6039540A (en) Measuring device of coefficient of thermal expansion
JPH0637320Y2 (en) Displacement measuring device for hot ceramics
JPS61172041A (en) Apparatus for measuring hot displacement of ceramic
JPH056360U (en) Displacement measurement device for hot ceramics, etc.
JPH0641900B2 (en) Measuring device for hot elastic modulus of ceramics
JPH04132944A (en) Device for measuring thermal coefficient of expansion
JP3202183B2 (en) Scale and length measurement method using laser light
JP3619851B2 (en) A method of improving the accuracy of a straight line meter using a laser beam.
US3120780A (en) High temperature strain gage
JPH0613299A (en) Electron beam lithography method and its lithography equipment
RU2189029C1 (en) Smoking meter of thermal and power plants
JP4225538B2 (en) Hot displacement measuring device
JPH03252516A (en) Thickness measuring instrument
SU819594A1 (en) Thermoradiometer for measuring degree of material blackness
Ruffino et al. New opto-electronic dilatometer
JPS60231146A (en) Apparatus for measuring thermal expansivity
JPS6344134A (en) Image guide type radiation thermometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees