JPH0721469B2 - Method for analyzing composition of object to be measured by X-ray - Google Patents

Method for analyzing composition of object to be measured by X-ray

Info

Publication number
JPH0721469B2
JPH0721469B2 JP60082078A JP8207885A JPH0721469B2 JP H0721469 B2 JPH0721469 B2 JP H0721469B2 JP 60082078 A JP60082078 A JP 60082078A JP 8207885 A JP8207885 A JP 8207885A JP H0721469 B2 JPH0721469 B2 JP H0721469B2
Authority
JP
Japan
Prior art keywords
ray
measured
rays
white
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60082078A
Other languages
Japanese (ja)
Other versions
JPS61240146A (en
Inventor
幸夫 香村
義政 舛方
久 小相沢
文彦 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP60082078A priority Critical patent/JPH0721469B2/en
Publication of JPS61240146A publication Critical patent/JPS61240146A/en
Publication of JPH0721469B2 publication Critical patent/JPH0721469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 『産業上の利用分野』 本発明はX線を利用した非破壊測定手段により被測定物
の組成を分析する方法に関する。
The present invention relates to a method for analyzing the composition of an object to be measured by a nondestructive measuring means utilizing X-rays.

『従来の技術』 不透明な物体の組成濃度、組成分布を放射線照射により
非破壊的に測定するとき、その線源としてアイソトープ
(Ga、Ir、Co)などのγ線、あるいはX線を用い、放射
線照射系から出射した放射線を被測定物に照射し、その
透過線の強度を検出系で測定解析するようにしている。
"Prior art" When measuring the composition concentration and composition distribution of an opaque object non-destructively by irradiation with radiation, γ rays such as isotopes (Ga, Ir, Co) or X-rays are used as the radiation source. The radiation emitted from the irradiation system is applied to the object to be measured, and the intensity of the transmission line is measured and analyzed by the detection system.

ところで、アイソトープによる非破壊測定法の場合、ア
イソトープの入手が困難であること、その強度が弱いか
または強すぎること、さらに半減期が短いこと等々の理
由により工業化がむずかしいとされており、そのため、
X線を用いる方法が普及している。
By the way, in the case of a nondestructive measurement method using an isotope, it is said that industrialization is difficult due to reasons such as difficulty in obtaining the isotope, its strength being weak or too strong, and further having a short half-life.
The method using X-rays is widespread.

X線には白色X線、単色X線があり、例えば被測定物が
二つの元素からなる場合、通常、X線照射系と被測定物
とを相対移動させるスキャンニングより白色X線または
単色X線を被測定物に照射し、二以上の特定波長または
エネルギに関する透過線強度をその検出系により求めた
後、その測定データをもとにした多層分割法、アベール
変換法等の計算法により被測定物の組成分布を求めてい
る。
X-rays include white X-rays and monochromatic X-rays. For example, when the object to be measured is composed of two elements, white X-rays or monochromatic X-rays are usually used by scanning in which the X-ray irradiation system and the object to be measured are relatively moved. After irradiating the DUT with a line, the transmission line intensities for two or more specific wavelengths or energies are obtained by the detection system, and then the multi-layer division method based on the measurement data, the Abel conversion method, and other calculation methods are used. The composition distribution of the measurement object is determined.

この際、X線源の電圧は30kv以上 その強度はX線源の
電流換算値10mA以上がよいとされており、この電流値が
低いとX線量が小さくなり、測定に時間がかかる。
At this time, it is said that the voltage of the X-ray source is 30 kv or more, and the intensity thereof is preferably the current conversion value of the X-ray source, which is 10 mA or more. If this current value is low, the X-ray dose becomes small and the measurement takes time.

X線の波長λ(オングストローム)は、X線源にかける
管電圧kvをVとしたとき、約λ=12.4/Vである。
The wavelength λ (angstrom) of the X-ray is about λ = 12.4 / V when the tube voltage kv applied to the X-ray source is V.

透過線の強度は1分程度で測定するのがよく、時間が長
いほど測定精度が高まるとされている。
It is preferable to measure the intensity of the transmission line in about 1 minute, and it is said that the longer the time, the higher the measurement accuracy.

『発明が解決しようとする問題点』 一般に、X線走査時においてその線源を移動させると
き、その移動設備が大がかりとなり、線源の不安定も生
じる。
[Problems to be Solved by the Invention] Generally, when the radiation source is moved during X-ray scanning, the moving equipment becomes large in scale, and the radiation source becomes unstable.

これに対処すべく被測定物を移動させるとき、回折手段
により白色X線から二種以上の単色X線を取り出し、こ
れを被測定物へ照射することが考えられるが、この倍も
各単色X線の光軸が一致しないことにより測定時間が長
くなる。
In order to deal with this, when moving the object to be measured, it is conceivable to extract two or more kinds of monochromatic X-rays from the white X-rays by the diffracting means and irradiate them to the object to be measured. The measurement time becomes longer because the optical axes of the lines do not match.

その他、製造ライン上の被測定物をオンラインにより測
定しようとしても、X線走査のための被測定物移動がで
きないのでオフライン制御しか採用できず、かかるオフ
ライン制御ではリアルタイムで被測定物の組成を分析す
ることができない。
In addition, even if an attempt is made to measure an object to be measured on a production line online, only the offline control can be adopted because the object to be measured for X-ray scanning cannot be moved. With such offline control, the composition of the object to be measured can be analyzed in real time. Can not do it.

本発明は上記の問題点に鑑み、被測定物、X線源等を移
動せずとも、単時間で被測定物の組成分析が行なえ、オ
ンライン制御も実現可能な方法を提供しようとするもの
である。
In view of the above problems, the present invention is intended to provide a method capable of performing composition analysis of an object to be measured in a single time without moving the object to be measured, an X-ray source, or the like, and realizing online control. is there.

『問題点を解決するための手段』 本発明のX線による被測定物の測定方法は、所期の目的
を達成するために、 被測定物の測定部間全域にわたって白色X線を照射する
ためのX線源と、被測定物を透過した後の透過線(透過
白色X線)を複数に分岐するための複数のコリメータ
と、該各透過線をそれぞれ回折してこれら透過線を複数
種の特性X線として取り出すための複数の単結晶と、該
各単結晶を経て入射される複数種の特性X線エネルギを
測定するための複数のX線検出器とを備えていること、
および、 X線源から出射される白色X線の照射領域側に配置され
て互いに隣接している各X線検出器が、そのX線源とそ
れぞれ対面していること、被測定物がX線源と各X線検
出器との間において定位置に配置されていること、各コ
リメータが被測定物と各X線検出器との間にあって互い
に隣接して配置されていること、各単結晶も、被測定物
と各X線検出器との間に配置されていて、各コリメータ
により分岐された透過線を各X線検出器へ入射させるた
めに、これらコリメータ、X線検出器とそれぞれ対応し
ていること、および、 上記の手段を介して被測定物の組成を分析するときに、 X線源から出射した白色X線を被測定物の測定部間全域
にわたって照射すること、その被測定物を透過した後の
透過線を各コリメータおよび各単結晶により分岐かつ回
折すること、これら分岐、回折により取り出された各特
性X線を各X線検出器へ入射させること、該各X線検出
器により各特性X線のエネルギ強度を各別に測定して被
測定物の組成を分析することを特徴とする。
[Means for Solving Problems] In the method for measuring an object to be measured by X-rays according to the present invention, in order to achieve the intended purpose, white X-rays are radiated over the entire area between the measuring parts of the object to be measured. X-ray source, a plurality of collimators for branching a plurality of transmission lines (transmission white X-rays) that have passed through the object to be measured, and the transmission lines are diffracted to obtain a plurality of these transmission lines. A plurality of single crystals for extracting as characteristic X-rays, and a plurality of X-ray detectors for measuring a plurality of types of characteristic X-ray energies incident through the respective single crystals,
And that the X-ray detectors arranged on the side of the irradiation region of the white X-rays emitted from the X-ray source and adjacent to each other face the X-ray source, respectively, and that the DUT is an X-ray. The collimator is placed at a fixed position between the source and each X-ray detector, each collimator is placed between the object to be measured and each X-ray detector and adjacent to each other, and each single crystal is also , Which is arranged between the object to be measured and each X-ray detector and corresponds to these collimators and X-ray detectors in order to make the transmission line branched by each collimator enter each X-ray detector. And, when analyzing the composition of the object to be measured through the above means, irradiating white X-rays emitted from the X-ray source over the entire measurement portion of the object to be measured, Transmission line after passing through each collimator and each single crystal Branching and diffracting, making each characteristic X-ray extracted by these branching and diffraction incident on each X-ray detector, and measuring the energy intensity of each characteristic X-ray separately by each X-ray detector. It is characterized in that the composition of the measured object is analyzed.

『作用』 本発明方法の場合、白色X線を被測定物の測定部間全域
にわたって照射するから、X線源、被測定物等を移動走
査する必要がなく、また、被測定物を透過した後の透過
線を複数のコリメータおよび単結晶により分岐、回折
し、これら分岐、回折後における各特性X線のエネルギ
強度を各別に測定するから測定部間各部の組成がわか
る。
[Operation] In the case of the method of the present invention, white X-rays are radiated over the entire area between the measurement parts of the object to be measured, so there is no need to move and scan the X-ray source, the object to be measured, and the object to be measured is transmitted. Subsequent transmission lines are branched and diffracted by a plurality of collimators and a single crystal, and the energy intensity of each characteristic X-ray after branching and diffraction is measured separately, so that the composition of each part between measurement parts can be known.

したがって、上述した走査不要、測定部間各部の組成判
明により短時間で被測定物の組成分析が行なえるように
なり、しかもX線源、被測定物のいずれをも移動走査し
ないか、製造ライン上にある被測定物であってもこれを
オンラインで組成分析できるようになる。
Therefore, it becomes possible to analyze the composition of the object to be measured in a short time because the above-mentioned scanning is not necessary and the composition of each part between the measuring parts can be determined. Even the DUT above can be analyzed online for composition.

『実施例』 以下本発明方法の実施例につき、図面を参照して説明す
る。
[Examples] Examples of the method of the present invention will be described below with reference to the drawings.

第1図の実施例において、1はX線源、2はマニホール
ド、3a〜3fはコリメータ、4a〜4fおよび5a〜5fは単結
晶、6a〜6fはX線検出器、7はマニホールド2とコリメ
ータ3a〜3fとの間に配置された不透明な被測定物であ
る。
In the embodiment of FIG. 1, 1 is an X-ray source, 2 is a manifold, 3a to 3f are collimators, 4a to 4f and 5a to 5f are single crystals, 6a to 6f are X-ray detectors, and 7 is a manifold 2 and a collimator. It is an opaque measured object arranged between 3a to 3f.

第1図において本発明方法を実施するとき、被測定物7
がマニホールド2とコリメータ3a〜3fとの間に配置さ
れ、X線源1か出射された第2図のごとき白色X線は、
マニホールド2を通ることにより多数のビーム(直径約
1mm程度)となり、これらビームが上記被測定物7の幅
方向全域にわたって照射される。
When carrying out the method of the present invention in FIG.
Is disposed between the manifold 2 and the collimators 3a to 3f, and the white X-rays as shown in FIG.
Multiple beams (diameter approx.
(About 1 mm), and these beams are irradiated over the entire width direction of the DUT 7.

こうして被測定物7に照射された白色X線は、その被測
定物7を透過し、該透過X線(透過線)がコリメータ3a
〜3fをそれぞれ通る。
The white X-rays thus radiated to the DUT 7 are transmitted through the DUT 7, and the transmitted X-rays (transmission lines) are collimated by the collimator 3a.
Pass each ~ 3f.

この際、コリメータ3a〜3fは被測定物7から反射される
X線等のノイズを遮断する。
At this time, the collimators 3a to 3f block noise such as X-rays reflected from the DUT 7.

コリメータ3a〜3fを透過した透過線は単結晶4a〜4f、5a
〜5fによりそれぞれラウエ条件、ブラッグ条件で回折さ
れて第3図のごとき特性X線となり、これら特性X線が
X線検出器6a〜6fへ入射される。
The transmission lines transmitted through the collimators 3a to 3f are single crystals 4a to 4f and 5a.
.About.5f are diffracted under Laue conditions and Bragg conditions to form characteristic X-rays as shown in FIG. 3, and these characteristic X-rays are incident on X-ray detectors 6a-6f.

X線検出器6a〜6fは例えば半導体検出器、シンチレーシ
ョン管等からなり、上記特性X線がこれらX線検出器6a
〜6fへ入射されたとき、該各X検出器6a〜6fは、前記被
測定物7の組成分布濃度に応じた特性X線のエネルギを
測定する。
The X-ray detectors 6a to 6f are, for example, semiconductor detectors, scintillation tubes, etc., and the characteristic X-rays are the X-ray detectors 6a.
.. to 6f, the X detectors 6a to 6f measure the energy of the characteristic X-ray according to the composition distribution concentration of the DUT 7.

さらにX線検出器6a〜6fは、検出したX線エネルギの強
度に応じた信号を図示しない電子計算機へ入力し、該電
子計算機はその入力信号を電気的ないし電子的に演算し
て前記被測定物7の組成を解析する。
Further, the X-ray detectors 6a to 6f input a signal corresponding to the intensity of the detected X-ray energy to an electronic computer (not shown), and the electronic computer electrically or electronically operates the input signal to measure the measured object. The composition of the product 7 is analyzed.

なお、白色X線を出射するための上記X線源1として
は、電圧200kv、350kv程度の高圧のものが用いられ、X
線管内のターゲットとしてはタングステンが用いられ
る。
As the X-ray source 1 for emitting white X-rays, a high voltage with a voltage of about 200 kv and 350 kv is used.
Tungsten is used as the target in the wire tube.

マニホールド2は、前述したごとく白色X線を直径約1m
m程度のビームに分岐するが、この際、各ビームと各コ
リメータ3a〜3fとの光軸を互いに一致させる。
As described above, the manifold 2 has a white X-ray diameter of about 1 m.
Although the beam is branched into about m beams, at this time, the optical axes of the beams and the collimators 3a to 3f are made to coincide with each other.

被測定物としてはSiO2とGeO2とからなる光ファイバ用の
多孔質母材をあげることができ、該被測定物7がSi、Ge
などの二成分からなるとき、前記ビーム数を20以上とす
ることにより分析精度が高まる。
An example of the object to be measured is a porous preform for an optical fiber made of SiO 2 and GeO 2, and the object to be measured 7 is Si or Ge.
When the number of beams is 20 or more, the analysis accuracy is improved.

被測定物7が上記に例示したごとき二成分であるとき、
単結晶4a〜4f、5a〜5fにより回折したエネルギE1、E2に
ついて、それぞれ所定の測定を行なう。
When the DUT 7 is the two components as exemplified above,
Predetermined measurements are performed on the energies E1 and E2 diffracted by the single crystals 4a to 4f and 5a to 5f.

その他、被測定物7の測定開始前、すなわちマニホール
ド2とコリメータ3a〜3fとの間に被測定物7を配置する
前、当該被測定物7がない状態でのX線強度を測定して
おき、その後、前述した測定分析を実施する。
Besides, before the measurement of the DUT 7 is started, that is, before the DUT 7 is arranged between the manifold 2 and the collimators 3a to 3f, the X-ray intensity in the absence of the DUT 7 is measured. Then, the above-described measurement analysis is performed.

つぎに本発明方法の他実施例を第4図、第5図により説
明する。
Another embodiment of the method of the present invention will be described below with reference to FIGS.

この実施例では、X線源から出射された白色X線をPbか
らなる遮蔽板8により絞った後、これを被測定物7へ照
射し、その後の透過線をさらにコリメータ3g〜3sにより
絞って検出器6g〜6sへ入射する。
In this embodiment, after the white X-rays emitted from the X-ray source are narrowed down by the shield plate 8 made of Pb, this is irradiated to the object 7 to be measured, and then the transmitted rays are further narrowed down by the collimators 3g to 3s. It is incident on the detectors 6g to 6s.

この際、コリメータ3g〜3s内には第5図のごとく単結晶
9g〜9sを配置し、次式のごときラウエ条件、ブラッグ条
件を満たすエネルギを取り出す。
At this time, as shown in Fig. 5, the single crystal is placed in the collimators 3g to 3s.
9g to 9s are arranged, and the energy satisfying the Laue condition and the Bragg condition such as the following formula is taken out.

nλ=2d sinθnhc/E=2d sinθ n:整数、h:プランク定数、c:光速、 E:エネルギ(kv)、d:格子間隔。nλ = 2d sin θ nhc / E = 2d sin θ n: integer, h: Planck's constant, c: speed of light, E: energy (kv), d: lattice spacing.

第4図、第5図の実施例では、第7図のごとく一つのエ
ネルギのみが回折されるが、前記のごとく二成分からな
る被測定物7の組成を分析するときは、これら組成に応
じた各エネルギE1、E2が測定できるよう、単結晶9g〜9s
の角度θを交互に変える。
In the embodiment of FIGS. 4 and 5, only one energy is diffracted as shown in FIG. 7, but when analyzing the composition of the DUT 7 composed of two components as described above, it is necessary to analyze the composition according to these compositions. Single crystal 9g ~ 9s so that each energy E1 and E2 can be measured
Alternate the angle θ of.

第8図は、前記第1図の実施例における単結晶4a〜4f、
5a〜5fを回転台10a〜10f上に配置してこれら単結晶の角
度θが変更できるように、すなわ所定の二成分に対応し
たエネルギE1、E2が取り出せるようにしたものである。
FIG. 8 shows single crystals 4a to 4f in the embodiment shown in FIG.
5a to 5f are arranged on the rotary tables 10a to 10f so that the energies E1 and E2 corresponding to predetermined two components can be taken out so that the angle θ of these single crystals can be changed.

つぎに本発明方法のより具体的な実施例につき説明す
る。
Next, more specific examples of the method of the present invention will be described.

VAD法により外径(直径)80mm、長さ1000mmの光ファイ
バ用多孔質母材を作製するとき、これを被測定物として
当該被測定物の組成をオンラインで分析するようにし
た。
When a porous preform for optical fiber having an outer diameter (diameter) of 80 mm and a length of 1000 mm was produced by the VAD method, the composition of the measurement object was analyzed online as the measurement object.

この際の測定手段は概ね第1図の通りであり、白色X線
源としては100kvのものを、マニホールドとしては30本
のX線ビームが得られるものをそれぞれ用いた。
The measuring means at this time is generally as shown in FIG. 1, and a white X-ray source of 100 kv and a manifold of 30 X-ray beams were used.

各X線ビームは被測定物を透過後、コリメータの光軸と
一致させるようにし、コリメータの後には第8図のよう
にして単結晶を配置し、その単結晶からのエネルギが検
出器へ入射されるようにした。
After each X-ray beam passes through the object to be measured, it is made to coincide with the optical axis of the collimator, and a single crystal is arranged after the collimator as shown in FIG. 8, and the energy from the single crystal is incident on the detector. I was made to do it.

単結晶支持用の回転台としては、秒単位の回転角度が精
密に制御できるターンテーブルを用い、該回転台による
各単結晶の角度θは、上記白色X線源を100kvとしたの
で、E1=50kv、E2=80kvのエネルギが取り出せるよう調
整した。
As the turntable for supporting the single crystal, a turntable whose rotation angle in seconds can be precisely controlled was used. The angle θ of each single crystal by the turntable was 100 kv for the white X-ray source, so E1 = It was adjusted so that the energy of 50kv and E2 = 80kv could be taken out.

上記の条件により被測定物たる光ファイバ用多孔質母材
の組成を分析したところ、その一断面の測定がわずか数
10秒で行なえ、しかも当該分析結果に基づいて多孔質母
材の合成条件を制御することにより、所望屈折率分布の
多孔質母材が得られた。
The composition of the porous preform for optical fiber, which is the object to be measured, was analyzed under the above conditions.
It was possible to perform in 10 seconds, and by controlling the synthesis conditions of the porous base material based on the analysis result, a porous base material having a desired refractive index distribution was obtained.

『発明の効果』 以上説明した通り、本発明方法によるときは、X線源、
被測定物の走査が不要であり、被測定物の組成が短時間
でわかり、製造ライン上にある被測定物であってもこれ
をオンラインで組成分析できる。
"Effects of the Invention" As described above, when the method of the present invention is used, an X-ray source,
It is not necessary to scan the object to be measured, the composition of the object to be measured can be known in a short time, and even the object to be measured on the manufacturing line can be subjected to online composition analysis.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の一実施例を略示した説明図、第2
図はその一実施例における白色X線のエネルギ特性図、
第3図はその一実施例における特性X線のエネルギ特性
図、第4図は本発明方法の他実施例を略示した説明図、
第5図はその他実施例におけるコリメータの断面図、第
6図はその他実施例における白色X線のエネルギ特性
図、第7図はその他実施例にける特性X線のエネルギ特
性図、第8図は上記一実施例における単結晶を回転台に
より支持した例を示した略示説明図である。 1……X線源 2……マニホールド 3a〜3f……コリメータ 3g〜3s……コリメータ 4a〜4f……単結晶 5a〜5f……単結晶 6a〜6f……X線検出器 7……被測定物 8……遮蔽板 9g〜9s……単結晶 10a〜10f……回転台
FIG. 1 is an explanatory view schematically showing an embodiment of the method of the present invention, and FIG.
The figure is an energy characteristic diagram of white X-rays in the embodiment,
FIG. 3 is an energy characteristic diagram of characteristic X-rays in one embodiment thereof, and FIG. 4 is an explanatory diagram schematically showing another embodiment of the method of the present invention,
5 is a sectional view of a collimator in another embodiment, FIG. 6 is a white X-ray energy characteristic chart in another embodiment, FIG. 7 is a characteristic X-ray energy characteristic chart in another embodiment, and FIG. FIG. 4 is a schematic explanatory view showing an example in which the single crystal in the above one example is supported by a turntable. 1 ... X-ray source 2 ... Manifold 3a-3f ... Collimator 3g-3s ... Collimator 4a-4f ... Single crystal 5a-5f ... Single crystal 6a-6f ... X-ray detector 7 ... Measured Object 8 …… Shield plate 9g ~ 9s …… Single crystal 10a ~ 10f …… Turning table

フロントページの続き (72)発明者 安倍 文彦 千葉県市原市八幡海岸通6番地 古河電気 工業株式会社千葉電線製造所内 (56)参考文献 特開 昭56−22925(JP,A) 特公 昭43−21920(JP,B1) 1979年東大出版会発行「X線回折技術」 第14頁図1.4Front page continuation (72) Inventor Fumihiko Abe No.6 Hachiman Kaigan Dori, Ichihara City, Chiba Furukawa Electric Co., Ltd. Chiba Electric Wire Works (56) References JP-A-56-22925 (JP, A) JP-B-43- 21920 (JP, B1) "X-ray diffraction technology" published by the University of Tokyo Press in 1979 Page 14 Figure 1.4

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被測定物の測定部間全域にわたって白色X
線を照射するためのX線源と、被測定物を透過した後の
透過線(透過白色X線)を複数に分岐するための複数の
コリメータと、該各透過線をそれぞれ回折してこれら透
過線を複数種の特性X線として取り出すための複数の単
結晶と、該各単結晶を経て入射される複数種の特性X線
エネルギを測定するための複数のX線検出器とを備えて
いること、および、 X線源から出射される白色X線の照射領域側に配置され
て互いに隣接している各X線検出器が、そのX線源とそ
れぞれ対面していること、被測定物がX線源と各X線検
出器との間において定位置に配置されていること、各コ
リメータが被測定物と各X線検出器との間にあって互い
に隣接して配置されていること、各単結晶も、被測定物
と各X線検出器との間に配置されていて、各コリメータ
により分岐された透過線を各X線検出器へ入射させるた
めに、これらコリメータ、X線検出器とそれぞれ対応し
ていること、および、 上記の手段を介して被測定物の組成を分析するときに、 X線源から出射した白色X線を被測定物の測定部間全域
にわたって照射すること、その被測定物を透過した後の
透過線を各コリメータおよび各単結晶により分岐かつ回
折すること、これら分岐、回折により取り出された各特
性X線を各X線検出器へ入射させること、該各X線検出
器により各特性X線のエネルギ強度を各別に測定して被
測定物の組成を分析することを特徴とするX線による被
測定物の組成分析方法。
1. A white X over the entire area between the measurement parts of the object to be measured.
X-ray source for irradiating X-rays, a plurality of collimators for branching a plurality of transmission lines (transmission white X-rays) after passing through an object to be measured, and diffracting each of the transmission lines to transmit these A plurality of single crystals for extracting the rays as a plurality of types of characteristic X-rays and a plurality of X-ray detectors for measuring a plurality of types of characteristic X-ray energies incident through the respective single crystals are provided. And that the X-ray detectors arranged on the irradiation area side of the white X-rays emitted from the X-ray source and adjacent to each other face the X-ray source, respectively, It is arranged at a fixed position between the X-ray source and each X-ray detector, each collimator is arranged between the object to be measured and each X-ray detector, and adjacent to each other. The crystal is also placed between the DUT and each X-ray detector, and each crystal The collimator and the X-ray detector correspond to the transmission lines branched by the laser beam to the respective X-ray detectors, and the composition of the object to be measured is analyzed through the above means. Sometimes, the white X-ray emitted from the X-ray source is applied to the entire area between the measurement parts of the DUT, and the transmission line after passing through the DUT is branched and diffracted by each collimator and each single crystal. The characteristic X-rays extracted by the branching and diffraction are made incident on the respective X-ray detectors, and the energy intensities of the respective characteristic X-rays are individually measured by the respective X-ray detectors to determine the composition of the object to be measured. A method for analyzing the composition of an object to be measured by X-ray, which comprises analyzing.
JP60082078A 1985-04-17 1985-04-17 Method for analyzing composition of object to be measured by X-ray Expired - Lifetime JPH0721469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60082078A JPH0721469B2 (en) 1985-04-17 1985-04-17 Method for analyzing composition of object to be measured by X-ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60082078A JPH0721469B2 (en) 1985-04-17 1985-04-17 Method for analyzing composition of object to be measured by X-ray

Publications (2)

Publication Number Publication Date
JPS61240146A JPS61240146A (en) 1986-10-25
JPH0721469B2 true JPH0721469B2 (en) 1995-03-08

Family

ID=13764425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60082078A Expired - Lifetime JPH0721469B2 (en) 1985-04-17 1985-04-17 Method for analyzing composition of object to be measured by X-ray

Country Status (1)

Country Link
JP (1) JPH0721469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065412A1 (en) * 2012-10-26 2014-05-01 株式会社 東芝 X-ray computed tomography device, x-ray detector and x-ray detection module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239747A (en) * 1985-08-14 1987-02-20 Furukawa Electric Co Ltd:The Method for analyzing composition of article to be measured by x-rays
JP6309275B2 (en) * 2013-01-10 2018-04-11 キヤノンメディカルシステムズ株式会社 X-ray computed tomography apparatus, medical image processing apparatus, and medical image processing program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622925A (en) * 1979-08-01 1981-03-04 Furukawa Electric Co Ltd:The Analytic measurement method for base material for optical fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1979年東大出版会発行「X線回折技術」第14頁図1.4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065412A1 (en) * 2012-10-26 2014-05-01 株式会社 東芝 X-ray computed tomography device, x-ray detector and x-ray detection module
JP2014083361A (en) * 2012-10-26 2014-05-12 Toshiba Corp X-ray computed tomography apparatus, x-ray detection device, and x-ray detection module
US9693745B2 (en) 2012-10-26 2017-07-04 Toshiba Medical Systems Corporation X-ray computed tomography apparatus, x-ray detection apparatus, and x-ray detection module

Also Published As

Publication number Publication date
JPS61240146A (en) 1986-10-25

Similar Documents

Publication Publication Date Title
EP0539608B1 (en) Method for obtaining internal structure image of object
US6359964B1 (en) X-ray analysis apparatus including a parabolic X-ray mirror and a crystal monochromator
JP3968350B2 (en) X-ray diffraction apparatus and method
JPH0721469B2 (en) Method for analyzing composition of object to be measured by X-ray
US4884290A (en) Method of analyzing composition of optical fiber base material to be measured by radioactive rays
JP2008170236A (en) Measuring method for reflectivity curve of x ray and of neutron radiation and measuring instrument
US3816747A (en) Method and apparatus for measuring lattice parameter
JPH06100556B2 (en) Method for analyzing composition of object to be measured by X-ray
JP2599368B2 (en) Non-destructive measuring method of object under X-ray
JP2727691B2 (en) X-ray absorption fine structure analyzer
RU2119660C1 (en) Gear determining composition and structure of inhomogeneous object ( versions )
JP2583215B2 (en) X-ray composition analysis method for DUT
JPH071241B2 (en) Method for analyzing composition of object to be measured by X-ray
JP2921597B2 (en) Total reflection spectrum measurement device
JP2891780B2 (en) Energy beam irradiation angle setting method
JPS6239747A (en) Method for analyzing composition of article to be measured by x-rays
JPS61240147A (en) Method for analyzing composition of article to be measured by x-rays
RU2137114C1 (en) Method of small-angle introscopy and device for its realization ( versions )
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
JPH01196550A (en) Quantitative analyzer for bone salt
JP2599360B2 (en) Non-destructive measuring method of object under X-ray
US3070693A (en) Diffraction apparatus and method of using same
JPH0643972B2 (en) Non-destructive measurement method of DUT by X-ray
JPS61167846A (en) Method for analyzing composition of object to be measured by x-ray
JPH04329347A (en) Thin film sample x-ray diffracting device