JPH0721391B2 - 溶錬炉付帯設備の操業方法 - Google Patents

溶錬炉付帯設備の操業方法

Info

Publication number
JPH0721391B2
JPH0721391B2 JP61108858A JP10885886A JPH0721391B2 JP H0721391 B2 JPH0721391 B2 JP H0721391B2 JP 61108858 A JP61108858 A JP 61108858A JP 10885886 A JP10885886 A JP 10885886A JP H0721391 B2 JPH0721391 B2 JP H0721391B2
Authority
JP
Japan
Prior art keywords
steam
fuel
smelting furnace
amount
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61108858A
Other languages
English (en)
Other versions
JPS62263934A (ja
Inventor
健一 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP61108858A priority Critical patent/JPH0721391B2/ja
Publication of JPS62263934A publication Critical patent/JPS62263934A/ja
Publication of JPH0721391B2 publication Critical patent/JPH0721391B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は銅などの硫化精鉱を主原料としを産出する
溶錬炉に付帯するエネルギー利用設備の操業方法に関す
るものである。
〔従来の技術〕
従来銅などの硫化精鉱を例えば自溶炉の廃熱の回収や、
精鉱を予熱乾燥するために第2図に示すような付帯設備
が組合せ用いられ、この設備の中で燃料を必要とする設
備として、精鉱の乾燥設備2、溶錬炉3、蒸気加熱器5
及び蒸気再熱器7があり、夫々に燃料11、12、13及び14
が使用され従来はこれらの燃料は一般に重油が用いられ
ていた。
近時重油価格高騰等のため溶錬炉3のシヤフト部に供給
される燃料12の重油は一部ないし全部を微粉炭、粉コー
クス、オイルコークス等の固体燃料への代替が行なわれ
てきている。しかしながら蒸気加熱器5及び蒸気再熱器
7に使用される燃料13、14は従来のまゝ重油が使用され
ている。これらの両設備はこれ迄重油燃焼用に作られて
おり、固体燃料を用いるために必要な燃焼室容積が不足
すること、燃焼灰の発生とその付着に対応した余裕のあ
る水管配置となつていないこと、スートブロー設備を有
していないこと、炉床に堆積する未燃焼分や燃焼灰を炉
外に排出する機構を有していない等のため簡単に固体燃
料に切替えることができなかつた。
又、精鉱の乾燥設備2では熱源として蒸気加熱器5及び
蒸気再熱器7で使用される燃料13及び14の燃焼排ガスを
使用するが、不足する熱量を熱風炉1で燃料11を燃焼さ
せることにより発生させた熱風21を用いて補なつてい
る。この燃料11は乾燥設備2に近接して設けられた熱風
炉1での燃焼ガスを直接可燃性の銅精鉱と接触させるの
で固体燃料を使用すると固体燃料の燃焼に特有の着火赤
熱した粒子が直接精鉱と接触して発火、火災等の事故を
起こす恐れがあるので燃料11は、やはり重油が安全、確
実な燃料である。そして安全の為に乾燥設備2入口の温
度を450℃以下に維持していた。固体燃料の燃焼ガスに
よる間接加熱方式も考えられるが熱効率、設備費の点か
ら経済的な方法ではない。
また一方溶錬炉3へ供給する燃料12の代替や鉱石処理能
力の増加を図るために反応用空気22の一部ないし全部に
酸素27が用いられる。
自溶炉の反応用気体として空気に酸素を富化すると、酸
素使用量の増加に伴なつて溶錬炉シヤフト部へ供給する
燃料の消費量が減るので酸素をどの程度使用するかは鉱
石の処理能力の上昇と、酸素の製造コスト、燃料コスト
等を総合的に勘案して定める。この場合溶錬炉3の排ガ
ス23の量も減少するので、廃熱ボイラー4からの発生蒸
気24の量が減少し、それに比例して蒸気加熱器5及び蒸
気再熱器7の夫々の燃料13及び14が減少し、これらの燃
料排ガス25及び28の量も減少するので乾燥設備2への供
給熱量が不足し、熱風炉1の燃料11の使用量を増加させ
なければならない。
このように溶錬炉反応用空気22に酸素27を使用する場合
には空気予熱器6で加熱されるべき気体量が減少し、そ
の場合の空気予熱器6に必要とする熱量の減少が廃熱ボ
イラー4の蒸気24の発生量の減少割合より多いため、空
気予熱器6で加熱される反応用空気22の温度を従来と同
じに保持すると空気予熱器6出口の蒸気温度が従来より
上昇し、蒸気再熱器7で補熱するための燃料14の使用量
がバーナーの安定燃焼が困難になる程度まで低下させな
ければならない事態が発生する。これを防止するために
は蒸気加熱器5に使用する燃料13の量を減らして蒸気加
熱器5の出口蒸気温度を低下させることにより空気予熱
器6の出口蒸気温度を適正に保ち、蒸気再熱器7のバー
ナーが安定燃焼可能なようにすると、反応用空気22に供
給される熱量が減るためその温度が低下し、溶錬炉3へ
の供給燃料12の使用量を低減した効果を減殺するという
欠点があつた。
〔発明が解決しようとする問題点〕
この発明は上述の従来技術における価格の高い重油専焼
の蒸気加熱器の燃料を価格の安い微粉炭又は粉コーク
ス、オイルコークス等の微粉状固体燃料に代替すると共
に、溶錬炉付帯設備全体の消費エネルギーのうち重油の
一部を間接的に安価な固体燃料に置換し、また反応用空
気に酸素を富化したときに生ずる欠点を解消し、総合的
にエネルギーコストの低下が計れる付帯設備の操業方法
を提供することを目的とするものである。
〔問題点を解決するための手段〕
この目的を達成するために第2図に示した従来の設備に
おいて、蒸気加熱器5の使用燃料を固体燃料の使用を可
能とし、且つ蒸気加熱器5の燃焼排ガス温度を従来より
上昇させて500〜650℃となるように操業することによ
り、精鉱乾燥設備に熱風を供給する熱風炉に使用する重
油の一部を間接的に固体燃料へ置換できるようにしたも
のである。
本発明を第1図に従つて説明する。本発明では第2図に
示した従来の蒸気加熱器5の代りに蒸気加熱器5′を微
粉炭ないし粉コークス、オイルコークス等の固体燃料の
みの燃焼可能な構造とするか、重油と固体燃料の混焼、
重油の専焼も可能とする。
一般的には蒸気加熱器5′のような熱設備においては単
位設備としての熱効率を高めるために排ガス温度は露点
等の問題のない範囲で極力低くするように操業されてい
る。然るに本発明ではこの蒸気加熱器5′の排ガス温度
を高くして、こゝで消費される安価な固体燃料量を増す
ことにより乾燥設備に供給する熱風を作る熱風炉1で使
用する価格の高い液体燃料量を減らすことを検討した。
その結果、乾燥設備2で処理される精鉱は可燃性の硫化
物であつてその着火温度を測定すると約350℃であり、
一旦着火するとSO2ガスの発生、粉塵爆発、精鉱の焼
結、設備火災の恐れがあるため精鉱と加熱ガスの流れは
併流方式を用い、供給する熱ガス温度は従来450℃程度
が上限と考えられていたが、実設備で調査したところ、
熱ガス温度は650℃程度までは着火、SO2ガスの発生等の
恐れがないことが明らかとなつたので、蒸気加熱器5′
の排ガス温度を500℃以上650℃以下として操業するよう
に本発明を構成した。
本発明において蒸気加熱器5′の排ガス温度を450℃
(ケースA:従来の操業温度)から600℃(ケースB:本発
明の操業温度)に高めると、第1表に比較して示すよう
に同量の蒸気を得る為に必要とする伝熱面積が大幅に減
るため微粉炭使用可能な蒸気加熱器の設備費が大幅に安
価となつて有利である。
このようにして蒸気加熱器5′を固体燃料使用可能とし
て微粉炭のみを使用し、且つその排ガス温度を600℃と
したとき(ケースB′)と、重油のみを燃料として排ガ
ス温度を600℃とした場合(ケースC)、及び重油のみ
を燃料とし排ガス温度を450℃とした従来法の場合(ケ
ースD)の各々をいずれも溶錬炉の原料等の装入量、送
風の酸素濃度その他の操業条件を同一として蒸気加熱器
及び乾燥設備に必要とする熱風炉の燃料消費量を比較す
ると第2表のようになる。
但し重油発熱量9800Cal/kg、微粉炭発熱量6500Cal/kg、
乾燥精鉱量70T/H、溶錬炉装入精鉱量62.6T/H、Cu品位
56重量%、反応用空気中の酸素濃度26.4容量%、溶錬炉
シヤフト供給微粉炭量2680kg/H、蒸気加熱器導入蒸気量
40T/Hの操業条件であつた。
第2表から明らかなように本発明によれば蒸気加熱器の
重油の全量及び乾燥設備に使用する重油の一部が固体燃
料に置換可能となる。
この発明は前記した発明の操業方法に加えて、更に溶錬
炉で反応用空気に酸素を富化したときに生ずる蒸気再熱
器の安定燃焼が困難となる対策として例えば蒸気加熱器
への安価な固体燃料の供給を減少させる機会(即ち本溶
錬炉付帯設備においては当該溶錬炉産出マツトを処理す
る転炉の排熱回収ボイラー発生蒸気の蒸気再熱器への導
入がない場合)のなくし、安価なエネルギー源としての
固体燃料の使用を更に効率的にするという目的を達成す
るために、本発明は前記した発明にさらに空気予熱器蒸
気出口に減温注水器を設けて転炉排熱回収ボイラー発生
蒸気の導入のないようなときに減温注水器に注水して蒸
気再熱器入口蒸気温度を低下させて操業するように構成
したものである。このように構成することにより蒸気再
熱器で使用する重油の一部も蒸気加熱器5′で固体燃料
への転換が可能となつた。場合によつては蒸気再熱器を
不要とできる。
固体燃料を使用する蒸気加熱器から産出する加熱蒸気を
溶錬炉の反応用気体の予熱に使用し、空気予熱器を通過
した残りの蒸気を蒸気再熱器で温度を再調整して発電に
供するという一般に製練所で用いられる自家発電装置に
おいて、蒸気加熱器の経済的効果を最大限に上げること
について検討すると、当然蒸気加熱器5′出口の蒸気温
度を最大限度とし、使用燃料量を最大とし、その燃焼排
ガスを利用して熱風炉1の重油使用量を削減すること、
蒸気再熱器の蒸気入熱量も高く保ち、蒸気再熱器で使用
する重油使用量を減少するか蒸気再熱器をなくすること
が最も効率的であると考えられる。
しかしながら溶錬炉の反応用気体として酸素を富化して
その濃度を高くして行くと、従来技術の項で述べたよう
に蒸気再熱器の必要補熱量がバーナーの安定燃料の下限
以下になり、そのまゝ安定燃焼を計ろうとすれば蒸気再
熱器の蒸気温度が上昇して蒸気再熱器の耐熱温度を超え
ることになつてしまつて具合が悪い。
そこで最も効率的な操業を行なうようにする為第1図に
おいて空気予熱器6の蒸気出口に減温注水器9を設けて
転炉排熱ボイラーからの蒸気導入がないときでも蒸気再
熱器7のバーナーが安定して燃焼することが可能になる
ように蒸気再熱器入口蒸気温度を低下させた。通常は重
油バーナーが安定して燃焼を行なうためにはバーナー容
量の1/5程度以上で運転することが必要である。
以下溶錬炉の操業例によつて詳細に説明する。
溶錬炉の操業条件として精鉱、溶剤、繰返しダスト等の
総装入物量62.6t/H、産出Cu56重量%、純度90容量%
の酸素使用量3060Nm3/H、シヤフト部への送風空気量35,
950Nm3/H、シヤフト部供給微粉炭量2480kg/H、廃熱ボイ
ラー入口ガス量53300Nm3/H(ボイラー発生蒸気量49t/
H)を基準として酸素の使用量を変動させた場合のシヤ
フト部供給微粉炭量の変化を第3図に示す。この図から
純度90容量%の酸素の使用量が1000Nm3/H増加すれば微
粉炭量は約370kg/H減少することが判る。又、酸素使用
量とシヤフト部供給空気量及び廃熱ボイラー入口ガス量
との関係を第4図に示す。この図から該酸素の使用量が
1000Nm3/H増加するとシヤフト部供給空気量は約5900Nm3
/H、廃熱ボイラー入口ガス量は約6200Nm3/H夫々減少す
る効果がある。第5図には酸素使用量と廃熱ボイラー蒸
気発生量、回収電力量との関係を示したものである。
溶錬炉に酸素をどの程度使用するかは鉱石の処理量や、
固体燃料量の減少、ガス量減に伴なう運転電力の減少
と、酸素の製造コストを総合的に勘案して定めるべきで
あるが第5図に示されるように該酸素の使用量が1000Nm
3/H増加すると廃熱ボイラー入口ガス量の減少に伴なつ
て回収電力量が約1200KWH減少するので、酸素使用量の
大きな要素となる。
一定の大きさの溶錬炉において処理量を増加させる場合
に、反応ゾーン内での発生熱量が処理量に比例して増加
するのを抑制することが反応ゾーンを構成する炉材の保
護のために必要となり、一般的には極力酸素の富化量を
多くする。これによつてダストの発生を抑制する効果も
ある。
溶錬炉の装入量、産出Cu重量%は前記と同じ条件で酸
素使用量を増し(4750Nm3/H)第5図において蒸気発生
量を40t/Hとしたとき本発明による減温注水器がないと
きの蒸気加熱器出口蒸気温度と空気予熱出口の空気温度
及び蒸気温度並びに蒸気再熱器重油使用量との関係を第
6図に示す。第6図において蒸気加熱器出口蒸気温度を
460℃とすると空気予熱器出口の蒸気及び送風温度は夫
々375℃、405℃で転炉排熱回収蒸気の導入がないときは
蒸気再熱器の重油はバーナーの下限の約50kg/Hで操業し
ているものが、転炉ボイラー蒸気の導入時の重油量は21
0kg/Hとなる。これを蒸気加熱器出口蒸気温度を540℃ま
で上昇させると、空気予熱器出口の蒸気及び送風温度は
夫々435℃、470℃となるが、このとき蒸気再熱器の入熱
量が増加して、その重油量は転炉ボイラー蒸気導入時は
バーナー下限の約50kg/Hとなり、転炉ボイラー蒸気の導
入のないときは熱量的に約100kg/H重油が過剰となり、
バーナーを下限の50kg/Hで燃焼を続けると常時390℃で
制御している蒸気再熱器の出口蒸気温度が450℃迄上昇
し、この蒸気再熱器の耐熱温度400℃を超えてしまうの
で、このような蒸気加熱器の高温操業ができず止むを得
ず前記したように蒸気加熱器出口蒸気温度を下げて操業
することになつていた。
本発明では空気予熱器出口に減温注水器が設けてあるの
で蒸気加熱器出口蒸気温度を下げることなく、転炉ボイ
ラー蒸気の導入のないときは減温注水器で注水を行なつ
て減温注水器出口蒸気温度を約380℃迄低下せしめ、蒸
気再熱器では重油バーナー容量下限の50kg/Hの燃焼を維
持して蒸気再熱器出口蒸気温度をその耐熱温度以下の39
0℃に保つようにしたものである。
本発明方法によれば減温注水器により注水するため蒸気
量が増加し蒸気タービン8に導入される蒸気量が増加
し、発電量が増加するがこれは蒸気加熱器5′において
燃焼した安価な固体燃料によるものである。又、転炉ボ
イラー蒸気の流入のないときは、空気予熱器から出た蒸
気を減温注水器で蒸気タービンの運転に適した温度に、
転炉ボイラー蒸気の流入のある時は転炉ボイラー蒸気と
減温注水器からの蒸気の混合蒸気が蒸気タービンの運転
に適した温度になるように減温注水器を制御することに
より蒸気再熱器を不要とすることもできる。
〔実施例〕
第1図に示すような本発明方法の設備を使用し、蒸気加
熱器及び溶錬炉シヤフト部燃料としては微粉炭のみを使
用し、蒸気加熱器の燃焼排ガス温度を600℃とした場
合、また比較例として第2図に示す従来のフローシート
に従つた設備で蒸気加熱器燃料は重油、溶錬炉シヤフト
部燃料としては微粉炭を使用し、蒸気加熱器の燃焼排ガ
ス温度を450℃とし、送風中の酸素濃度をほぼ同一とし
ていずれも溶錬炉の装入物量は62.6t/H、主要原料であ
る銅精鉱組成はCu31重量%、S29重量%、Fe24重量%、S
iO27重量%であつた。又、産出Cu55重量%及び蒸気
加熱器への導入蒸気量も40t/Hで同一である。両例の成
績を第3表に示す。
第3表 実施例 比較例 蒸気加熱器排ガス温度℃ 600 450 出口蒸気温度℃ 540 460 反応用酸素富化空気温度℃ 460 390 減温注水器入口温度 ℃ 440 370 減温注水器注水量平均t/H 0.8 − 転炉停止時t/H 1.9 転炉吹錬時t/H 0.5 減温注水器出口温度 転炉停止時℃ 386 転炉吹錬時℃ 425 微粉炭 重油 蒸気加熱器使用燃料kg/H 1840 830 溶錬炉シヤフト使用微粉炭kg/H 2020 1900 乾燥用熱風炉使用重油量kg/H 80 190 蒸気再熱器使用 〃 kg/H 60 170 溶錬炉供給酸素量(90%)Nm3/H 4800 5060 反応用空気酸素濃度容量% 32.4 33.0 発電回収量 KW/H 6770 6570 第3表から明らかなように本発明方法に従つて蒸気加熱
器の使用燃料を固体燃料とし、その排ガス温度を従来よ
り高い600℃となるような設備として反応用空気温度を
高く保つようにすれば本溶錬炉付帯設備において従来使
用していた蒸気加熱器の燃料を価格の高い重油から廉価
な微粉炭に置換できるのみならず、鉱石乾燥用熱風炉で
使用している重油の一部も間接的に安価な微粉炭に置換
することが可能となつた。
又、この操業方法で空気予熱器の廃蒸気を発電用に供す
るための蒸気再熱器の前に転炉排熱回収ボイラーからの
やゝ低温の蒸気の導入のないときに、蒸気再熱器の重油
の安定運転可能なように空気予熱器蒸気出口に設けた減
温注水器に注水して温度を点火させるようにすると総合
的には比較例に比べて固体燃料である微粉炭の使用量19
60kg/Hの増加に対し、重油使用量を1050kg/H減らすこと
ができ、この設備での重油から固体燃料への転換率を大
幅に上昇させることができた。更にエネルギー経済的に
は酸素消費量を260Nm3/H減少させ、発電回収量を200KW/
H増加することができ価格的にも経済的である。
〔発明の効果〕
以上詳細に説明したように本発明によれば硫化鉱を処理
する溶錬炉付帯設備において、蒸気加熱器の燃料を従来
の液体燃料から固体燃料の使用を可能とし、且つその燃
焼排ガスの温度を高くすることによりこの蒸気加熱器の
設備費も少なくて済み、又蒸気加熱器の燃料の置換のみ
ならず間接的に乾燥設備に使用する液体燃料を固体燃料
に置換することができる。
又更に空気予熱器出口に減温注水器を設けて空気予熱出
口蒸気温度が上つたために転炉系統の蒸気導入のない場
合に蒸気再熱器の安定燃焼が可能のように減温注水器で
注水して蒸気温度を下げることができるようにしたので
総合的に溶錬炉反応空気温度を高くしてエネルギー経済
を最大限に計ることができる。
【図面の簡単な説明】
第1図は本発明操業方法における溶錬炉付帯設備関係
図、第2図は従来の溶錬炉付帯設備関係図、第3図は溶
錬炉での酸素の使用量と微粉炭供給量との関係を示した
図、第4図は同じく酸素使用量と廃熱ボイラー入口ガス
量との関係を示した図、第5図は同じく酸素使用量と廃
熱ボイラー蒸気発生量及び回収電力量との関係を示した
図、第6図は溶錬炉での酸素使用量を4750Nm3/Hとした
ときの、蒸気加熱器出口の蒸気温度に対する空気予熱器
出口蒸気温度及び空気予熱器出口空気温度の関係、並び
に蒸気加熱器出口温度に対する転炉ボイラー蒸気導入の
あるときと、ないときの蒸気再熱器重油使用量の関係を
示した図である。 1…熱風炉、2…乾燥設備、3…溶錬炉 4…廃熱ボイラー、5、5′…蒸気加熱器 6…空気予熱器、7…蒸気再熱器 8…蒸気タービン、9…減温注水器

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】乾燥した硫化精鉱を主原料とし、固体又は
    固体及び液体燃料を補助燃料として使用する溶錬炉の排
    ガスを熱回収する廃熱ボイラーと、該廃熱ボイラーの蒸
    気を加熱する蒸気加熱器と、該蒸気加熱器で加熱された
    蒸気により溶錬炉に供給する酸素を富化した反応用空気
    を予熱する空気予熱器と、該空気予熱器を経た蒸気によ
    り運転される発電機運転用蒸気タービンと、前記蒸気加
    熱器の燃焼排ガスが供給され、熱風炉で燃料を燃焼して
    作つた熱風により補熱される前記硫化精鉱を乾燥するた
    めの乾燥設備とを具えた溶錬炉付帯設備において、該蒸
    気加熱器の使用燃料を固体燃料専焼又は固体燃料と液体
    燃料との混焼とし且つその燃焼排ガス温度を500〜650℃
    となるように操業することを特徴とする溶錬炉付帯設備
    の操業方法。
  2. 【請求項2】乾燥した硫化精鉱を主原料とし、固体又は
    固体及び液体燃料を補助燃料として使用する溶錬炉の排
    ガスを熱回収する廃熱ボイラーと、該廃熱ボイラーの蒸
    気を加熱する蒸気加熱器と、該蒸気加熱器で加熱された
    蒸気により溶錬炉に供給する酸素を富化した反応用空気
    を予熱する空気予熱器と、該空気予熱器を経た蒸気によ
    り運転される発電機運転用蒸気タービンと、前記蒸気加
    熱器の燃焼排ガスが供給され、熱風炉で燃料を燃焼して
    作つた熱風により補熱される前記硫化精鉱を乾燥するた
    めの乾燥設備とを具えた溶錬炉付帯設備において、該蒸
    気加熱器の使用燃料を固体燃料専焼又は固体燃料と液体
    燃料との混焼とし且つその燃焼排ガス温度を500〜650℃
    とし、更に該空気予熱器蒸気出口に減温注水器を設け、
    転炉排熱回収ボイラー発生蒸気の導入のないときに該減
    温注水器に注水して前記蒸気タービンへの供給蒸気温度
    を低下させることを特徴とする溶錬炉付帯設備の操業方
    法。
JP61108858A 1986-05-12 1986-05-12 溶錬炉付帯設備の操業方法 Expired - Lifetime JPH0721391B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108858A JPH0721391B2 (ja) 1986-05-12 1986-05-12 溶錬炉付帯設備の操業方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108858A JPH0721391B2 (ja) 1986-05-12 1986-05-12 溶錬炉付帯設備の操業方法

Publications (2)

Publication Number Publication Date
JPS62263934A JPS62263934A (ja) 1987-11-16
JPH0721391B2 true JPH0721391B2 (ja) 1995-03-08

Family

ID=14495380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108858A Expired - Lifetime JPH0721391B2 (ja) 1986-05-12 1986-05-12 溶錬炉付帯設備の操業方法

Country Status (1)

Country Link
JP (1) JPH0721391B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995168A (zh) * 2010-11-10 2011-03-30 甘肃众维卓越节能科技有限公司 一种电石炉烟气余热的回收利用方法
CN105300117A (zh) * 2014-06-25 2016-02-03 上海宝冶建设工业炉工程技术有限公司 套筒石灰窑窑尾烟气回收再利用进行伴热方法
CN105509492A (zh) * 2015-12-24 2016-04-20 东北大学设计研究院(有限公司) 一种氧化铝回转窑烟气余热及co2回收系统及方法
CN105783536A (zh) * 2016-03-29 2016-07-20 石家庄市正定金石化工有限公司 一种采用旋风除尘器初降大炉尾气中烟尘的装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348902B2 (ja) * 2008-02-17 2013-11-20 サーモ・エレクトロン株式会社 アルミニウム溶解炉及びアルミニウム鋳造システム
JP5761258B2 (ja) * 2013-06-21 2015-08-12 三菱マテリアル株式会社 可燃物の処理方法と設備

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995168A (zh) * 2010-11-10 2011-03-30 甘肃众维卓越节能科技有限公司 一种电石炉烟气余热的回收利用方法
CN105300117A (zh) * 2014-06-25 2016-02-03 上海宝冶建设工业炉工程技术有限公司 套筒石灰窑窑尾烟气回收再利用进行伴热方法
CN105509492A (zh) * 2015-12-24 2016-04-20 东北大学设计研究院(有限公司) 一种氧化铝回转窑烟气余热及co2回收系统及方法
CN105783536A (zh) * 2016-03-29 2016-07-20 石家庄市正定金石化工有限公司 一种采用旋风除尘器初降大炉尾气中烟尘的装置

Also Published As

Publication number Publication date
JPS62263934A (ja) 1987-11-16

Similar Documents

Publication Publication Date Title
US4468923A (en) Process and plant for generating electrical energy
CN106244175B (zh) 烟气高温碳还原脱硝和热能回收装置
CN106755718B (zh) 转炉炼钢产生的烟气废热利用和除尘一体化系统及工艺
ES2433687T3 (es) Método y disposición para producir energía eléctrica en una fábrica de pasta papelera
CN104964274A (zh) 天然气富氧燃烧炉的烟气余热回收和再循环调温方法及系统
JPH0721391B2 (ja) 溶錬炉付帯設備の操業方法
JP3781339B2 (ja) 廃棄物の乾留熱分解反応器及び乾留熱分解方法
US20140000535A1 (en) Metallurgical plant with efficient waste-heat utilization
EP0577759B1 (en) Concurrent-flow multiple hearth furnace for the incineration of sewage sludge filter-cake
CN204943454U (zh) 天然气富氧燃烧炉的烟气余热回收和再循环调温系统
CN116083673A (zh) 一种高炉热风炉烟气串级利用同步脱硫脱硝系统
ES2247216T3 (es) Procedimiento para el aprovechamiento del calor residual de la produccion de hierro bruto en hornos de solera giratoria.
JP3639404B2 (ja) 廃棄物の乾留熱分解溶融燃焼装置
JPS63503006A (ja) 炉用廃金属の予熱方法および装置
CN208818016U (zh) 电弧炉余热利用系统
CN206875996U (zh) 焦化厂焦炉煤气利用与烟气处理系统
CN207019072U (zh) 一种生活垃圾热解湿烟气循环利用装置
JPS59123707A (ja) 溶融還元炉反応生成ガスの利用方法
CA1206751A (en) Process of afterburning combustible constituents of exhaust gases from rotary kilns
JPH0849821A (ja) 廃棄物処理装置及び方法
JP2023149664A (ja) 硫化精鉱の乾燥方法及びこれを用いた熔融製錬設備
JP2023149665A (ja) 硫化精鉱の乾燥方法
JP2000199019A (ja) 銅製錬自溶炉の保温・昇温方法
JPH02200740A (ja) 焼結機排ガスの顕熱、潜熱回収方法
CN116042946A (zh) 一种高炉热风炉炼铁全流程供热工艺