JPH07213864A - Removing method of nitrous oxide - Google Patents

Removing method of nitrous oxide

Info

Publication number
JPH07213864A
JPH07213864A JP6009569A JP956994A JPH07213864A JP H07213864 A JPH07213864 A JP H07213864A JP 6009569 A JP6009569 A JP 6009569A JP 956994 A JP956994 A JP 956994A JP H07213864 A JPH07213864 A JP H07213864A
Authority
JP
Japan
Prior art keywords
mordenite
nitrous oxide
gas
transition metal
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6009569A
Other languages
Japanese (ja)
Inventor
Osamu Harasaki
修 原崎
Shiro Yajima
史朗 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6009569A priority Critical patent/JPH07213864A/en
Publication of JPH07213864A publication Critical patent/JPH07213864A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To remove nitrous oxide with a high removing rate even at lox temp. by depositing transition metal on mordenite having specified or higher silica/ alumina ratio or ZSM-5 and bringing a gas to be treated containing nitrous oxide and mixed with hydrocarbon reducing gas into contact with the transition metal. CONSTITUTION:Transition metal is deposited on a mordenite having >10 silica/ alumina ratio or ZSM-5 and a gas to be treated containing nitrous oxide and mixed with hydrocarbon reducing gas is brought into contact with the deposited transition metal. As for the transition metal, cobalt, iron, nickel, manganese, ruthenium, rhodium, iridium, or the like is used. These transition metals are deposited on a catalyst of the mordenite or ZSM-5 by an ion exchange method or the like. The hydrocarbon reducing gas is propane, ethylene, propylene, etc., and is mixed by the number of the moles or larger necessary to decompose N2O. For example, when propane is used, about >=1/5 time as the amt. of N2O is needed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス中に含まれる亜酸
化窒素を除去する亜酸化窒素の除去方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing nitrous oxide which removes nitrous oxide contained in gas.

【0002】[0002]

【従来の技術】近年、人工的に排出される二酸化炭素
(CO2 )などの温室効果による気候の温暖化や、フロ
ンなどの安定化合物によるオゾン層の破壊等、地球レベ
ルでの環境破壊が問題となっている。特にオゾン層の破
壊は、地表面に到達する紫外線を増加させ、皮膚ガンな
どを多発させ人類の健康に重大な影響を与えると言われ
ている。
2. Description of the Related Art In recent years, global warming of the climate due to greenhouse effects such as artificially emitted carbon dioxide (CO 2 ), and destruction of the ozone layer due to stable compounds such as CFCs pose a problem of environmental destruction at the global level. Has become. In particular, it is said that the destruction of the ozone layer increases the amount of ultraviolet rays reaching the surface of the earth, causes frequent skin cancers, and has a serious impact on human health.

【0003】オゾン層の破壊を引き起こす物質として、
従来は人工的に合成された各種フロンが主体であると考
えられており、ボイラ,ディーゼル機関,焼却炉などの
各種燃焼装置から排出されるガスなどに含まれる亜酸化
窒素(N2 O)はそれ程注目されていなかった。だが、
2 Oの増加量が近年になって上昇傾向にあり、しか
も、最近の調査では、N2 Oは成層圏へ拡散してオゾン
層を破壊すると共に、温室効果の寄与も大きいことが明
らかになり、地球環境問題の一つとしてクローズアップ
されつつある。
As substances that cause the destruction of the ozone layer,
Conventionally, it has been considered that artificially synthesized various CFCs are the main components, and nitrous oxide (N 2 O) contained in gases emitted from various combustion devices such as boilers, diesel engines, incinerators, etc. It didn't get as much attention. However,
The amount of increase in N 2 O has been increasing in recent years, and a recent survey revealed that N 2 O diffuses into the stratosphere and destroys the ozone layer, and also contributes greatly to the greenhouse effect. , Is being highlighted as one of the global environmental problems.

【0004】ボイラなどから排出されるN2 Oの除去技
術としては、燃焼方式の改良によるN2 O発生の低
減、プラズマ照射によるN2 Oの分解、触媒による
2 Oの除去などが考えられる。しかし、及びは高
温材料、熱効率、コストなどの面で実用化に問題があ
る。は触媒によるN2 Oの除去が可能になれば、比較
的実用性が高いと考えられるが、現在多くの発電プラン
トに適用されている触媒ではN2 Oは除去できないこと
が確認されている。
As a technique for removing N 2 O discharged from a boiler or the like, reduction of N 2 O generation by improvement of combustion system, decomposition of N 2 O by plasma irradiation, removal of N 2 O by a catalyst and the like are considered. . However, there is a problem in practical application in terms of high temperature material, thermal efficiency, cost and the like. It is considered to be relatively practical if N 2 O can be removed by a catalyst, but it has been confirmed that N 2 O cannot be removed by a catalyst currently applied to many power plants.

【0005】このため、新触媒の開発が必要になり、例
えば、シリカアルミナ比が10以上のモルデナイト、又
は鉄置換型モルデナイトを触媒として使用しN2 Oを還
元除去することが提案されている(特開平 2-68120号公
報等)。
Therefore, it is necessary to develop a new catalyst. For example, it has been proposed to reduce and remove N 2 O by using mordenite having a silica-alumina ratio of 10 or more or iron-substituted mordenite as a catalyst ( JP-A-2-68120, etc.).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述の
モルデナイトを触媒としてN2 Oを除去する場合、高い
除去率例えば80%以上を得るためには反応温度を約 600
℃以上と高くしなければならず、効率が悪い。
However, when N 2 O is removed by using the above-mentioned mordenite as a catalyst, the reaction temperature is set to about 600 to obtain a high removal rate, for example, 80% or more.
It must be as high as ℃ or higher, and the efficiency is poor.

【0007】そこで、本発明は、このような事情を考慮
してなされたものであり、その目的は、低温度でも高い
除去率で亜酸化窒素を除去することができる亜酸化窒素
の除去方法を提供することにある。
Therefore, the present invention has been made in view of such circumstances, and an object thereof is to provide a method for removing nitrous oxide which can remove nitrous oxide at a high removal rate even at a low temperature. To provide.

【0008】[0008]

【課題を解決するための手段】本発明者らは、亜酸化窒
素(N2 O)を効率よく除去するために種々の研究開発
を行った結果、亜酸化窒素を含む被処理ガスにハイドロ
カーボンの還元性ガスを混入することにより亜酸化窒素
の除去性能の向上を図れることに着目し、本発明を完成
するに至ったのであり、本発明の亜酸化窒素の除去方法
は、シリカアルミナ比が10以上のモルデナイト又はZ
SM−5に遷移金属を担持させ、これにハイドロカーボ
ンの還元性ガスを混合した亜酸化窒素を含む被処理ガス
を接触させるものである。
As a result of various researches and developments for efficiently removing nitrous oxide (N 2 O), the present inventors have found that a hydrocarbon to be treated as a gas containing nitrous oxide. Focusing on improving the removal performance of nitrous oxide by mixing the reducing gas of, it has come to complete the present invention, the method of removing nitrous oxide of the present invention, silica alumina ratio Mordenite or Z of 10 or more
The SM-5 is loaded with a transition metal, and a gas to be treated containing nitrous oxide in which a reducing gas of hydrocarbon is mixed is brought into contact therewith.

【0009】すなわち、先ず種々の触媒(現在多くの発
電プラントに適用されているアンモニア還元触媒(SC
R),チタニア担持貴金属系触媒,ゼオライト系触媒
等)を用いてN2 Oを分解する実験を行った結果、ゼオ
ライト系触媒が有用であることが確かめられた。そし
て、数種のモルデナイトにコバルト,鉄,ニッケル等の
遷移元素をイオン交換等によって調整し、これらの触媒
のN2 Oの直接分解活性について調べた結果、触媒の活
性温度が低くなることが分った。さらに低温度でもN2
Oを高除去率で除去させるために研究開発を行った結
果、亜酸化窒素を含む被処理ガスにハイドロカーボンの
還元性ガスを混入し、これを、遷移金属カチオンで交換
したシリカアルミナ比が10以上のモルデナイト又はZ
SM−5の触媒と接触させることにより低温域での活性
が向上することを知見したのである。
That is, first, various catalysts (ammonia reduction catalysts (SCs currently used in many power plants)
R), a titania-supported noble metal-based catalyst, a zeolite-based catalyst, etc.) was used to perform an experiment for decomposing N 2 O, and it was confirmed that the zeolite-based catalyst was useful. Then, several kinds of mordenite were adjusted with transition elements such as cobalt, iron and nickel by ion exchange and the direct decomposition activity of N 2 O of these catalysts was examined. As a result, it was found that the activation temperature of the catalyst was lowered. It was. N 2 even at lower temperatures
As a result of research and development for removing O at a high removal rate, a reducing gas of hydrocarbon was mixed into a gas to be treated containing nitrous oxide, and the silica-alumina ratio of which was exchanged with a transition metal cation was 10%. More mordenite or Z
It was found that the activity in the low temperature range is improved by bringing the SM-5 into contact with the catalyst.

【0010】本発明においてモルデナイトとしては、一
般式Na8 Al8 Si4096・24H2 Oのものなどが
あり、そのシリカアルミナ比(SiO2 /Al2 3
モル比)は10以上にする必要があり、そのモル比が小
さいと耐熱性に劣る。
In the present invention, mordenite includes those having a general formula of Na 8 Al 8 Si 40 O 96 · 24H 2 O, and its silica-alumina ratio (molar ratio of SiO 2 / Al 2 O 3 ) is 10 or more. If the molar ratio is small, the heat resistance is poor.

【0011】ZSM−5としては、一般式M12/nAl2
Si94192 ・16H2 O(Mはカチオン,nはその価
数をそれぞれ示す。)のものなどがあり、そのシリカア
ルミナ比は10以上にする必要があり、そのモル比が小
さいと耐熱性に劣る。
ZSM-5 has the general formula M 12 / n Al 2
There are some such as Si 94 O 192 · 16H 2 O (M is a cation and n is its valence), and the silica-alumina ratio must be 10 or more. Inferior to.

【0012】遷移金属としては、コバルト,鉄,ニッケ
ル,マンガン,ルテニウム,ロジウム,イリジウムなど
があげられ、これら遷移金属をイオン交換等によってモ
ルデナイト又はZSM−5の触媒に担持させる。
Examples of the transition metal include cobalt, iron, nickel, manganese, ruthenium, rhodium and iridium. These transition metals are supported on the catalyst of mordenite or ZSM-5 by ion exchange or the like.

【0013】ハイドロカーボンの還元性ガスとしては、
プロパン,エチレン,プロピレンなどがあげられ、その
混合量は、N2 Oを分解する反応における必要なモル数
以上であり、例えばプロパンの場合にはN2 Oに対して
1/5以上の量が必要になる。
As the reducing gas for hydrocarbon,
Propane, ethylene, propylene and the like can be mentioned, and the mixing amount thereof is at least the number of moles necessary for the reaction of decomposing N 2 O. For example, in the case of propane, the amount of 1/5 or more with respect to N 2 O is used. You will need it.

【0014】N2 Oの分解反応は例えばプロパンの場合
は下記式のようになると考えられる。
It is considered that the decomposition reaction of N 2 O is represented by the following formula in the case of propane, for example.

【0015】10N2 O+2C3 8 +5O2 →10N
2 +6CO2 +8H2
10N 2 O + 2C 3 H 8 + 5O 2 → 10N
2 + 6CO 2 + 8H 2 O

【0016】[0016]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0017】モルデナイト(シリカアルミナ比:15.2)
にコバルト(Co),鉄(Fe),ニッケル(Ni),
マンガン(Mn),ルテニウム(Ru),ロジウム(R
h),イリジウム(Ir)を、ZSM−5(シリカアル
ミナ比:30)に鉄をそれぞれイオン交換して、Co/モ
ルデナイト,Fe/モルデナイト,Ni/モルデナイ
ト,Mn/モルデナイト,Ru/モルデナイト,Rh/
モルデナイト,Ir/モルデナイト,Fe/ZSM−5
の各種触媒を調整した。この調整は、10%金属塩水溶液
を 100g作成し、これにモルデナイト、ZSM−5を30
g 加え、80℃で保温しながら2日間撹拌する。撹拌後、
水洗、ろ過し、これを 110℃で 1hr乾燥した後、 350℃
で 2hrの焼成を行い、それぞれモルデナイト、ZSM−
5の触媒を調整した。
Mordenite (silica-alumina ratio: 15.2)
Cobalt (Co), iron (Fe), nickel (Ni),
Manganese (Mn), Ruthenium (Ru), Rhodium (R
h), iridium (Ir) and ZSM-5 (silica-alumina ratio: 30) are ion-exchanged with iron to form Co / mordenite, Fe / mordenite, Ni / mordenite, Mn / mordenite, Ru / mordenite, Rh /
Mordenite, Ir / mordenite, Fe / ZSM-5
Various catalysts were prepared. For this adjustment, 100 g of a 10% metal salt aqueous solution was prepared, and mordenite and ZSM-5 were added to 30 g of the solution.
Add g and stir for 2 days while keeping the temperature at 80 ℃. After stirring,
Wash with water, filter, dry at 110 ℃ for 1hr, then 350 ℃
Firing for 2 hours at mordenite and ZSM-
A catalyst of 5 was prepared.

【0018】このように調整した各種の触媒に、プロパ
ン,アンモニアの還元性ガスを混入した亜酸化窒素を含
む被処理ガスを接触させ、そのN2 Oの分解活性を調
べ、その結果を図1〜図4に示した。
The various catalysts thus prepared were brought into contact with a gas to be treated containing nitrous oxide mixed with a reducing gas of propane and ammonia, and the N 2 O decomposition activity was examined. The results are shown in FIG. ~ Shown in FIG.

【0019】N2 Oの分解率は次のようにして調べた。The decomposition rate of N 2 O was investigated as follows.

【0020】電気炉により温度調節可能な内径 4mmの石
英ガラス製反応器に、秤量した触媒50mgを充填して触媒
層を形成し、これを 600℃に維持しながらHeを一晩流
して前処理を行った。次に、サンプルガス(反応ガス)
が所定の組成比(N2 O0.78%,C3 8 0.77%,O2 5.6
6%−Heバランス)になるようにテドラーバックに採
取し、これを反応器の注入口にセットした。そして、所
定の測定温度に反応器を設定した後、サンプルガスを反
応器に30ml/minの流量で流した。反応温度は250〜500
℃にした。このときの反応器にガスを導入させるバイパ
スラインのN2 Oピーク面積、すなわち触媒層入口N2
O濃度と、触媒層接触後のガスをガスクロマトグラフで
分析してこのN2 Oピーク面積の比とによりN2 Oの分
解率を求めた。ガスクロマトグラフは、検出器;TC
D、カラム;ポラパックQ(3m・3mmφ)を用いて、カ
ラム温度;80℃又は40℃,ディテクター温度; 120℃,
ディテクター電流; 140mA,キャリーガス流量;45ml/m
in,36ml/min の各条件で分析を行った。
A quartz glass reactor having an inner diameter of 4 mm, whose temperature can be adjusted by an electric furnace, was filled with 50 mg of the weighed catalyst to form a catalyst layer, and while maintaining this at 600 ° C., He was allowed to flow overnight to perform pretreatment. I went. Next, sample gas (reaction gas)
Is a predetermined composition ratio (N 2 O 0.78%, C 3 H 8 0.77%, O 2 5.6
6% -He balance) was collected in a Tedlar bag, and this was set in the inlet of the reactor. Then, after setting the reactor to a predetermined measurement temperature, the sample gas was flown into the reactor at a flow rate of 30 ml / min. Reaction temperature is 250-500
℃. At this time, the N 2 O peak area of the bypass line for introducing gas into the reactor, that is, the catalyst layer inlet N 2
The decomposition rate of N 2 O was obtained by analyzing the O concentration and the gas after contacting the catalyst layer with a gas chromatograph and the ratio of the N 2 O peak areas. Gas chromatograph, detector; TC
D, column; using Polapack Q (3m / 3mmφ), column temperature; 80 ℃ or 40 ℃, detector temperature; 120 ℃,
Detector current: 140mA, carry gas flow rate: 45ml / m
The analysis was performed under the conditions of in and 36 ml / min.

【0021】尚、図1中、Aは触媒がCo/モルデナイ
トで還元ガスがプロパンの場合、Bは触媒がFe/モル
デナイトで還元ガスがプロパンの場合、Cは触媒がNi
/モルデナイトで還元ガスがプロパンの場合、Dは触媒
がCo/モルデナイトで還元ガスがアンモニアの場合を
それぞれ示す。図2中、Eは触媒がMn/モルデナイト
で還元ガスがプロパンの場合、Fは触媒がMn/モルデ
ナイトで還元ガスがアンモニアの場合をそれぞれ示す。
図3中、Gは触媒がRu/モルデナイトで還元ガスがプ
ロパンの場合、Hは触媒がRh/モルデナイトで還元ガ
スがプロパンの場合、Jは触媒がIr/モルデナイトで
還元ガスがプロパンの場合をそれぞれ示す。図4中、K
は触媒がFe/ZSM−5で還元ガスがプロパンの場
合、Lは触媒がFe/ZSM−5で還元ガスがアンモニ
アの場合をそれぞれ示す。
In FIG. 1, A is the catalyst Co / mordenite and the reducing gas is propane, B is the catalyst Fe / mordenite and the reducing gas is propane, and C is the catalyst Ni.
/ Mordenite and the reducing gas is propane, D shows the case where the catalyst is Co / mordenite and the reducing gas is ammonia, respectively. In FIG. 2, E shows the case where the catalyst is Mn / mordenite and the reducing gas is propane, and F shows the case where the catalyst is Mn / mordenite and the reducing gas is ammonia.
In FIG. 3, G is the case where the catalyst is Ru / mordenite and the reducing gas is propane, H is the case where the catalyst is Rh / mordenite and the reducing gas is propane, and J is the case where the catalyst is Ir / mordenite and the reducing gas is propane. Show. K in FIG.
Indicates the case where the catalyst is Fe / ZSM-5 and the reducing gas is propane, and L indicates the case where the catalyst is Fe / ZSM-5 and the reducing gas is ammonia.

【0022】図1〜図4に示される結果からも明らかな
通り、還元ガスにプロパンを用いる場合(プロパン還元
法の場合)、約 400℃以下の低温度でもN2 Oを80%以
上の高効率でN2 ,H2 O,CO2 に分解することがで
きる。特にFe/モルデナイト,Rh/モルデナイト及
びFe/ZSM−5の触媒は、約 300℃の温度で80%以
上のN2 Oを分解することができ、低温域の活性に優れ
ている。また、還元ガスにアンモニアを用いた場合、触
媒によっては例えばCo/モルデナイトやFe/ZSM
−5の触媒はプロパンを用いた場合よりは温度が高いが
450℃で80%以上のN2 Oを分解することができる。
As is clear from the results shown in FIGS. 1 to 4, when propane is used as the reducing gas (in the case of the propane reduction method), even if the temperature is lower than about 400 ° C., the N 2 O content is higher than 80%. It can be efficiently decomposed into N 2 , H 2 O, and CO 2 . In particular, Fe / mordenite, Rh / mordenite, and Fe / ZSM-5 catalysts are capable of decomposing 80% or more of N 2 O at a temperature of about 300 ° C., and have excellent activity in a low temperature range. Further, when ammonia is used as the reducing gas, depending on the catalyst, for example, Co / mordenite or Fe / ZSM
Although the catalyst of -5 has a higher temperature than the case of using propane,
80% or more of N 2 O can be decomposed at 450 ° C.

【0023】従って、シリカアルミナ比が10以上のモ
ルデナイト又はZSM−5に遷移金属を担持させ、これ
にハイドロカーボンであるプロパンを混合した亜酸化窒
素を含む被処理ガスを接触させることにより、アンモニ
アを混合する場合よりも大幅に除去性能が向上してお
り、ガス中の亜酸化窒素を約 400℃以下の低温度で80%
以上除去することができる。
Therefore, by depositing a transition metal on mordenite or ZSM-5 having a silica-alumina ratio of 10 or more, and contacting a gas to be treated containing nitrous oxide mixed with propane, which is a hydrocarbon, with ammonia. The removal performance is significantly improved compared to the case of mixing, and nitrous oxide in gas is 80% at low temperature of about 400 ° C or less.
The above can be removed.

【0024】また、プロパンはアンモニアに比べ安価で
有害性も少なく、取り扱いなどの運用面も容易であるた
め、本発明に係るプロパン還元法は、ボイラの他の燃焼
装置例えばディーゼル機関,焼却炉,発電プラントにも
適用可能となり工業性に優れる。
Further, since propane is cheaper and less harmful than ammonia and is easy to operate such as handling, the propane reduction method according to the present invention can be applied to other combustion devices of boilers such as diesel engines, incinerators, It can be applied to power plants and is highly industrial.

【0025】[0025]

【発明の効果】以上要するに本発明によれば、シリカア
ルミナ比が10以上のモルデナイト又はZSM−5に遷
移金属を担持させ、これにハイドロカーボンの還元性ガ
スを混合した亜酸化窒素を含む被処理ガスを接触させる
ことにより、低温度でも高い除去率で亜酸化窒素を除去
できるという優れた効果を発揮する。
In summary, according to the present invention, the transition metal is supported on mordenite or ZSM-5 having a silica-alumina ratio of 10 or more, and a treated substance containing nitrous oxide is prepared by mixing the transition metal with a reducing gas of hydrocarbon. By bringing the gas into contact with the gas, an excellent effect that nitrous oxide can be removed at a high removal rate even at a low temperature is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】反応温度とN2 O分解率との関係を示す図であ
る。
FIG. 1 is a graph showing the relationship between reaction temperature and N 2 O decomposition rate.

【図2】Mn/モルデナイト触媒を用いた場合の反応温
度とN2 O分解率との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a reaction temperature and an N 2 O decomposition rate when an Mn / mordenite catalyst is used.

【図3】反応温度とN2 O分解率との関係を示す図であ
る。
FIG. 3 is a graph showing the relationship between reaction temperature and N 2 O decomposition rate.

【図4】Fe/ZSM−5触媒を用いた場合の反応温度
とN2 O分解率との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a reaction temperature and an N 2 O decomposition rate when an Fe / ZSM-5 catalyst is used.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/20 ZAB A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B01J 29/20 ZAB A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリカアルミナ比が10以上のモルデナ
イトに遷移金属を担持させ、これにハイドロカーボンの
還元性ガスを混合した亜酸化窒素を含む被処理ガスを接
触させることを特徴とする亜酸化窒素の除去方法。
1. A nitrous oxide comprising a transition metal supported on mordenite having a silica-alumina ratio of 10 or more, and a gas to be treated containing nitrous oxide mixed with a reducing gas of hydrocarbon is brought into contact therewith. Removal method.
【請求項2】 シリカアルミナ比が10以上のZSM−
5に遷移金属を担持させ、これにハイドロカーボンの還
元性ガスを混合した亜酸化窒素を含む被処理ガスを接触
させることを特徴とする亜酸化窒素の除去方法。
2. A ZSM-having a silica-alumina ratio of 10 or more.
5. A method for removing nitrous oxide, which comprises supporting a transition metal on No. 5, and bringing it into contact with a gas to be treated containing nitrous oxide mixed with a reducing gas of hydrocarbon.
JP6009569A 1994-01-31 1994-01-31 Removing method of nitrous oxide Pending JPH07213864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6009569A JPH07213864A (en) 1994-01-31 1994-01-31 Removing method of nitrous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6009569A JPH07213864A (en) 1994-01-31 1994-01-31 Removing method of nitrous oxide

Publications (1)

Publication Number Publication Date
JPH07213864A true JPH07213864A (en) 1995-08-15

Family

ID=11723938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6009569A Pending JPH07213864A (en) 1994-01-31 1994-01-31 Removing method of nitrous oxide

Country Status (1)

Country Link
JP (1) JPH07213864A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100527963B1 (en) * 1999-12-31 2005-11-09 현대자동차주식회사 Manufacturing method of hydrothermally stable Fe/ZSM-5 zeolite catalyst
JP2008540094A (en) * 2005-05-11 2008-11-20 ウーデ・ゲーエムベーハー Method for reducing nitrogen oxide concentration in gas
BG65640B1 (en) * 1999-09-06 2009-04-30 Stichting Energieonderzoek Centrum Nederland Reduction of n2o emissions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG65640B1 (en) * 1999-09-06 2009-04-30 Stichting Energieonderzoek Centrum Nederland Reduction of n2o emissions
KR100527963B1 (en) * 1999-12-31 2005-11-09 현대자동차주식회사 Manufacturing method of hydrothermally stable Fe/ZSM-5 zeolite catalyst
JP2008540094A (en) * 2005-05-11 2008-11-20 ウーデ・ゲーエムベーハー Method for reducing nitrogen oxide concentration in gas

Similar Documents

Publication Publication Date Title
JP2021505376A (en) Pollutant treatment methods and equipment
JPH09173847A (en) Catalyst and its manufacture and use thereof
WO1997004855A1 (en) Emission control catalyst and emission control method using the same
CN111135834A (en) LaNixCo1-xO3Photo-thermal synergistic degradation toluene of La perovskite
JPH07213864A (en) Removing method of nitrous oxide
Hettige et al. Cyclohexane oxidation and carbon deposition over metal oxide catalysts
JPH06165919A (en) Method for removing nitrous oxide
CN2351151Y (en) Bed type discharge plasma air purifier
JPH0755285B2 (en) Method for removing nitrogen oxides from waste smoke
CN105126863A (en) Ni-Mn composite oxide catalyst for eliminating benzene-series volatile organic substances from air and preparation method thereof
Inayat et al. Decomposition of N2O at low temperature over Co3O4 prepared by different methods
US20060213331A1 (en) Method for reducing metal oxide and method for producing hydrogen
Shi et al. Room temperature efficient reduction of NOx by H2 in a permeable compounded membrane–Catalytic reactor
JPH0531371A (en) Catalyst for decomposing nitrous oxide
JPH06262079A (en) Catalyst for nitrogen oxide purification and nitrogen oxide purification
CN106582646A (en) Carbon-based acid anhydride synergistic transition metal denitration catalyst and preparation method thereof
JPH05293381A (en) Catalyst for decomposition of nitrous oxide
JPH0576723A (en) Method for reducing greenhouse-effect gas
JPH09299806A (en) Catalyst for nox-containing waste gas purification and its purification method
JPH0531329A (en) Removal of nitrous oxide
KR20090031553A (en) Method for removing heavy metals from gases
CN108435237A (en) Middle and low temperature NH3-SCR catalyst, preparation method and application thereof
DE4336768A1 (en) Sulphur and nitrogen conversion from oxide to elemental form
JP5498169B2 (en) Method for removing NO and N2O from a gas mixture
JPH03127629A (en) Direct catalytic cracking catalyst for nitrogen oxides