JPH0721372B2 - Valve mechanism for superheat control of suction refrigerant - Google Patents

Valve mechanism for superheat control of suction refrigerant

Info

Publication number
JPH0721372B2
JPH0721372B2 JP62180785A JP18078587A JPH0721372B2 JP H0721372 B2 JPH0721372 B2 JP H0721372B2 JP 62180785 A JP62180785 A JP 62180785A JP 18078587 A JP18078587 A JP 18078587A JP H0721372 B2 JPH0721372 B2 JP H0721372B2
Authority
JP
Japan
Prior art keywords
pressure
valve
refrigerant
pressure chamber
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62180785A
Other languages
Japanese (ja)
Other versions
JPS6428461A (en
Inventor
久雄 小林
克則 河合
正行 谷川
弘幸 出口
Original Assignee
株式会社豊田自動織機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機製作所 filed Critical 株式会社豊田自動織機製作所
Priority to JP62180785A priority Critical patent/JPH0721372B2/en
Publication of JPS6428461A publication Critical patent/JPS6428461A/en
Publication of JPH0721372B2 publication Critical patent/JPH0721372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)
  • Temperature-Responsive Valves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷凍回路中とくに圧縮機近傍の吸入管路に配
設された弁機構に係り、詳しくは吸入冷媒の過熱度を適
正に制御する弁機構の改良に関する。
Description: TECHNICAL FIELD The present invention relates to a valve mechanism arranged in a suction circuit in a refrigeration circuit, particularly in the vicinity of a compressor, and more specifically, to appropriately control the degree of superheat of suction refrigerant. To improve the valve mechanism.

[従来の技術] 車両空調用に供されている冷凍回路では、温度式自動膨
張弁によって蒸発器出口の冷媒の過熱度を一定に制御
し、一方、圧縮機近傍の吸入管路に配設された絞り弁に
よって蒸発器出口の冷媒圧力を一定に制御するようにし
た管理方式が知られている。ところが車室内に配置され
る蒸発器とは異なり、該絞り弁及び圧縮機は最も熱影響
を受け易いエンジンルーム内に配置されており、とくに
FFタイプの車両ではレイアウト上エンジンのさらに前方
に位置する圧縮機まで吸入管路の延設が必要となるた
め、上記熱影響の増幅に加えて冷媒の流量変動をも生起
し易いという車両構造的な宿命がある。従って上記絞り
弁による蒸発器出口の冷媒圧力の管理がとかく不安定と
なり、結果的に冷房の過不足や圧縮機の潤滑不良、吐出
温度の異常上昇といった数々の不具合を生じる。
[Prior Art] In a refrigeration circuit used for vehicle air-conditioning, the temperature type automatic expansion valve controls the superheat degree of the refrigerant at the outlet of the evaporator to a constant level, and on the other hand, it is arranged in a suction pipe line near the compressor. A management method is known in which the pressure of the refrigerant at the outlet of the evaporator is controlled to be constant by a throttle valve. However, unlike the evaporator arranged in the vehicle compartment, the throttle valve and the compressor are arranged in the engine room, which is most susceptible to heat, and
In the FF type vehicle, since it is necessary to extend the suction pipe line to the compressor located further forward of the engine in the layout, in addition to the amplification of the above heat effect, it is easy to cause fluctuations in the flow rate of the refrigerant. There is a fate. Therefore, the management of the refrigerant pressure at the outlet of the evaporator by the throttle valve becomes unstable at all, and as a result, various problems such as excess or deficiency of cooling, poor lubrication of the compressor, and abnormal rise of discharge temperature occur.

本発明者等はかかる問題に着目し、上記膨張弁を冷房負
荷にかかわりなく蒸発圧力を常に一定に制御する定圧膨
張弁となし、上記絞り弁を改修した弁機構によって吸入
冷媒の過熱度を制御するという新たな解決手段を先に提
案した。
The inventors of the present invention focused on such a problem, the expansion valve is not a constant pressure expansion valve that always controls the evaporation pressure regardless of the cooling load, and the superheat degree of the suction refrigerant is controlled by a valve mechanism that is a modification of the throttle valve. I proposed a new solution first.

第3図はその具体的構成を示すものであって、図中10は
例えばエンジンによって駆動される圧縮機で、該圧縮機
10の吐出管路12から延設される冷媒循環路には凝縮器1
4、受液器16、膨張弁18及び蒸発器20が順次直列状に設
けられ、蒸発器20の出口から再び圧縮機10に至る循環路
は機能上吸入管路22として構成されている。そして圧縮
機10近傍の吸入管路22中には以下に述べる流量調節機能
をもつ弁機構80が配設されている。なお、上記膨張弁18
を均圧管18aにより蒸発器20出口の冷媒圧力を導引し、
調整可能なばね力との平衡によって弁開度が決定される
従来周知の定圧膨張弁である。
FIG. 3 shows a specific configuration thereof, and 10 in the figure is a compressor driven by an engine, for example.
A condenser 1 is installed in the refrigerant circulation line extending from the discharge line 12 of 10
4, the liquid receiver 16, the expansion valve 18, and the evaporator 20 are sequentially provided in series, and the circulation path from the outlet of the evaporator 20 to the compressor 10 is functionally configured as a suction pipe line 22. A valve mechanism 80 having a flow rate adjusting function described below is arranged in the suction pipe line 22 near the compressor 10. The expansion valve 18
Guide the refrigerant pressure at the outlet of the evaporator 20 by a pressure equalizing pipe 18a,
It is a conventionally known constant pressure expansion valve whose valve opening is determined by the balance with an adjustable spring force.

しかして該弁機構80の主体81内には入口側管路部分と対
向させて有底円孔状のボア82が穿設され、同ボア82内に
は冷媒流量調節用のスプール弁83がそのヘッド側を該入
口側管路に向けて嵌挿されている。ボア82の底部は該ス
プール弁83のボトム側に制御圧力を作用させる圧力室84
として構成され、同圧力室84はボア82の底壁とスプール
弁83のボトム側端面との間に介装されたベローズ85によ
ってさらに画定された密封空間を形成している。そして
上記入口側管路部分には循環冷媒とほぼ同種の冷媒を封
入した感温筒86が配設され、同封入冷媒の飽和圧力は密
閉管87を介して上記圧力室84に導通されている。なお、
88は吸入冷媒の過熱度を制御するばねであり、入口側管
路部分の冷媒圧力と協同してスプール弁83をボトム方向
に付勢し弁開度を縮小させるように作用する。
In the main body 81 of the valve mechanism 80, a bore 82 having a bottomed circular hole is bored so as to face the inlet side conduit portion, and a spool valve 83 for adjusting the refrigerant flow rate is provided in the bore 82. The head side is fitted into the inlet side conduit. The bottom of the bore 82 has a pressure chamber 84 for exerting a control pressure on the bottom side of the spool valve 83.
The pressure chamber 84 forms a sealed space further defined by a bellows 85 interposed between the bottom wall of the bore 82 and the bottom end surface of the spool valve 83. A temperature sensitive tube 86 in which a refrigerant of almost the same type as the circulating refrigerant is sealed is arranged in the inlet side pipe line portion, and the saturated pressure of the sealed refrigerant is conducted to the pressure chamber 84 via a sealed tube 87. . In addition,
Reference numeral 88 is a spring that controls the degree of superheat of the suction refrigerant, and acts in cooperation with the refrigerant pressure in the inlet side pipe line to urge the spool valve 83 in the bottom direction to reduce the valve opening.

従ってスプール弁83の弁開度は圧力室84内圧力(入口側
管路部分温度に対応する感温筒内封入冷媒の飽和圧力)
と、入口側管路部分の冷媒圧力にばね88の付勢力を加え
た合力との平衡状態によって決定される。つまり入口側
管路部分の吸入冷媒は同温の飽和圧力よりばね88の付勢
力相当分低い圧力に制限され、その結果、吸入冷媒の過
熱度がほぼ一定に制御されるものである。
Therefore, the valve opening of the spool valve 83 is the pressure in the pressure chamber 84 (saturation pressure of the refrigerant filled in the temperature-sensitive cylinder corresponding to the temperature of the inlet side conduit).
And the resultant pressure obtained by adding the biasing force of the spring 88 to the refrigerant pressure in the inlet side conduit portion. In other words, the suction refrigerant in the inlet side pipe portion is limited to a pressure lower than the saturation pressure of the same temperature by an amount corresponding to the biasing force of the spring 88, and as a result, the superheat degree of the suction refrigerant is controlled to be substantially constant.

[発明が解決しようとする問題点] ところが上述の構成では感温筒内封入冷媒の飽和圧力及
び同圧力に対抗して過熱度を制御するばねの付勢力が、
共にスプール弁の開閉動作に直接関与するものであり、
しかも該ばねの付勢力は実質的にスプール弁の動作位置
によって異なるものであるから、該スプール弁の開弁動
作が進むほどばねの付勢力(抵抗)が大きくなって過熱
度は高めに制御され、逆に同閉弁動作ではばねの付勢力
が順次小さくなって過熱度は低めに制御される。換言す
れば高冷房負荷時には絞り過ぎによる冷え不足、低冷房
負荷時には絞り不足による過冷房現象を伴って冷房フィ
ーリングを悪化させる嫌いがある。
[Problems to be Solved by the Invention] However, in the above-mentioned configuration, the biasing force of the spring for controlling the degree of superheat against the saturation pressure of the refrigerant filled in the temperature-sensitive cylinder and the pressure is
Both are directly involved in the opening / closing operation of the spool valve,
Moreover, since the biasing force of the spring substantially differs depending on the operating position of the spool valve, the biasing force (resistance) of the spring increases as the opening operation of the spool valve progresses, and the superheat degree is controlled to be higher. On the contrary, in the valve closing operation, the biasing force of the spring is gradually reduced and the superheat degree is controlled to be low. In other words, there is a dislike that the cooling feeling is deteriorated due to insufficient cooling due to excessive throttling at high cooling load, and overcooling phenomenon due to insufficient throttling at low cooling load.

また、上記スプール弁の有効ストロークを確保するのに
伴って圧力室の容積変化も必然的に大きくなるため、こ
の変化を吸収するには感温筒に封入される冷媒にも相応
の増量が求められることとなり、結果的に感温筒の大型
化や応答性の劣化を招くことになる。
Also, as the effective stroke of the spool valve is ensured, the volume change of the pressure chamber will inevitably increase.Therefore, in order to absorb this change, the refrigerant enclosed in the temperature sensing cylinder must also have a corresponding increase in volume. As a result, the temperature sensing cylinder becomes large and the responsiveness deteriorates.

本発明は、吸入冷媒の過熱度を制御する簡潔な弁機構の
採用により、冷房フィーリングの安定化とともに過熱度
制御精度の向上を図ることを解決すべき技術課題とする
ものである。
An object of the present invention is to solve the technical problems to be solved by stabilizing the cooling feeling and improving the superheat degree control accuracy by adopting a simple valve mechanism for controlling the superheat degree of the suction refrigerant.

[問題点を解決するための手段] 本発明になる弁機構は上記課題解決のため、主体内にス
プール弁を内装したボアを有し、該ボアはスプール弁を
挟んで実質的に該スプールの動作空域を形成する前圧室
と、制御圧力を付加するための背圧室とに区分され、該
前圧室にはスプール弁を背圧室に向けて付勢するばねを
介装し、該前圧室の軸心方向及びこれとほぼ直交する方
向には弁機構の下流吸入管路及び上流吸入管路をそれぞ
れ連通開口させるとともに、上記弁機構の近傍に配設し
た感温筒内飽和圧力と上流吸入管路圧力との差圧によっ
て作動し、該上流又は下流吸入管路と圧縮機の吐出管路
とを選択的に上記背圧室に連通する切換弁を設けた新規
な構成を採用している。
[Means for Solving the Problems] In order to solve the above problems, the valve mechanism according to the present invention has a bore in which a spool valve is internally provided in the main body, and the bore substantially sandwiches the spool valve. It is divided into a front pressure chamber forming an operation air space and a back pressure chamber for applying a control pressure, and a spring for biasing the spool valve toward the back pressure chamber is interposed in the front pressure chamber, The downstream suction line and the upstream suction line of the valve mechanism are opened to communicate with each other in the axial direction of the front pressure chamber and in a direction substantially orthogonal to the axial direction, and the saturated pressure in the temperature-sensing cylinder installed near the valve mechanism is set. And a pressure difference between the upstream suction pipeline pressure and a pressure difference between the upstream or downstream suction pipeline and the compressor discharge pipeline to selectively communicate with the back pressure chamber. is doing.

上記弁機構は、とくに定圧膨張弁を含んで閉回路に形成
された車両空調用冷凍回路中、圧縮機近傍の吸入管路、
好ましくは圧縮機の吸入部に付属させた形態で配設され
る。上記感温筒は吸入冷媒温度をより忠実に感知するよ
う弁機構の上流又は下流管路の近接して配置されるが、
例えば圧縮機の吐出部若しくは吐出管路温度を直接又は
コイル等で導引して吸入冷媒温度を高めに感知し、結果
的に吸入冷媒の過熱度を幾分低めに制御することもでき
る。
The valve mechanism is a suction line near the compressor in a vehicle air conditioning refrigeration circuit formed in a closed circuit including a constant pressure expansion valve,
Preferably, it is arranged in a form attached to the suction part of the compressor. The temperature sensing tube is arranged close to the upstream or downstream pipeline of the valve mechanism so as to more faithfully sense the intake refrigerant temperature.
For example, it is also possible to guide the temperature of the discharge portion or the discharge pipe line of the compressor directly or by using a coil or the like to sense the intake refrigerant temperature to be higher, and consequently control the superheat degree of the intake refrigerant to be somewhat lower.

[作用] 本発明弁機構を有する冷凍回路においては、定圧膨張弁
により蒸発器内の圧力が一定に保持されるとともに、上
記弁機構の流量調節により、蒸発器の全域において飽和
状態を維持することができるとともに、上記弁機構の流
量調節により、蒸発器の全域において飽和状態を維持す
ることができるので、蒸発温度(冷房風温度)も安定し
た状態が得られる。
[Operation] In the refrigeration circuit having the valve mechanism of the present invention, the pressure in the evaporator is kept constant by the constant pressure expansion valve, and the saturated state is maintained over the entire area of the evaporator by adjusting the flow rate of the valve mechanism. In addition, by adjusting the flow rate of the valve mechanism, the saturated state can be maintained in the entire area of the evaporator, so that the evaporation temperature (cooling air temperature) can be stable.

従って蒸発器出口における冷媒は飽和状態から僅かに湿
り状態となり、その湿り度は若干変動することにはなる
が、圧縮機へ到達するまでの間に外的要因が吸入管路を
通じて冷媒に影響する過熱度の変動分も含めて、実質的
に圧縮機に吸入される冷媒の過熱度は、これを検知した
該弁機構の流量調節によって制御されるので、吐出冷媒
及び圧縮機本体の過熱を確実に抑止することができる。
Therefore, the refrigerant at the outlet of the evaporator changes from a saturated state to a slightly wet state, and the degree of wetness will fluctuate slightly, but external factors affect the refrigerant through the suction pipeline until it reaches the compressor. The degree of superheat of the refrigerant that is substantially sucked into the compressor, including fluctuations in the degree of superheat, is controlled by the flow rate adjustment of the valve mechanism that detects this. Can be deterred.

とくに本発明弁機構では、感温筒内に封入された冷媒の
飽和圧力が切換弁に必要な微動を促す動作源としてのみ
作用し、流量制御のために比較的大きなストロークを要
するスプール弁の動作源としては圧力の異なる循環冷媒
が交互に作用するものであり、また、同制御圧力と呼応
してスプール弁を付勢するばねは過熱度感知用のばねと
は独立した形態で設けられているために正確かつ円滑に
作動する。
In particular, in the valve mechanism of the present invention, the saturation pressure of the refrigerant enclosed in the temperature sensitive cylinder acts only as an operation source for promoting the fine movement required for the switching valve, and the operation of the spool valve requiring a relatively large stroke for flow rate control. Circulating refrigerants having different pressures act alternately as a source, and a spring for urging the spool valve in response to the control pressure is provided in a form independent of the superheat sensing spring. For accurate and smooth operation.

[実施例] 以下、図に基づいて本発明の実施例を説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は冷凍回路の概略及び弁機構の第1実施例を示す
もので、該弁機構30は吸入冷媒の過熱度が低いときの状
態を表わしている。
FIG. 1 shows the outline of the refrigeration circuit and the first embodiment of the valve mechanism, and the valve mechanism 30 shows a state when the superheat degree of the suction refrigerant is low.

同図において、10は例えばエンジンによって駆動される
圧縮機で、該圧縮機10の吐出管路12から延設される冷媒
循環路(閉回路)には凝縮器14、受液器16、膨張弁18及
び蒸発器20が順位直列状に設けられ、蒸発器20の出口か
ら再び圧縮機10に至る循環路は機能上吸入管路22として
構成されている。そして該吸入管路22中の圧縮機10近傍
には弁機構30が配設され、これにより吸入管路22は該弁
機構30の上流吸入管路22a及び下流吸入管路22bに区分さ
れる。なお、上記膨張弁18は均圧管18aにより蒸発器20
の出口の冷媒圧力を導引し、調節可能なばね力との平衡
によって弁開度が決定される定圧膨張弁である。
In the figure, 10 is a compressor driven by, for example, an engine, and a condenser 14, a receiver 16 and an expansion valve are provided in a refrigerant circulation path (closed circuit) extending from a discharge conduit 12 of the compressor 10. 18 and the evaporator 20 are arranged in series, and the circulation path from the outlet of the evaporator 20 to the compressor 10 is functionally configured as a suction pipe line 22. A valve mechanism 30 is disposed in the suction pipe line 22 near the compressor 10, whereby the suction pipe line 22 is divided into an upstream suction pipe line 22a and a downstream suction pipe line 22b of the valve mechanism 30. In addition, the expansion valve 18 is provided with an equalizer 20 through an equalizer tube 18a.
Is a constant pressure expansion valve that guides the refrigerant pressure at the outlet of the valve and determines the valve opening degree by balancing with the adjustable spring force.

しかして弁機構30の主体31内には有底円孔状のボア32が
穿設され、同ボア32内には有底中空状に形成されて進退
自在に内装される流量調節用のスプール弁33を挟んで、
実質的には該スプール33の動作空域を形成する前圧室32
aと制御圧力を作用させる背圧室32bとに区分され、該前
圧室32aにはスプール弁33の内底壁に衡接して該スプー
ル弁33を背圧室32bに向けて付勢するばね34が介装され
ている。そして該前圧室32aの軸心方向には上記下流吸
入管路22b、同軸心とほぼ直交する方向には上記上流吸
入管路22aがそれぞれ連通開口せしめられ、上記スプー
ル弁33によって両管路22b、22aの連通開口量が制御され
る。
In the main body 31 of the valve mechanism 30, a bore 32 having a circular hole with a bottom is bored, and a hollow valve with a bottom is formed in the bore 32 so that the spool valve is internally and movably installed. Across 33,
The pre-pressure chamber 32 that substantially forms the operating space of the spool 33.
a and a back pressure chamber 32b for exerting a control pressure. A spring for biasing the spool valve 33 toward the back pressure chamber 32b by contacting the inner bottom wall of the spool valve 33 in the front pressure chamber 32a. 34 are installed. Then, the downstream suction pipe line 22b is opened in the axial direction of the front pressure chamber 32a, and the upstream suction pipe line 22a is opened in the direction substantially orthogonal to the coaxial center, and both pipe lines 22b are opened by the spool valve 33. , 22a is controlled.

40は吸入冷媒の過熱度を感知してスプール弁33を動作さ
せる切換弁で、該切換弁40の筐体41内には導圧路42を介
して上流吸入管路22aと連通する吸入圧力室43が設けら
れ、該吸入圧力室43の内壁には隔板44によって端部の封
止されたベローズ45の基部が取付けられており、これに
より吸入圧力室43はベローズ45で隔離された換圧室46と
対峙せしめられている。47は主体31の上流吸入管路22a
部分に配設された感温筒で、該感温筒47内には循環冷媒
と同種若しくは飽和圧力の幾分高い冷媒が封入され、同
封入冷媒の飽和圧力は密閉管48を介した閉回路によって
上記換圧室46に導通されている。49は導圧路50を介して
圧縮機10の吐出管路12と連通する第1導圧室、51は導圧
路52を介して背圧室32bと連通する中間室、53は導圧路5
4を介して下流吸入管路22bと連通する第2導圧室で、こ
れら3室49、51、53は通口55及び通口56により直列状に
連通せしめられている。
Reference numeral 40 denotes a switching valve that operates the spool valve 33 by sensing the degree of superheat of the suction refrigerant, and a suction pressure chamber that communicates with the upstream suction pipe line 22a through a pressure guiding path 42 in the housing 41 of the switching valve 40. 43 is provided, and the base of a bellows 45 whose end is sealed by a partition plate 44 is attached to the inner wall of the suction pressure chamber 43, whereby the suction pressure chamber 43 is separated by the bellows 45. It is confronted with room 46. 47 is the main intake pipe line 22a of 31
In the temperature-sensing cylinder arranged in a part, a refrigerant of the same kind as the circulating refrigerant or a slightly higher saturation pressure is enclosed in the temperature-sensing cylinder 47, and the saturation pressure of the enclosed refrigerant is a closed circuit through the closed pipe 48. Is connected to the pressure conversion chamber 46. 49 is a first pressure guiding chamber communicating with the discharge pipe 12 of the compressor 10 via the pressure guiding passage 50, 51 is an intermediate chamber communicating with the back pressure chamber 32b via the pressure guiding passage 52, and 53 is a pressure guiding passage. Five
This is a second pressure guiding chamber that communicates with the downstream suction pipe line 22b via 4, and these three chambers 49, 51, 53 are connected in series by a communication port 55 and a communication port 56.

ベローズ45の端部を封止する上記隔板44には槓杆57が結
合され、該槓杆57は上記第1導圧室49及び中間室51を経
て第2導圧室53に臨むように延設されている。そして上
記吸入圧力室43内には該隔板44に衝接してベローズ45を
収縮させる向きに付勢するばね58が介装され、該ばね58
の付勢力は実質的に制御される過熱度の値に匹敵するも
のであり、従って槓杆57は隔板44を挟んで作用する内外
二様の圧力が平衡する向きに従動(進退動)するように
なされている。上記第2導圧室53内にはばね59の付勢力
によって通口56を閉口するボール弁60が介装され、該ボ
ール弁60はベローズ45の伸長に伴って槓杆57が進動した
際、該槓杆57の突端の干渉作用により通口56を開口する
ようになされている。また、槓杆57の中央付近では通口
55の弁座を開閉するテーパ弁部61が形成され、槓杆57の
上記進動時、ボール弁60の開口動作とは逆に該テーパ弁
部61によって通口55の弁座を閉止するように構成されて
いる。
A lever 57 is coupled to the partition plate 44 that seals the end portion of the bellows 45, and the lever 57 extends so as to face the second pressure chamber 53 via the first pressure guiding chamber 49 and the intermediate chamber 51. Has been done. A spring 58 is provided in the suction pressure chamber 43 to urge the partition plate 44 to urge the bellows 45 in a contracting direction.
The urging force of is substantially equivalent to the value of the superheat degree to be controlled, so that the sludge 57 is driven (moved back and forth) in a direction in which the pressure acting between the inside and outside of the diaphragm 44 is balanced. Has been done. A ball valve 60 that closes the passage 56 by the urging force of a spring 59 is provided in the second pressure guiding chamber 53, and the ball valve 60 moves when the lever 57 moves as the bellows 45 extends. The through hole 56 is opened by the interference action of the tip end of the sludge rod 57. In addition, there is a passage near the center of the hammer 57.
A taper valve portion 61 that opens and closes the valve seat of 55 is formed, and when the lever 57 is advanced, the taper valve portion 61 closes the valve seat of the passage 55 contrary to the opening operation of the ball valve 60. It is configured.

上述した本発明弁機構を含む冷凍回路においては、膨張
弁18によって蒸発器20内の圧力は一定に制御され、しか
も設定圧力は蒸発器20の全域に亘って常に飽和状態が確
保されるように調節されるので、蒸発器20の出口の過熱
度はむしろ低目方向で若干変動することにはなるが、冒
頭述べたように蒸発器20から圧縮機10に至る吸入管路22
の長さと環境温度により循環冷媒はさらに不確定な管内
抵抗や熱膨張を受ける。そしてこれら環境因子の影響を
受けたのちの冷媒の過熱度は本弁機構30によって正確に
検出され、当該検出値に基づいて作動する弁機構30の流
量調節により吸入冷媒の過熱度は一定値に制御されるも
のである。
In the refrigeration circuit including the valve mechanism of the present invention described above, the pressure inside the evaporator 20 is controlled to be constant by the expansion valve 18, and the set pressure is always maintained in a saturated state over the entire area of the evaporator 20. Since it is adjusted, the degree of superheat at the outlet of the evaporator 20 rather fluctuates slightly in the lower direction, but as described at the beginning, the suction pipe line 22 from the evaporator 20 to the compressor 10
Depending on the length and the ambient temperature, the circulating refrigerant is further subject to uncertain pipe resistance and thermal expansion. Then, the superheat degree of the refrigerant after being affected by these environmental factors is accurately detected by the valve mechanism 30, and the superheat degree of the suction refrigerant becomes a constant value by adjusting the flow rate of the valve mechanism 30 that operates based on the detected value. It is controlled.

いま、図の状態から過熱度が高くなり、感温筒47内の飽
和圧力つまり換圧室46内圧力と上流吸入管路圧力つまり
吸入圧力室43内圧力との差圧が大きくなって、これが設
定されたばね58の付勢力を越えると、ベローズ45の伸長
を伴って隔板44及び槓杆57が進動(図示左動)し、該槓
杆57の突端がボール弁60と干渉することによって通口56
は開口され、逆にテーパ弁部61の着座によって通口55の
弁座は閉止される。これにより導圧路50、第1導圧室4
9、通口55、中間室51及び導圧路52を介して背圧室32bに
供給されていた高圧の吐出圧力は減少し、代って導圧路
54、第2導圧室53、通口56及び中間室51を経た下流吸入
管路圧力の供給が増加するので、背圧室32b内の圧力が
順次下流吸入管路圧力に近接する。従って両側に共に下
流吸入圧力が作用することとなったスプール弁33はばね
34の付勢力によって冷媒流路を開放する向きに後退し、
循環冷媒量の増大すなわち吸入冷媒の過熱度を低下させ
るべく機能する。
Now, the degree of superheat increases from the state shown in the figure, and the differential pressure between the saturated pressure in the temperature sensing cylinder 47, that is, the pressure inside the pressure conversion chamber 46 and the upstream suction pipe line pressure, that is, the pressure inside the suction pressure chamber 43, increases, and this When the set urging force of the spring 58 is exceeded, the partition plate 44 and the lever 57 move forward (leftward in the figure) as the bellows 45 expands, and the tip of the lever 57 interferes with the ball valve 60 to allow passage. 56
The valve seat of the passage 55 is closed by the seating of the taper valve portion 61. As a result, the pressure guiding path 50 and the first pressure guiding chamber 4
9, the high-pressure discharge pressure supplied to the back pressure chamber 32b via the passage 55, the intermediate chamber 51, and the pressure guiding passage 52 decreases, and instead, the pressure guiding passage
Since the supply of the downstream suction pipeline pressure via the 54, the second pressure guiding chamber 53, the passage 56 and the intermediate chamber 51 increases, the pressure in the back pressure chamber 32b sequentially approaches the downstream suction pipeline pressure. Therefore, the downstream suction pressure acts on both sides of the spool valve 33.
With the urging force of 34, it retreats in the direction to open the refrigerant flow path,
It functions to increase the amount of circulating refrigerant, that is, to reduce the degree of superheat of suction refrigerant.

また、吸入冷媒の過熱度が低くなり、上記換圧室46内圧
力と吸入圧力室43内圧力との差圧が小さくなると、ばね
58の付勢力によってベローズ45は収縮し、上述の作用と
は逆に槓杆57は退動(図示右動)して通口56を閉口させ
ると同時に通口55の弁座を開放させる。これにより第2
導圧室53から通口56及び中間室51を介して背圧室32bに
供給されていた下流吸入管路圧力は減少し、代って第1
導圧室49から通口55及び中間室51を経て供給される吐出
圧力が増加するので、背圧室32b内の圧力は下流吸入管
路圧力よりも遥かに高くなる。従ってスプール弁33はば
ね34の付勢力に抗して冷媒流路を閉止する向きに前進
し、循環冷媒量の減少すなわち吸入冷媒の過熱度を上昇
させるべく機能する。
Further, when the degree of superheat of the suction refrigerant decreases and the differential pressure between the pressure inside the pressure conversion chamber 46 and the pressure inside the suction pressure chamber 43 decreases, the spring
The bellows 45 contracts due to the urging force of 58, and contrary to the above-described action, the lever 57 retracts (moves to the right in the drawing) to close the passage 56 and simultaneously open the valve seat of the passage 55. This makes the second
The downstream suction pipe line pressure, which was supplied from the pressure guiding chamber 53 to the back pressure chamber 32b via the through port 56 and the intermediate chamber 51, decreases, and instead of the first
Since the discharge pressure supplied from the pressure guiding chamber 49 through the passage 55 and the intermediate chamber 51 increases, the pressure in the back pressure chamber 32b becomes much higher than the downstream suction pipe line pressure. Therefore, the spool valve 33 advances in the direction of closing the refrigerant flow path against the biasing force of the spring 34, and functions to reduce the amount of circulating refrigerant, that is, increase the degree of superheat of the sucked refrigerant.

第2図は弁機構の第2実施例を示すもので、該弁機構30
Aも吸入冷媒の過熱度が低いときの状態を表わしてい
る。該弁機構30Aはスプール弁33の動作用制御圧力とし
て下流吸入管路圧力を使用せず、過熱度感知のために吸
入圧力室43に導引されていた上流吸入管路圧力をそのま
ま上記制御圧力として用いることにより、切換弁40Aを
含む制御系の簡素化を企図した点において第1実施例と
はその構成を果にしている。
FIG. 2 shows a second embodiment of the valve mechanism.
A also represents the state when the superheat of the intake refrigerant is low. The valve mechanism 30A does not use the downstream suction pipeline pressure as the control pressure for operating the spool valve 33, but uses the upstream suction pipeline pressure that has been introduced to the suction pressure chamber 43 to detect the superheat as it is. The configuration is different from that of the first embodiment in that the control system including the switching valve 40A is intended to be simplified by using the above.

すなわち切換弁40Aの筐体41A内には上記吸入圧力室43と
隣接して背圧室32bと連通する中間室51Aが設けられ、該
中間室51Aは通口62により吸入圧力室43と連通し、さら
に該通口62と同心的に開設された通口63及び導圧路50A
を経て吐出管路12とも連通せしめられている。一方上記
隔板44に接合され通口62を貫通して中間室51Aへと延出
する槓杆57Aの先端には複合型の弁部64が形成され、該
弁部64はその進退動により通口62又は通口63の弁座(口
端縁)を選択的に封止して中間室51Aとの流通を交互に
制限可能なるよう構成されている。
That is, in the casing 41A of the switching valve 40A, an intermediate chamber 51A that is adjacent to the suction pressure chamber 43 and communicates with the back pressure chamber 32b is provided, and the intermediate chamber 51A communicates with the suction pressure chamber 43 through a passage 62. Further, a through hole 63 and a pressure guiding passage 50A which are concentrically opened with the through hole 62.
It is also communicated with the discharge pipe line 12 via. On the other hand, a compound valve portion 64 is formed at the tip of a lever 57A which is joined to the partition plate 44 and extends through the passage 62 to the intermediate chamber 51A, and the valve portion 64 is moved forward and backward to open the passage. The valve seat (mouth edge) of 62 or the opening 63 is selectively sealed so that the flow with the intermediate chamber 51A can be alternately restricted.

いま、図の状態から吸入冷媒の過熱度が高くなり、換圧
室46内圧力と吸入圧力室43内圧力との差圧が大きくなっ
てベローズ45の伸長とともに槓杆57が進動すると、共動
する弁部64は通口62の弁座を開放させると同時に通口63
の弁座を閉止させる。これにより導圧路50A、通口63、
中間室51A及び導圧路52を介して背圧室32bに供給されれ
ていた吐出圧力は減少し、代って吸入圧力室43から通口
62及び中間室51Aを経た上流吸入管路圧力が増加するの
で、背圧室32bの圧力は順次上流吸入管路に近接する。
従ってスプール弁33はばね34の付勢力によって冷媒流路
を開放する向きに後退し、循環冷媒量の増大すなわち吸
入冷媒の過熱度を低下させるべく機能する。
Now, from the state shown in the figure, when the superheat of the suction refrigerant becomes high, the differential pressure between the pressure inside the pressure conversion chamber 46 and the pressure inside the suction pressure chamber 43 becomes large, and the rod 57 moves as the bellows 45 expands, The valve portion 64 for opening opens the valve seat of the passage 62 and at the same time the passage 63
Close the valve seat of. As a result, the pressure guide passage 50A, the passage 63,
The discharge pressure supplied to the back pressure chamber 32b via the intermediate chamber 51A and the pressure guiding path 52 decreases, and instead, the suction pressure chamber 43 passes through.
Since the pressure of the upstream suction pipeline passing through 62 and the intermediate chamber 51A increases, the pressure of the back pressure chamber 32b sequentially approaches the upstream suction pipeline.
Therefore, the spool valve 33 is retracted by the urging force of the spring 34 in the direction of opening the refrigerant passage, and functions to increase the amount of circulating refrigerant, that is, reduce the degree of superheat of the sucked refrigerant.

また、吸入冷媒の過熱度が低くなり、上記換圧室46内圧
力と吸入圧力室43内圧力との差圧が小さくなると、ばね
58の付勢力によってベローズ45は収縮し、上述の作用と
は逆に弁部64は退動して通口62の弁座を閉止させると同
時に通口63の弁座を開放させる。これにより吸入圧力室
43から通口62及び中間室51Aを介して背圧室32bに供給さ
れていた上流吸入管路圧力は減少し、代って開放された
通口63から中間室51Aを経て供給されると吐出圧力が増
加するので、背圧室32b内の圧力は下流吸入管路圧力よ
りも遥かに高くなる。従ってスプール弁33はばね34の付
勢力に抗して冷媒流路を閉止する向きに前進し、循環冷
媒の減少すなわち吸入冷媒の過熱度を上昇させるべく機
能する。
Further, when the degree of superheat of the suction refrigerant decreases and the differential pressure between the pressure inside the pressure conversion chamber 46 and the pressure inside the suction pressure chamber 43 decreases, the spring
The bellows 45 contracts by the urging force of 58, and contrary to the above-mentioned action, the valve portion 64 retracts to close the valve seat of the passage port 62 and simultaneously open the valve seat of the passage port 63. This allows the suction pressure chamber
The upstream suction line pressure supplied from 43 to the back pressure chamber 32b via the communication port 62 and the intermediate chamber 51A decreases, and instead is discharged when supplied from the opened communication port 63 via the intermediate chamber 51A. As the pressure increases, the pressure in the back pressure chamber 32b becomes much higher than the downstream suction line pressure. Therefore, the spool valve 33 moves forward against the biasing force of the spring 34 in the direction of closing the refrigerant passage, and functions to decrease the circulating refrigerant, that is, increase the superheat degree of the sucked refrigerant.

[発明の効果] 本発明になる吸入冷媒の過熱度制御用弁機構は、上述の
ような特有の構成を具備するものであるから、次に記載
する優れた効果を奏することができる。
[Effects of the Invention] Since the intake refrigerant superheat degree control valve mechanism of the present invention has the above-described unique structure, the following excellent effects can be obtained.

(1)蒸発器内全域を飽和状態で使用できるので、蒸発
器の温度安定化すなわち常に良好な冷房フィーリングが
得られる。
(1) Since the entire area of the evaporator can be used in a saturated state, the temperature of the evaporator can be stabilized, that is, a good cooling feeling can always be obtained.

(2)圧縮機に吸入される冷媒の異常過熱に基づいて発
生する潤滑不良や焼付きを抑え、加えて比体積の増大に
よる冷凍能力の低下を確実に防止できる。
(2) Poor lubrication and seizure that occur due to abnormal overheating of the refrigerant sucked into the compressor can be suppressed, and in addition, reduction in refrigerating capacity due to an increase in specific volume can be reliably prevented.

(3)感温筒内に封入される冷媒の飽和圧力は切換弁に
必要な微動を促す動作源としてのみ作用するので、感温
筒の小型化、応答性の向上とともに構造選択の自由度を
高めることができる。
(3) Since the saturation pressure of the refrigerant filled in the temperature sensing cylinder acts only as an operation source that promotes the fine movement required for the switching valve, the temperature sensing cylinder is downsized, the responsiveness is improved, and the freedom of structure selection is increased. Can be increased.

(4)前圧室の軸心方向に設けられた下流吸入管路と同
前圧室に臨む上流吸入管路とがほぼ直交して配置されて
いるため、圧縮機の起動時に冷媒の変向に基づく動圧が
下流吸入管路に作用してばねの付勢力を越える差圧を生
じさせるので、開放位置にあるスプール弁は瞬間的に閉
止方向に導引されて冷媒流量を制限し、起動ショックの
低減とともに液圧縮の防止にも貢献する。
(4) Since the downstream suction pipe line provided in the axial direction of the front pressure chamber and the upstream suction pipe line facing the front pressure chamber are arranged substantially orthogonal to each other, the refrigerant is deflected when the compressor is started. As a result of the dynamic pressure acting on the downstream suction pipe to generate a differential pressure that exceeds the biasing force of the spring, the spool valve in the open position is instantaneously guided in the closing direction to limit the refrigerant flow rate and start. It contributes to the reduction of shock and the prevention of liquid compression.

(5)過熱度感知のために切換弁内に導引される上流吸
入管路圧力をそのままスプール弁動作用の制御圧力とし
ても利用するものでは、切換弁の構造が格段と簡素化さ
れる。
(5) If the upstream suction pipe line pressure introduced into the switching valve for sensing the degree of superheat is used as it is as the control pressure for spool valve operation, the structure of the switching valve is greatly simplified.

【図面の簡単な説明】[Brief description of drawings]

第1図は冷凍回路中に配設された本発明の第1実施例を
示す断面図、第2図は本発明の第2実施例を示す断面
図、第3図は冷凍回路中に配設された従来の弁機構を示
す断面図である。 10…圧縮機、12…吐出管路 18…定圧膨張弁、20…蒸発器 22…吸入管路、22a…上流吸入管路 22b…下流吸入管路 30、30A…弁機構 32a…前圧室、32b…背圧室 33…スプール弁、34…ばね 40、40A…切換弁 42、50、50A、52、54…導圧路 43…吸入圧力室、45…ベローズ 46…換圧室、47…感温筒 49…第1導圧室、51、51A…中間室 53…第2導圧室、57、57A…槓杆 58…ばね、60…ボール弁 61…テーパ弁部、64…弁部
FIG. 1 is a sectional view showing a first embodiment of the present invention arranged in a refrigeration circuit, FIG. 2 is a sectional view showing a second embodiment of the present invention, and FIG. 3 is arranged in a refrigeration circuit. FIG. 7 is a cross-sectional view showing a conventional valve mechanism that has been prepared. 10 ... Compressor, 12 ... Discharge line 18 ... Constant pressure expansion valve, 20 ... Evaporator 22 ... Suction line, 22a ... Upstream suction line 22b ... Downstream suction line 30, 30A ... Valve mechanism 32a ... Pre-pressure chamber, 32b ... Back pressure chamber 33 ... Spool valve, 34 ... Spring 40, 40A ... Switching valve 42, 50, 50A, 52, 54 ... Pressure guide passage 43 ... Suction pressure chamber, 45 ... Bellows 46 ... Exchange pressure chamber, 47 ... Feeling Hot cylinder 49 ... First pressure guide chamber, 51, 51A ... Intermediate chamber 53 ... Second pressure guide chamber, 57, 57A ... Dredge 58 ... Spring, 60 ... Ball valve 61 ... Tapered valve part, 64 ... Valve part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 出口 弘幸 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (56)参考文献 特開 昭63−231139(JP,A) 特開 昭63−25466(JP,A) 実開 昭63−198971(JP,U) ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Hiroyuki Deguchi 2-chome Toyota-cho, Kariya city, Aichi Prefecture Toyota Industries Corporation (56) Reference JP-A-63-231139 (JP, A) JP Patent Sho 63-25466 (JP, A) Actually opened Sho 63-198971 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、受液器、定圧膨張弁及び
蒸発器を含んで閉回路をなす冷凍回路中、圧縮機近傍の
吸入管路中に配設された弁機構であって、該弁機構は主
体内にスプール弁を内装したボアを有し、該ボアはスプ
ール弁を挟んで実質的に該スプール弁の動作空域を形成
する前圧室と、制御圧力を付加するための背圧室とに区
分され、該前圧室には、スプール弁を背圧室に向けて付
勢するばねを介装し、該前圧室の軸心方向及びこれとほ
ぼ直交する方向に弁機構の下流吸入管路及び上流吸入管
路をそれぞれ連通開口させるとともに、上記弁機構の近
傍に配設した感温筒内飽和圧力と上流吸入管路圧力との
差圧によって作動し、該上流又は下流吸入管路と圧縮機
の吐出管路とを選択的に上記背圧室に連通する切換弁を
設けたことを特徴とする吸入冷媒の過熱度制御様弁機
構。
1. A valve mechanism arranged in a suction pipe line in the vicinity of a compressor in a closed circuit including a compressor, a condenser, a liquid receiver, a constant pressure expansion valve and an evaporator. The valve mechanism has a bore in which a spool valve is installed in the main body, and the bore is for sandwiching the spool valve and forming a working space of the spool valve, and a front pressure chamber for applying a control pressure. A spring for urging the spool valve toward the back pressure chamber is interposed in the front pressure chamber, and the front pressure chamber is provided with a valve in the axial direction of the front pressure chamber and in a direction substantially orthogonal to the axial direction. The downstream suction pipe line and the upstream suction pipe line of the mechanism are opened to communicate with each other, and actuated by the differential pressure between the temperature-sensing in-cylinder saturation pressure and the upstream suction pipe line pressure arranged near the valve mechanism. A switching valve that selectively connects the downstream suction line and the discharge line of the compressor to the back pressure chamber is provided. Superheat control-like valve mechanism of the suction refrigerant.
JP62180785A 1987-07-20 1987-07-20 Valve mechanism for superheat control of suction refrigerant Expired - Lifetime JPH0721372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62180785A JPH0721372B2 (en) 1987-07-20 1987-07-20 Valve mechanism for superheat control of suction refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62180785A JPH0721372B2 (en) 1987-07-20 1987-07-20 Valve mechanism for superheat control of suction refrigerant

Publications (2)

Publication Number Publication Date
JPS6428461A JPS6428461A (en) 1989-01-31
JPH0721372B2 true JPH0721372B2 (en) 1995-03-08

Family

ID=16089282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62180785A Expired - Lifetime JPH0721372B2 (en) 1987-07-20 1987-07-20 Valve mechanism for superheat control of suction refrigerant

Country Status (1)

Country Link
JP (1) JPH0721372B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022053A1 (en) * 2003-09-02 2005-03-10 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Compressor or air-conditioning system

Also Published As

Publication number Publication date
JPS6428461A (en) 1989-01-31

Similar Documents

Publication Publication Date Title
US3899897A (en) By-pass suction throttling valve in a refrigeration system
US4788828A (en) Control device for use in a refrigeration circuit
US7819333B2 (en) Air conditioning circuit control using a thermostatic expansion valve and sequence valve
US4840038A (en) Control device for use in a refrigeration circuit
EP1519128A2 (en) Refrigeration cycle
US4032070A (en) Thermostatic expansion valve for refrigeration installations
US6289924B1 (en) Variable flow area refrigerant expansion device
JPWO2007111040A1 (en) Control valve for variable displacement compressor
US5044170A (en) Refrigeration system and a thermostatic expansion valve best suited for the same
US4890458A (en) Refrigerating circuit for car air conditioning
JPH0721372B2 (en) Valve mechanism for superheat control of suction refrigerant
JPH0721373B2 (en) Valve mechanism for superheat control of suction refrigerant
JPH0721370B2 (en) Valve mechanism for superheat control of suction refrigerant
JP2567443B2 (en) Flow control mechanism and flow control valve
JPH0721371B2 (en) Valve mechanism for superheat control of suction refrigerant
US4129995A (en) Evaporation pressure control device
JPH0721369B2 (en) Valve mechanism for superheat control of suction refrigerant
JP5369259B2 (en) Expansion valve
US3664581A (en) Thermostatically controlled expansion valve for refrigerating equipment
JPH05196324A (en) Expansion valve for refrigerating cycle
US20040184925A1 (en) Control valve system
KR960002567B1 (en) Refrigeration circuit
JPH02254270A (en) Temperature actuating type expansion valve
JP3963672B2 (en) Expansion valve
JP2554541Y2 (en) Expansion valve