JPH0721371B2 - Valve mechanism for superheat control of suction refrigerant - Google Patents

Valve mechanism for superheat control of suction refrigerant

Info

Publication number
JPH0721371B2
JPH0721371B2 JP62180784A JP18078487A JPH0721371B2 JP H0721371 B2 JPH0721371 B2 JP H0721371B2 JP 62180784 A JP62180784 A JP 62180784A JP 18078487 A JP18078487 A JP 18078487A JP H0721371 B2 JPH0721371 B2 JP H0721371B2
Authority
JP
Japan
Prior art keywords
pressure
valve
refrigerant
suction
valve mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62180784A
Other languages
Japanese (ja)
Other versions
JPS6428460A (en
Inventor
久雄 小林
克則 河合
正行 谷川
弘幸 出口
Original Assignee
株式会社豊田自動織機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機製作所 filed Critical 株式会社豊田自動織機製作所
Priority to JP62180784A priority Critical patent/JPH0721371B2/en
Publication of JPS6428460A publication Critical patent/JPS6428460A/en
Publication of JPH0721371B2 publication Critical patent/JPH0721371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Temperature-Responsive Valves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷凍回路中とくに圧縮機近傍の吸入管路に配
設された弁機構に係り、詳しくは吸入冷媒の過熱度を適
正に制御する弁機構の改良に関する。
Description: TECHNICAL FIELD The present invention relates to a valve mechanism arranged in a suction circuit in a refrigeration circuit, particularly in the vicinity of a compressor, and more specifically, to appropriately control the degree of superheat of suction refrigerant. To improve the valve mechanism.

[従来の技術] 車両空調用に供されている冷凍回路では、温度式自動膨
張弁によって蒸発器出口の冷媒の過熱度を一定に制御
し、一方、圧縮機近傍の吸入管路に配設された絞り弁に
よって蒸発器出口の冷媒圧力を一定に制御するようにし
た管理方式が知られている。ところが車室内に配置され
る蒸発器とは異なり、該絞り弁及び圧縮機は最も熱影響
を受け易いエンジンルーム内に配置されており、とくに
FFタイプの車両ではレイアウト上エンジンのさらに前方
に位置する圧縮機まで吸入管路の延設が必要となるた
め、上記熱影響の増幅に加えて冷媒の流量変動をも生起
し易いという車両構造的な宿命がある。従って上記絞り
弁による蒸発器出口の冷媒圧力の管理がとかく不安定と
なり、結果的に冷房の過不足や圧縮機の潤滑不良、吐出
温度の異常上昇といった数々の不具合を生じる。
[Prior Art] In a refrigeration circuit used for vehicle air-conditioning, the temperature type automatic expansion valve controls the superheat degree of the refrigerant at the outlet of the evaporator to a constant level, and on the other hand, it is arranged in a suction pipe line near the compressor. A management method is known in which the pressure of the refrigerant at the outlet of the evaporator is controlled to be constant by a throttle valve. However, unlike the evaporator arranged in the vehicle compartment, the throttle valve and the compressor are arranged in the engine room, which is most susceptible to heat, and
In the FF type vehicle, since it is necessary to extend the suction pipe line to the compressor located further forward of the engine in the layout, in addition to the amplification of the above heat effect, it is easy to cause fluctuations in the flow rate of the refrigerant. There is a fate. Therefore, the management of the refrigerant pressure at the outlet of the evaporator by the throttle valve becomes unstable at all, and as a result, various problems such as excess or deficiency of cooling, poor lubrication of the compressor, and abnormal rise of discharge temperature occur.

本発明者等はかかる問題に着目し、上記膨張弁を冷房負
荷にかかわりなく蒸発圧力を常に一定に制御する定圧膨
張弁となし、上記絞り弁を改修した弁機構によって吸入
冷媒の過熱度を制御するという新たな解決手段を先に提
案した。
The inventors of the present invention focused on such a problem, the expansion valve is not a constant pressure expansion valve that always controls the evaporation pressure regardless of the cooling load, and the superheat degree of the suction refrigerant is controlled by a valve mechanism that is a modification of the throttle valve. I proposed a new solution first.

第3図はその具体的構成を示すものであって、図中10は
例えばエンジンによって駆動される圧縮機で、該圧縮機
10の吐出管路12から延設される冷媒循環路には凝縮機1
4、受液器16、膨張弁18及び蒸発器20が順次直列状に設
けられ、蒸発器20の出口から再び圧縮機10に至る循環路
は機能上吸入管路22として構成されている。そして圧縮
機10近傍の吸入管路22中には以下に述べる流量調節機能
をもつ弁機構80が配設されている。なお、上記膨張弁18
を均圧管18aにより蒸発器20出口の冷媒圧力を導引し、
調整可能なばね力との平衡によって弁開度が決定される
従来周知の定圧膨張弁である。
FIG. 3 shows a specific configuration thereof, and 10 in the figure is a compressor driven by an engine, for example.
A condenser 1 is installed in the refrigerant circulation line extending from the discharge line 12 of 10
4, the liquid receiver 16, the expansion valve 18, and the evaporator 20 are sequentially provided in series, and the circulation path from the outlet of the evaporator 20 to the compressor 10 is functionally configured as a suction pipe line 22. A valve mechanism 80 having a flow rate adjusting function described below is arranged in the suction pipe line 22 near the compressor 10. The expansion valve 18
Guide the refrigerant pressure at the outlet of the evaporator 20 by a pressure equalizing pipe 18a,
It is a conventionally known constant pressure expansion valve whose valve opening is determined by the balance with an adjustable spring force.

しかして該弁機構80の主体81内には入口側管路部分と対
向させて有底円孔状のボア82が穿設され、同ボア82内に
は冷媒流量調節用のスプール弁83がそのヘッド側を該入
口側管路に向けて嵌挿されている。ボア82の底部は該ス
プール弁83のボトム側に制御圧力を作用させる圧力室84
として構成され、同圧力室84はボア82の底壁とスプール
弁83のボトム側端面との間に介装されたベローズ85によ
ってさらに画定された密封空間を形成している。そして
上記入口側管路部分には循環冷媒とほぼ同種の冷媒を封
入した感温筒86が配設され、同封入冷媒の飽和圧力は密
閉管87を介して上記圧力室84に導通されている。なお、
88は吸入冷媒の過熱度を制御するばねであり、入口側管
路部分の冷媒圧力と協同してスプール弁83をボトム方向
に付勢し弁開度を縮小させるように作用する。
In the main body 81 of the valve mechanism 80, a bore 82 having a bottomed circular hole is bored so as to face the inlet side conduit portion, and a spool valve 83 for adjusting the refrigerant flow rate is provided in the bore 82. The head side is fitted into the inlet side conduit. The bottom of the bore 82 has a pressure chamber 84 for exerting a control pressure on the bottom side of the spool valve 83.
The pressure chamber 84 forms a sealed space further defined by a bellows 85 interposed between the bottom wall of the bore 82 and the bottom end surface of the spool valve 83. A temperature sensitive tube 86 in which a refrigerant of almost the same type as the circulating refrigerant is sealed is arranged in the inlet side pipe line portion, and the saturated pressure of the sealed refrigerant is conducted to the pressure chamber 84 via a sealed tube 87. . In addition,
Reference numeral 88 is a spring that controls the degree of superheat of the suction refrigerant, and acts in cooperation with the refrigerant pressure in the inlet side pipe line to urge the spool valve 83 in the bottom direction to reduce the valve opening.

従ってスプール弁83の弁開度は圧力室84内圧力(入口側
管路部分温度に対応する感温筒内封入冷媒の飽和圧力)
と、入口側管路部分の冷媒圧力にばね88の付勢力を加え
た合力との平衡状態によって決定される。つまり入口側
管路部分の吸入冷媒は同温の飽和圧力よりばね88の付勢
力相当分低い圧力に制限され、その結果、吸入冷媒の過
熱度がほぼ一定に制御されるものである。
Therefore, the valve opening of the spool valve 83 is the pressure in the pressure chamber 84 (saturation pressure of the refrigerant filled in the temperature-sensitive cylinder corresponding to the temperature of the inlet side conduit).
And the resultant pressure obtained by adding the biasing force of the spring 88 to the refrigerant pressure in the inlet side conduit portion. In other words, the suction refrigerant in the inlet side pipe portion is limited to a pressure lower than the saturation pressure of the same temperature by an amount corresponding to the biasing force of the spring 88, and as a result, the superheat degree of the suction refrigerant is controlled to be substantially constant.

[発明が解決しようとする問題点] ところが上述の構成では感温筒内封入冷媒の飽和圧力及
び同圧力に対抗して過熱度を制御するばねの付勢力が、
共にスプール弁の開閉動作に直接関与するものであり、
しかも該ばねの付勢力は実質的にスプール弁の動作位置
によって異なるものであるから、該スプール弁の開弁動
作が進むほどばねの付勢力(抵抗)が大きくなって過熱
度は高めに制御され、逆に同閉弁動作ではばねの付勢力
が順次小さくなって過熱度は低めに制御される。換言す
れば高冷房負荷時には絞り過ぎによる冷え不足、低冷房
負荷時には絞り不足による過冷房現象を伴って冷房フィ
ーリングを悪化させる嫌いがある。
[Problems to be Solved by the Invention] However, in the above-mentioned configuration, the biasing force of the spring for controlling the degree of superheat against the saturation pressure of the refrigerant filled in the temperature-sensitive cylinder and the pressure is
Both are directly involved in the opening / closing operation of the spool valve,
Moreover, since the biasing force of the spring substantially differs depending on the operating position of the spool valve, the biasing force (resistance) of the spring increases as the opening operation of the spool valve progresses, and the superheat degree is controlled to be higher. On the contrary, in the valve closing operation, the biasing force of the spring is gradually reduced and the superheat degree is controlled to be low. In other words, there is a dislike that the cooling feeling is deteriorated due to insufficient cooling due to excessive throttling at high cooling load, and overcooling phenomenon due to insufficient throttling at low cooling load.

また、上記スプール弁の有効ストロークを確保するのに
伴って圧力室の容積変化も必然的に大きくなるため、こ
の変化を吸収するには感温筒に封入される冷媒にも相応
の増量が求められることとなり、結果的に感温筒の大型
化や応答性の劣化を招くことになる。
Also, as the effective stroke of the spool valve is ensured, the volume change of the pressure chamber will inevitably increase.Therefore, in order to absorb this change, the refrigerant enclosed in the temperature sensing cylinder must also have a corresponding increase in volume. As a result, the temperature sensing cylinder becomes large and the responsiveness deteriorates.

本発明は、吸入冷媒の過熱度を制御する簡潔な弁機構の
採用により、冷房フィーリングの安定化とともに過熱度
制御精度の向上を図ることを解決すべき技術課題とする
ものである。
An object of the present invention is to solve the technical problems to be solved by stabilizing the cooling feeling and improving the superheat degree control accuracy by adopting a simple valve mechanism for controlling the superheat degree of the suction refrigerant.

[問題点を解決するための手段] 本発明になる弁機構は上記課題解決のため、主体内に該
弁機構の上流吸入管路圧力をそのヘッド側に作用させる
ように配置した流量調節用のスプール弁と、該スプール
弁のボトム側に制御圧力を作用させる圧力室と、該スプ
ール弁を同様にヘッド側に向けて付勢するばねと、弁機
構の近傍に配設した感温筒内飽和圧力と上流吸入管路圧
力との差圧によって作動し、該弁機構の上流吸入管路と
下流吸入管路とを選択的に該圧力室に連通する切換弁と
を備えた新規な構成を採用している。
[Means for Solving the Problems] In order to solve the above problems, a valve mechanism according to the present invention is provided in a main body for flow rate adjustment arranged so that the upstream suction pipe line pressure of the valve mechanism acts on its head side. A spool valve, a pressure chamber that exerts a control pressure on the bottom side of the spool valve, a spring that biases the spool valve toward the head side in the same manner, and a temperature-sensing cylinder saturation arranged near the valve mechanism. Adopting a novel configuration including a switching valve that operates by a pressure difference between the pressure and the pressure of the upstream suction pipeline and selectively connects the upstream suction pipeline and the downstream suction pipeline of the valve mechanism to the pressure chamber is doing.

上記弁機構は、とくに定圧膨張弁を含んで閉回路に形成
された車両空調用冷凍回路中、圧縮機近傍の吸入管路、
好ましくは圧縮機の吸入部に付属させた形態で配設され
る。上記スプール弁はごく一般的な円柱形状のもので差
し支えないが、これを有底中空状となして周壁の一部に
切欠き窓を開設し、該中空状部及び切欠き窓を冷媒通路
の一部とするように構成することもでき、また、これに
よってスプール弁の動作方向に対する弁開度の増減作用
を任意に選択することができる。上記感温筒は吸入冷媒
温度をより忠実に感知するよう弁機構の上流又は下流管
路に近接して配置されるが、例えば圧縮機の吐出部若し
くは吐出管路温度を直接又はコイル等で導引して吸入冷
媒温度を高めに感知し、結果的に吸入冷媒の過熱度を幾
分低めに制御することもできる。
The valve mechanism is a suction line near the compressor in a vehicle air conditioning refrigeration circuit formed in a closed circuit including a constant pressure expansion valve,
Preferably, it is arranged in a form attached to the suction part of the compressor. The spool valve may be of a general columnar shape, but it is hollow with a bottom and a cutout window is opened in a part of the peripheral wall, and the hollow portion and the cutout window are connected to the refrigerant passage. It can be configured to be a part, and by this, the increasing / decreasing action of the valve opening degree with respect to the operating direction of the spool valve can be arbitrarily selected. The temperature sensing tube is arranged close to the upstream or downstream pipeline of the valve mechanism so as to more accurately sense the suction refrigerant temperature.For example, the temperature of the discharge section of the compressor or the discharge pipeline temperature is guided directly or by a coil. It is also possible to sense the intake refrigerant temperature to be higher and consequently control the superheat degree of the intake refrigerant to be somewhat lower.

[作用] 本発明弁機構を有する冷凍回路においては、定圧膨張弁
により蒸発器内の圧力が一定に保持されるとともに、上
記弁機構の流量調節により、蒸発器の全域において飽和
状態を維持することができるので、蒸発温度(冷房風温
度)も安定した状態が得られる。
[Operation] In the refrigeration circuit having the valve mechanism of the present invention, the pressure in the evaporator is kept constant by the constant pressure expansion valve, and the saturated state is maintained over the entire area of the evaporator by adjusting the flow rate of the valve mechanism. As a result, a stable evaporation temperature (cooling air temperature) can be obtained.

従って蒸発器出口における冷媒は飽和状態から僅かに湿
り状態となり、その湿り度は若干変動することにはなる
が、圧縮機へ到達するまでの間に外的要因が吸入管路を
通じて冷媒に影響する過熱度の変動分も含めて、実質的
に圧縮機に吸入される冷媒の過熱度は、これを検知した
該弁機構の流量調節によって制御されるので、吐出冷媒
及び圧縮機本体の過熱を確実に抑止することができる。
Therefore, the refrigerant at the outlet of the evaporator changes from a saturated state to a slightly wet state, and the degree of wetness will fluctuate slightly, but external factors affect the refrigerant through the suction pipeline until it reaches the compressor. The degree of superheat of the refrigerant that is substantially sucked into the compressor, including fluctuations in the degree of superheat, is controlled by the flow rate adjustment of the valve mechanism that detects this. Can be deterred.

とくに本発明弁機構では、感温筒内に封入された冷媒の
飽和圧力が切換弁に必要な微動を促す動作源としてのみ
作用し、流量制御のために比較的大きなストロークを要
するスプール弁の動作源としては圧力の異なる循環冷媒
が交互に作用するものであり、また、同制御圧力と呼応
してスプール弁を付勢するばねは過熱度感知用のばねと
は独立した形態で設けられているため、切換弁及びスプ
ール弁は共に正確かつ円滑に作動する。
In particular, in the valve mechanism of the present invention, the saturation pressure of the refrigerant enclosed in the temperature sensitive cylinder acts only as an operation source for promoting the fine movement required for the switching valve, and the operation of the spool valve requiring a relatively large stroke for flow rate control. Circulating refrigerants having different pressures act alternately as a source, and a spring for urging the spool valve in response to the control pressure is provided in a form independent of the superheat sensing spring. Therefore, both the switching valve and the spool valve operate accurately and smoothly.

[実施例] 以下、図に基づいて本発明の実施例を説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は冷凍回路の概略及び弁機構の第1実施例を示す
もので、該弁機構30は吸入冷媒の過熱度が低いときの状
態を表わしている。
FIG. 1 shows the outline of the refrigeration circuit and the first embodiment of the valve mechanism, and the valve mechanism 30 shows a state when the superheat degree of the suction refrigerant is low.

同図において、10は例えばエンジンによって駆動される
圧縮機で、該圧縮機10の吐出管路12から延設される冷媒
循環路(閉回路)には凝縮器14、受液器16、膨張弁18及
び蒸発器20が順位直列状に設けられ、蒸発器20の出口か
ら再び圧縮機10に至る循環路は機能上吸入管路22として
構成されている。そして該吸入管路22中の圧縮機10近傍
には弁機構30が配設され、これにより吸入管路22は該弁
機構30の上流吸入管路22a及び下流吸入管路22bに区分さ
れる。なお、上記膨張弁18は均圧管18aにより蒸発器20
の出口の冷媒圧力を導引し、調節可能なばね力との平衡
によって弁開度が決定される定圧膨張弁である。
In the figure, 10 is a compressor driven by, for example, an engine, and a condenser 14, a receiver 16 and an expansion valve are provided in a refrigerant circulation path (closed circuit) extending from a discharge conduit 12 of the compressor 10. 18 and the evaporator 20 are arranged in series, and the circulation path from the outlet of the evaporator 20 to the compressor 10 is functionally configured as a suction pipe line 22. A valve mechanism 30 is disposed in the suction pipe line 22 near the compressor 10, whereby the suction pipe line 22 is divided into an upstream suction pipe line 22a and a downstream suction pipe line 22b of the valve mechanism 30. In addition, the expansion valve 18 is provided with an equalizer 20 through an equalizer tube 18a.
Is a constant pressure expansion valve that guides the refrigerant pressure at the outlet of the valve and determines the valve opening degree by balancing with the adjustable spring force.

しかして弁機構30の主体31内には上流吸入管路22aと対
向させて有底円孔状のボア32が穿設され、同ボア32内に
は冷媒流量調節用のスプール弁33がそのヘッド側を上流
吸入管路22a方向に向けて進退自在に嵌挿されている。
なお、該スプール弁33は有底中空状に形成されてその周
壁の中央部には切欠き窓33aが開設され、該中空状部及
び切欠き窓33aは共に冷媒通路の一部となされている。
ボア32の底部は該スプール弁33のボトム側に制御圧力を
作用させる圧力室34として構成され、該圧力室34内には
同様にスプール弁33をヘッド側つまり弁開度を拡大させ
る向きに付勢するばね35は介装されている。
Then, in the main body 31 of the valve mechanism 30, a bore 32 having a bottomed circular hole is bored so as to face the upstream suction pipeline 22a, and in the bore 32, a spool valve 33 for adjusting the refrigerant flow rate is provided. It is inserted in such a manner that the side is directed toward the upstream suction pipe line 22a and can be moved back and forth.
The spool valve 33 is formed in a hollow shape with a bottom, and a cutout window 33a is opened in the center of the peripheral wall thereof, and the hollow portion and the cutout window 33a are both part of the refrigerant passage. .
The bottom portion of the bore 32 is configured as a pressure chamber 34 that exerts a control pressure on the bottom side of the spool valve 33, and the spool valve 33 is similarly provided in the pressure chamber 34 in the head side, that is, in the direction of increasing the valve opening degree. The biasing spring 35 is interposed.

40は吸入冷媒の過熱度を感知してスプール弁33を動作さ
せる切換弁で、該切換弁40の筐体41内には上流吸入管路
22aと導圧路42を介して連通する吸入圧力室43が設けら
れ、該吸入圧力室43の内壁には隔板44によって端部の封
止されたベローズ45の基部が取付けられており、これに
より該吸入圧力室43はベローズ45によって隔離された換
圧室46と対峙せしめられている。47は上記主体31の上流
吸入管路22a部分に配設された感温筒で、該感温筒47内
には循環冷媒と同種若しくは飽和圧力の幾分高い冷媒が
封入され、同封入冷媒の飽和圧力は密閉管48を介した閉
回路によって上記換圧室46に導通されている。49は通口
50により吸入圧力室43と連通し、導圧路51を介して上記
圧力室34とも連通する中間室で、該中間室49はさらに該
通口50と同心的に開設された通口52及び導圧路53を経て
下流吸入管路22bと連通せしめられている。一方、上記
隔板44に結合され通口50を通貫して中間室49内へと延出
する槓杆54の先端には複合型の弁部55が形成され、該弁
部55はその進退動により通口52又は通口50の弁座(口端
縁)を選択的に封止して中間室49との流通を交互に制限
可能となされている。56は吸入圧力室43内に介装された
隔板44と衝接してベローズ45を収縮させる向きに付勢す
るばねであり、該ばね56の付勢力は実質的に制御される
過熱度の値に匹敵するものであり、従って上記弁部55は
隔板44を挟んで作用する内外二様の圧力が平衡する向き
に従動するよう構成されている。
Reference numeral 40 denotes a switching valve that operates the spool valve 33 by detecting the degree of superheat of the suction refrigerant.
A suction pressure chamber 43 communicating with 22a through a pressure guiding path 42 is provided, and a base portion of a bellows 45 whose end is sealed by a partition plate 44 is attached to an inner wall of the suction pressure chamber 43. Thus, the suction pressure chamber 43 is opposed to the exchange pressure chamber 46 separated by the bellows 45. Reference numeral 47 is a temperature-sensing cylinder disposed in the upstream suction pipe line 22a portion of the main body 31.In the temperature-sensing cylinder 47, a refrigerant of the same type as the circulating refrigerant or a slightly higher saturation pressure is enclosed, The saturation pressure is conducted to the pressure conversion chamber 46 by a closed circuit via a closed pipe 48. 49 is the entrance
The intermediate chamber 49 communicates with the suction pressure chamber 43 by means of 50, and also communicates with the pressure chamber 34 through the pressure passage 51, and the intermediate chamber 49 is further provided with a passage 52 and a passage 52 concentric with the passage 50. It communicates with the downstream suction pipe line 22b through the pressure line 53. On the other hand, a compound type valve portion 55 is formed at the tip of the lever 54 that is connected to the partition plate 44 and extends through the through hole 50 into the intermediate chamber 49, and the valve portion 55 moves back and forth. Thus, the valve seat (mouth end edge) of the communication port 52 or the communication port 50 can be selectively sealed to alternately limit the flow with the intermediate chamber 49. Reference numeral 56 is a spring that urges the bellows 45 in a direction in which the bellows 45 contracts by colliding with the partition plate 44 interposed in the suction pressure chamber 43. Therefore, the valve portion 55 is configured to follow the direction in which the pressures of the inside and outside acting on the partition plate 44 are balanced.

上述した本発明弁機構を含む冷凍回路においては、膨張
弁18によって蒸発器20内の圧力は一定に制御され、しか
も設定圧力は蒸発器20全域に亘って常に飽和状態が確保
されるように調節されるので、蒸発器20出口の過熱度は
むしろ低目方向で若干変動することになるが、冒頭述べ
たように蒸発器20から圧縮機10に至る吸入管路22の長さ
と環境温度により循環冷媒はさらに不確定な管内抵抗や
熱影響を受ける。そしてこれら環境因子の影響を受けた
のちの冷媒の過熱度は本弁機構30によって正確に検出さ
れ、当該検出値に基づいて作動する弁機構30の流量調節
により吸入冷媒の過熱度は一定値に制御されるものであ
る。
In the refrigeration circuit including the above-described valve mechanism of the present invention, the pressure inside the evaporator 20 is controlled to be constant by the expansion valve 18, and the set pressure is adjusted so that the saturated state is always ensured over the entire area of the evaporator 20. Therefore, the degree of superheat at the outlet of the evaporator 20 slightly fluctuates in the lower direction, but as described at the beginning, it is circulated depending on the length of the suction pipe line 22 from the evaporator 20 to the compressor 10 and the ambient temperature. Refrigerants are also subject to uncertain pipe resistance and thermal effects. Then, the superheat degree of the refrigerant after being affected by these environmental factors is accurately detected by the valve mechanism 30, and the superheat degree of the suction refrigerant becomes a constant value by adjusting the flow rate of the valve mechanism 30 that operates based on the detected value. It is controlled.

いま、図の状態から吸入冷媒の過熱度が高くなり、感温
筒47内飽和圧力つまり換圧室46内圧力と上流吸入管路圧
力つまり吸入圧力室43内圧力との差圧が大きくなって、
これが設定されたばね58の付勢力を越えると、ベローズ
45の伸長を伴って隔板44、槓杆54とともに弁部55は進動
(図示下動)し、通口50の弁座を開放させると同時に通
口52の弁座を閉止させる。これにより導圧路53、通口5
2、中間室49及び導圧路51を介して圧力室34に供給され
ていた下流吸入管路圧力は減少し、代って吸入圧力室43
から通口50及び中間室49を経た上流吸入管路圧力の供給
が増加するので、圧力室34内の圧力が順次下流吸入管路
圧力に近接する。従って両端に共に上流吸入管路圧力が
作用することとなったスプール弁33はばね35の付勢力に
よって冷媒流路を開放する向きに前進し、循環冷媒量の
増大すなわち吸入冷媒の過熱度を低下させるべく機能す
る。
From the state shown in the figure, the degree of superheat of the suctioned refrigerant increases, and the differential pressure between the saturation pressure in the temperature sensing cylinder 47, that is, the pressure inside the pressure conversion chamber 46 and the upstream suction pipe line pressure, that is, the pressure inside the suction pressure chamber 43, increases. ,
When this exceeds the set biasing force of spring 58, the bellows
With the expansion of 45, the valve part 55 moves forward (downward in the drawing) together with the partition plate 44 and the lever 54 to open the valve seat of the passage opening 50 and at the same time close the valve seat of the passage opening 52. As a result, the pressure guiding path 53, the passage 5
2. The pressure of the downstream suction pipe, which has been supplied to the pressure chamber 34 via the intermediate chamber 49 and the pressure guiding passage 51, decreases, and instead, the suction pressure chamber 43
Since the supply of the upstream suction pipeline pressure via the through hole 50 and the intermediate chamber 49 increases, the pressure in the pressure chamber 34 sequentially approaches the downstream suction pipeline pressure. Therefore, the spool valve 33, on which the upstream suction pipe pressure acts on both ends, advances in the direction of opening the refrigerant passage by the urging force of the spring 35, increasing the amount of circulating refrigerant, that is, reducing the superheat degree of the suction refrigerant. It functions to make it.

また、吸入冷媒の過熱度が低くなり、上記換圧室46内圧
力と吸入圧力室43内圧力との差圧が小さくなると、ばね
56の付勢力によってベローズ45は収縮し、上述の作用と
は逆に弁部55は退動(図示上動)して通口50の弁座を閉
止させると同時に通口52の弁座を開放させる。これによ
り吸入圧力室43から通口50及び中間室49を介して圧力室
34に供給されていた上流吸入管路圧力は減少し、代って
開放された通口52から中間室49を経て供給される絞り後
の下流吸入管路圧力が増加するので、圧力室34内の圧力
は上流吸入管路圧力よりも十分に低くなる。従ってスプ
ール弁33はばね35の付勢力に抗して冷媒流路を閉止する
向きに後退し、循環冷媒量の減少すなわち吸入冷媒の過
熱度を上昇させるべく機能する。
Further, when the degree of superheat of the suction refrigerant decreases and the differential pressure between the pressure inside the pressure conversion chamber 46 and the pressure inside the suction pressure chamber 43 decreases, the spring
The bellows 45 contracts by the urging force of 56, and contrary to the above-described action, the valve portion 55 retracts (moves upward in the drawing) to close the valve seat of the passage port 50 and simultaneously open the valve seat of the passage port 52. Let This allows the suction pressure chamber 43 to pass through the passage 50 and the intermediate chamber 49,
Since the upstream suction pipeline pressure supplied to 34 decreases, the downstream suction pipeline pressure after throttling that is supplied from the opened opening 52 through the intermediate chamber 49 increases instead. Is sufficiently lower than the upstream suction line pressure. Therefore, the spool valve 33 moves backward against the biasing force of the spring 35 in the direction to close the refrigerant passage, and functions to decrease the amount of circulating refrigerant, that is, increase the degree of superheat of the sucked refrigerant.

第2図は弁機構の第2実施例を示すもので、該弁機構30
Aも吸入冷媒の過熱度が低いときの状態を表わしてい
る。該弁機構30Aはスプール弁33Aを単純な円柱状に形成
することにより、ばね35Aの付勢力に基づくスプール弁3
3Aの前進が冷媒流路の開放でなく、逆に閉止作用を伴う
という点で第1実施例とはその構成を異にしている。従
って吸入冷媒の過熱度に応じて圧力室34に供給される制
御圧力は第1実施例とは全く反対となるため、切換弁40
Aの構成にも以下に述べるような僅かの相違がある。
FIG. 2 shows a second embodiment of the valve mechanism.
A also represents the state when the superheat of the intake refrigerant is low. The valve mechanism 30A forms the spool valve 33A into a simple columnar shape, so that the spool valve 3 based on the urging force of the spring 35A is used.
The configuration is different from that of the first embodiment in that the forward movement of 3A is not the opening of the refrigerant flow path but is accompanied by the closing action. Therefore, the control pressure supplied to the pressure chamber 34 according to the degree of superheat of the suction refrigerant is completely opposite to that in the first embodiment, and the switching valve 40
The configuration of A also has a slight difference as described below.

すなわち切換弁40Aの筐体41A内には上述の吸入圧力室4
3、中間室49に続いて低圧室60が設けられ、該低圧室60
は通口61により中間室49と連通し、一方では導圧路53を
介して下流吸入管路22bとも連通せしめられている。そ
して該低圧室60内にはばね62の付勢力によって該通口61
を閉口するボール弁63が介装され、該ボール弁63はベロ
ーズ45の伸長に伴って槓杆54Aが進動した際、該槓杆54A
の突端の干渉作用により通口61を開口するようになされ
ている。また、槓杆54Aの中間部には通口50Aを開閉する
テーパ弁部64が形成されており、槓杆54Aの進動時ボー
ル弁63の上記開口動作とは逆に通口50Aの弁座を閉止す
るように構成されている。
That is, the suction pressure chamber 4 described above is provided in the housing 41A of the switching valve 40A.
3, the low-pressure chamber 60 is provided following the intermediate chamber 49, the low-pressure chamber 60
Is communicated with the intermediate chamber 49 through the passage 61, and is also communicated with the downstream suction conduit 22b through the pressure guiding passage 53. Then, in the low-pressure chamber 60, the passage 61 by the biasing force of the spring 62.
A ball valve 63 for closing the valve is inserted, and when the ball valve 63 moves as the bellows 45 expands, the ball valve 63
The through hole 61 is opened by the interference action of the projecting end. Further, a taper valve portion 64 for opening and closing the through hole 50A is formed in the middle portion of the sludge rod 54A, and the valve seat of the through hole 50A is closed contrary to the above opening operation of the ball valve 63 during the advance of the sludge rod 54A. Is configured to.

いま、図の状態から吸入冷媒の過熱度が高くなり、換圧
室46内圧力と吸入圧力室43内圧力との差圧が大きくなっ
てベローズ45の伸長とともに槓杆54Aが進動すると、該
槓杆54Aの突端がボール弁63と干渉することによって通
口61は開口され、逆にテーパ弁部64によって通口50Aの
弁座は閉止される。これにより吸入圧力室43から通口50
A及び中間室49を介して圧力室34に供給されていた上流
吸入管路圧力は減少し、代って低圧室60から開口された
通口61及び中間室49を経て供給される下流吸入管路圧力
が増加するので、圧力室34内の圧力は上流吸入管路圧力
よりも十分に低くなる。従ってスプール弁33Aはばね35A
の付勢力に抗して冷媒流路を開放する向きに後退し、循
環冷媒量の増大すなわち吸入冷媒の過熱度を低下させる
べく機能する。
Now, from the state shown in the figure, the degree of superheat of the suction refrigerant becomes high, the differential pressure between the pressure inside the pressure conversion chamber 46 and the pressure inside the suction pressure chamber 43 becomes large, and the rod 54A advances as the bellows 45 expands. When the tip of 54A interferes with the ball valve 63, the passage 61 is opened, and conversely, the taper valve portion 64 closes the valve seat of the passage 50A. This allows the suction pressure chamber 43 to pass through the opening 50.
The upstream suction pipe line pressure that has been supplied to the pressure chamber 34 via A and the intermediate chamber 49 decreases, and instead, the downstream suction pipe that is supplied from the low pressure chamber 60 via the through hole 61 and the intermediate chamber 49. Since the line pressure increases, the pressure in the pressure chamber 34 becomes sufficiently lower than the upstream suction line pressure. Therefore, spool valve 33A is spring 35A
It retreats in the direction of opening the refrigerant flow path against the urging force of No. 1, and functions to increase the amount of circulating refrigerant, that is, reduce the degree of superheat of suction refrigerant.

また、吸入冷媒の過熱度が低くなり、上記換圧室46内圧
力との吸入圧力室43内圧力との差圧が小さくなると、ば
ね56の付勢力によってベローズ45は収縮し、上述の作用
とは逆にテーパ弁部64は退動して通口50Aの弁座を開放
させると同時に槓杆54Aによるボール弁63への干渉を解
いて通口61を閉口させる。これにより、低圧室60から通
口61及び中間室49を介して圧力室34に供給されていた低
圧の下流吸入管路圧力は減少し、代って吸入圧力室43か
ら通口50A及び中間室49を経た上流吸入管路圧力が増加
するので、圧力室34内の圧力は順次上流吸入管路圧力に
近接する。従って両端に共に上流吸入管路圧力が作用す
ることとなったスプール弁33Aはばね35Aの付勢力によっ
て冷媒流路を閉止する向きに前進し、循環冷媒量の減少
すなわち吸入冷媒の過熱度を上昇させるべく機能する。
Further, when the degree of superheat of the suction refrigerant becomes low and the pressure difference between the pressure inside the pressure conversion chamber 46 and the pressure inside the suction pressure chamber 43 becomes small, the bellows 45 contracts due to the urging force of the spring 56, and On the contrary, the taper valve portion 64 retracts to open the valve seat of the through hole 50A, and at the same time, the interference with the ball valve 63 by the lever 54A is released to close the through hole 61. As a result, the low-pressure downstream suction pipeline pressure supplied from the low-pressure chamber 60 to the pressure chamber 34 via the passage 61 and the intermediate chamber 49 is reduced, and instead, the suction pressure chamber 43 to the passage 50A and the intermediate chamber. Since the upstream suction pipeline pressure via 49 increases, the pressure in the pressure chamber 34 sequentially approaches the upstream suction pipeline pressure. Therefore, the spool valve 33A, on which the upstream suction pipe pressure acts on both ends, moves forward in the direction of closing the refrigerant passage by the urging force of the spring 35A, decreasing the circulating refrigerant amount, that is, increasing the superheat degree of the suction refrigerant. It functions to make it.

[発明の効果] 本発明になる吸入冷媒の過熱度制御用弁機構は、上述の
ような特有の構成を具備するものであるから、次に記載
する優れた効果を奏することができる。
[Effects of the Invention] Since the intake refrigerant superheat degree control valve mechanism of the present invention has the above-described unique structure, the following excellent effects can be obtained.

(1)蒸発器内全域を飽和状態で使用できるので、蒸発
器の温度安定化すなわち常に良好な冷房フィーリングが
得られる。
(1) Since the entire area of the evaporator can be used in a saturated state, the temperature of the evaporator can be stabilized, that is, a good cooling feeling can always be obtained.

(2)圧縮機に吸入される冷媒の異常過熱に基づいて発
生する潤滑不良や焼付きを抑え、加えて比体積の増大に
よる冷凍能力の低下を確実に防止できる。
(2) Poor lubrication and seizure that occur due to abnormal overheating of the refrigerant sucked into the compressor can be suppressed, and in addition, reduction in refrigerating capacity due to an increase in specific volume can be reliably prevented.

(3)感温筒内に封入される冷媒の飽和圧力は切換弁に
必要な微動を促す動作源としてのみ作用するので、感温
筒の小型化、応答性の向上とともに構造選択の自由度を
高めることができる。
(3) Since the saturation pressure of the refrigerant filled in the temperature sensing cylinder acts only as an operation source that promotes the fine movement required for the switching valve, the temperature sensing cylinder is downsized, the responsiveness is improved, and the freedom of structure selection is increased. Can be increased.

(4)過熱度感知のために切換弁内に導引される上流吸
入管路圧力を同時にスプール弁動作用の制御圧力として
も利用するので、切換弁の構造が格段と簡素化される。
(4) Since the upstream suction pipe line pressure introduced into the switching valve for sensing the degree of superheat is also used as the control pressure for spool valve operation, the structure of the switching valve is greatly simplified.

(5)スプール弁動作用の制御圧力として圧縮機の吐出
圧力を使用しないため、切換弁の作動時に吐出圧力が吸
入側にリークすることによって生じる冷凍能力の低下や
吸入温度の上昇といった不具合が完全に一掃される。
(5) Since the discharge pressure of the compressor is not used as the control pressure for operating the spool valve, there is a complete problem that the discharge pressure leaks to the suction side during the operation of the switching valve, which reduces the refrigeration capacity and raises the suction temperature. To be wiped out.

(6)ばねによるスプール弁の付勢が冷媒流量を閉止す
る動作方向に作用するものでは、圧縮機の停止中閉止位
置を確保するスプール弁によって起動時の吸入冷媒量が
制限され、起動ショックの低減に極めて有効である。
(6) When the spool valve is biased by the spring in the direction of operation for closing the refrigerant flow rate, the amount of refrigerant sucked at the time of startup is limited by the spool valve that secures the closed position while the compressor is stopped, and the start shock may occur. It is extremely effective for reduction.

【図面の簡単な説明】[Brief description of drawings]

第1図は冷凍回路中に配設された本発明の第1実施例を
示す断面図、第2図は本発明の第2実施例を示す断面
図、第3図は冷凍回路中に配設された従来の弁機構を示
す断面図である。 10…圧縮機、12…吐出管路 18…定圧膨張弁、20…蒸発器 22…吸入管路 22a…上流吸入管路 22b…下流吸入管路 30、30A…弁機構 33、33A…スプール弁 34…圧力室、35、35A…ばね 40、40A…切換弁 42、51、53…導圧路 43…吸入圧力室、45…ベローズ 46…換圧室、47…感温筒 49…中間室、54、54A…槓杆 55…弁部、56…ばね 60…低圧室、63…ボール弁 64…テーパ弁部
FIG. 1 is a sectional view showing a first embodiment of the present invention arranged in a refrigeration circuit, FIG. 2 is a sectional view showing a second embodiment of the present invention, and FIG. 3 is arranged in a refrigeration circuit. FIG. 7 is a cross-sectional view showing a conventional valve mechanism that has been prepared. 10 ... Compressor, 12 ... Discharge line 18 ... Constant pressure expansion valve, 20 ... Evaporator 22 ... Suction line 22a ... Upstream suction line 22b ... Downstream suction line 30, 30A ... Valve mechanism 33, 33A ... Spool valve 34 … Pressure chamber, 35, 35A… Spring 40, 40A… Switching valve 42, 51, 53… Pressure passage 43… Suction pressure chamber, 45… Bellows 46… Pressure conversion chamber, 47… Temperature sensing cylinder 49… Intermediate chamber, 54 , 54A ... hammer 55 ... valve part, 56 ... spring 60 ... low pressure chamber, 63 ... ball valve 64 ... taper valve part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 出口 弘幸 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (56)参考文献 特開 昭63−231139(JP,A) 特開 昭63−25466(JP,A) 実開 昭63−198971(JP,U) ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Hiroyuki Deguchi 2-chome Toyota-cho, Kariya city, Aichi Prefecture Toyota Industries Corporation (56) Reference JP-A-63-231139 (JP, A) JP Patent Sho 63-25466 (JP, A) Actually opened Sho 63-198971 (JP, U)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、受液器、定圧膨張弁及び
蒸発器を含んで閉回路をなす車両空調用冷凍回路中、圧
縮機近傍の吸入管路に配設された弁機構であって、該弁
機構は主体内に弁機構の上流吸入管路圧力をそのヘッド
側に作用させるように配置した流量調節用のスプール弁
と、該スプール弁のボトム側に制御圧力を作用させる圧
力室と、該スプール弁を同様にヘッド側に向けて付勢す
るばねと、弁機構の近傍に配設した感温筒内飽和圧力と
上流吸入管路圧力との差圧によって作動し、該弁機構の
上流吸入管路と下流吸入管路とを選択的に該圧力室に連
通する切換弁とを備えてなる吸入冷媒の過熱度制御用弁
機構。
Claim: What is claimed is: 1. A valve mechanism arranged in a suction pipe line near a compressor in a vehicle air-conditioning refrigeration circuit that forms a closed circuit including a compressor, a condenser, a liquid receiver, a constant pressure expansion valve and an evaporator. That is, the valve mechanism includes a spool valve for flow rate adjustment arranged in the main body so that the upstream suction pipeline pressure of the valve mechanism acts on the head side thereof, and a pressure for applying a control pressure to the bottom side of the spool valve. The chamber, a spring for urging the spool valve toward the head in the same manner, and a differential pressure between the saturated pressure in the temperature-sensing cylinder and the upstream suction line pressure arranged near the valve mechanism. A valve mechanism for controlling the degree of superheat of suction refrigerant, comprising: a switching valve that selectively connects an upstream suction pipe line and a downstream suction pipe line of the mechanism to the pressure chamber.
【請求項2】上記ばねの付勢力は上記スプール弁が冷媒
流路を閉止する動作方向に作用するものである特許請求
の範囲第1項記載の弁機構。
2. The valve mechanism according to claim 1, wherein the urging force of the spring acts in a direction in which the spool valve closes the refrigerant passage.
JP62180784A 1987-07-20 1987-07-20 Valve mechanism for superheat control of suction refrigerant Expired - Lifetime JPH0721371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62180784A JPH0721371B2 (en) 1987-07-20 1987-07-20 Valve mechanism for superheat control of suction refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62180784A JPH0721371B2 (en) 1987-07-20 1987-07-20 Valve mechanism for superheat control of suction refrigerant

Publications (2)

Publication Number Publication Date
JPS6428460A JPS6428460A (en) 1989-01-31
JPH0721371B2 true JPH0721371B2 (en) 1995-03-08

Family

ID=16089267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62180784A Expired - Lifetime JPH0721371B2 (en) 1987-07-20 1987-07-20 Valve mechanism for superheat control of suction refrigerant

Country Status (1)

Country Link
JP (1) JPH0721371B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173437A (en) * 1991-08-01 1992-12-22 Chartered Semiconductor Manufacturing Pte Ltd Double polysilicon capacitor formation compatable with submicron processing

Also Published As

Publication number Publication date
JPS6428460A (en) 1989-01-31

Similar Documents

Publication Publication Date Title
EP1832822B1 (en) Expansion valve
US6430950B1 (en) Expansion element and a valve unit usable therefor
US3899897A (en) By-pass suction throttling valve in a refrigeration system
US7819333B2 (en) Air conditioning circuit control using a thermostatic expansion valve and sequence valve
EP1519128A2 (en) Refrigeration cycle
EP1380801B1 (en) Expansion valve
US6209793B1 (en) Thermostatic expansion valve in which a valve seat is movable in a flow direction of a refrigerant
JP2516986B2 (en) Vehicle air conditioning refrigeration circuit
JPH0721371B2 (en) Valve mechanism for superheat control of suction refrigerant
JPH0721370B2 (en) Valve mechanism for superheat control of suction refrigerant
JPH0721369B2 (en) Valve mechanism for superheat control of suction refrigerant
JP2567443B2 (en) Flow control mechanism and flow control valve
JPH0721373B2 (en) Valve mechanism for superheat control of suction refrigerant
JPH0587746B2 (en)
JPH0721372B2 (en) Valve mechanism for superheat control of suction refrigerant
JP5369259B2 (en) Expansion valve
US5931377A (en) Air conditioning system for a vehicle incorporating therein a block type expansion valve
US3064447A (en) Control for refrigerating apparatus
KR960002567B1 (en) Refrigeration circuit
JPH05196324A (en) Expansion valve for refrigerating cycle
US20040184925A1 (en) Control valve system
JP5519199B2 (en) Variable capacity swash plate compressor and air conditioning system using the same
JP3858393B2 (en) Expansion valve with differential pressure valve
JP2738082B2 (en) Refrigeration expansion valve
JP3963672B2 (en) Expansion valve