JPH0721373B2 - Valve mechanism for superheat control of suction refrigerant - Google Patents

Valve mechanism for superheat control of suction refrigerant

Info

Publication number
JPH0721373B2
JPH0721373B2 JP62180786A JP18078687A JPH0721373B2 JP H0721373 B2 JPH0721373 B2 JP H0721373B2 JP 62180786 A JP62180786 A JP 62180786A JP 18078687 A JP18078687 A JP 18078687A JP H0721373 B2 JPH0721373 B2 JP H0721373B2
Authority
JP
Japan
Prior art keywords
valve
pressure
pressure chamber
pipe line
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62180786A
Other languages
Japanese (ja)
Other versions
JPS6428462A (en
Inventor
久雄 小林
克則 河合
正行 谷川
弘幸 出口
Original Assignee
株式会社豊田自動織機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機製作所 filed Critical 株式会社豊田自動織機製作所
Priority to JP62180786A priority Critical patent/JPH0721373B2/en
Publication of JPS6428462A publication Critical patent/JPS6428462A/en
Publication of JPH0721373B2 publication Critical patent/JPH0721373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷凍回路中とくに圧縮機近傍の吸入管路に配
設された弁機構に係り、詳しくは吸入冷媒の過熱度を適
正に制御する弁機構の改良に関する。
Description: TECHNICAL FIELD The present invention relates to a valve mechanism arranged in a suction circuit in a refrigeration circuit, particularly in the vicinity of a compressor, and more specifically, to appropriately control the degree of superheat of suction refrigerant. To improve the valve mechanism.

[従来の技術] 車両空調用に供されている冷凍回路では、温度式自動膨
張弁によって蒸発器出口の冷媒の過熱度を一定に制御
し、一方、圧縮機近傍の吸入管路に配設された絞り弁に
よって蒸発器出口の冷媒圧力を一定に制御するようにし
た管理方式が知られている。ところが車室内に配置され
る蒸発器とは異なり、該絞り弁及び圧縮機は最も熱影響
を受け易いエンジンルーム内に配置されており、とくに
FFタイプの車両ではレイアウト上エンジンのさらに前方
に位置する圧縮機まで吸入管路の延設が必要となるた
め、上記熱影響の増幅に加えて冷媒の流量変動をも生起
し易いという車両構造的な宿命がある。従って上記絞り
弁による蒸発器出口の冷媒圧力の管理がとかく不安定と
なり、結果的に冷房の過不足や圧縮機の潤滑不良、吐出
温度の異常上昇といった数々の不具合を生じる。
[Prior Art] In a refrigeration circuit used for vehicle air-conditioning, the temperature type automatic expansion valve controls the superheat degree of the refrigerant at the outlet of the evaporator to a constant level, and on the other hand, it is arranged in a suction pipe line near the compressor. A management method is known in which the pressure of the refrigerant at the outlet of the evaporator is controlled to be constant by a throttle valve. However, unlike the evaporator arranged in the vehicle compartment, the throttle valve and the compressor are arranged in the engine room, which is most susceptible to heat, and
In the FF type vehicle, since it is necessary to extend the suction pipe line to the compressor located further forward of the engine in the layout, in addition to the amplification of the above heat effect, it is easy to cause fluctuations in the flow rate of the refrigerant. There is a fate. Therefore, the management of the refrigerant pressure at the outlet of the evaporator by the throttle valve becomes unstable at all, and as a result, various problems such as excess or deficiency of cooling, poor lubrication of the compressor, and abnormal rise of discharge temperature occur.

本発明者等はかかる問題に着目し、上記膨張弁を冷房負
荷にかかわりなく蒸発圧力を常に一定に制御する定圧膨
張弁となし、上記絞り弁を改修した弁機構によって吸入
冷媒の過熱度を制御するという新たな解決手段を先に提
案した。
The inventors of the present invention focused on such a problem, the expansion valve is not a constant pressure expansion valve that always controls the evaporation pressure regardless of the cooling load, and the superheat degree of the suction refrigerant is controlled by a valve mechanism that is a modification of the throttle valve. I proposed a new solution first.

第3図はその具体的構成を示すものであって、図中10は
例えばエンジンによって駆動される圧縮機で、該圧縮機
10の吐出管路12から延設される冷媒循環路には凝縮器1
4、受液器16、膨張弁18及び蒸発器20が順次直列状に設
けられ、蒸発器20の出口から再び圧縮機10に至る循環路
は機能上吸入管路22として構成されている。そして圧縮
機10近傍の吸入管路22中には以下に述べる流量調節機能
をもつ弁機構80が配設されている。なお、上記膨張弁18
を均圧管18aにより蒸発器20出口の冷媒圧力を導引し、
調整可能なばね力との平衡によって弁開度が決定される
従来周知の定圧膨張弁である。
FIG. 3 shows a specific configuration thereof, and 10 in the figure is a compressor driven by an engine, for example.
A condenser 1 is installed in the refrigerant circulation line extending from the discharge line 12 of 10
4, the liquid receiver 16, the expansion valve 18, and the evaporator 20 are sequentially provided in series, and the circulation path from the outlet of the evaporator 20 to the compressor 10 is functionally configured as a suction pipe line 22. A valve mechanism 80 having a flow rate adjusting function described below is arranged in the suction pipe line 22 near the compressor 10. The expansion valve 18
Guide the refrigerant pressure at the outlet of the evaporator 20 by a pressure equalizing pipe 18a,
It is a conventionally known constant pressure expansion valve whose valve opening is determined by the balance with an adjustable spring force.

しかして該弁機構80の主体81内には入口側管路部分と対
向させて有底円孔状のボア82が穿設され、同ボア82内に
は冷媒流量調節用のスプール弁83がそのヘッド側を該入
口側管路に向けて嵌挿されている。ボア82の底部は該ス
プール弁83のボトム側に制御圧力を作用させる圧力室84
として構成され、同圧力室84はボア82の底壁とスプール
弁83のボトム側端面との間に介装されたベローズ85によ
ってさらに画定された密封空間を形成している。そして
上記入口側管路部分には循環冷媒とほぼ同種の冷媒を封
入した感温筒86が配設され、同封入冷媒の飽和圧力は密
閉管87を介して上記圧力室84に導通されている。なお、
88は吸入冷媒の過熱度を制御するばねであり、入口側管
路部分の冷媒圧力と協同してスプール弁83をボトム方向
に付勢し弁開度を縮小させるように作用する。
In the main body 81 of the valve mechanism 80, a bore 82 having a bottomed circular hole is bored so as to face the inlet side conduit portion, and a spool valve 83 for adjusting the refrigerant flow rate is provided in the bore 82. The head side is fitted into the inlet side conduit. The bottom of the bore 82 has a pressure chamber 84 for exerting a control pressure on the bottom side of the spool valve 83.
The pressure chamber 84 forms a sealed space further defined by a bellows 85 interposed between the bottom wall of the bore 82 and the bottom end surface of the spool valve 83. A temperature sensitive tube 86 in which a refrigerant of almost the same type as the circulating refrigerant is sealed is arranged in the inlet side pipe line portion, and the saturated pressure of the sealed refrigerant is conducted to the pressure chamber 84 via a sealed tube 87. . In addition,
Reference numeral 88 is a spring that controls the degree of superheat of the suction refrigerant, and acts in cooperation with the refrigerant pressure in the inlet side pipe line to urge the spool valve 83 in the bottom direction to reduce the valve opening.

従ってスプール弁83の弁開度は圧力室84内圧力(入口側
管路部分温度に対応する感温筒内封入冷媒の飽和圧力)
と、入口側管路部分の冷媒圧力にばね88の付勢力を加え
た合力との平衡状態によって決定される。つまり入口側
管路部分の吸入冷媒は同温の飽和圧力よりばね88の付勢
力相当分低い圧力に制限され、その結果、吸入冷媒の過
熱度がほぼ一定に制御されるものである。
Therefore, the valve opening of the spool valve 83 is the pressure in the pressure chamber 84 (saturation pressure of the refrigerant filled in the temperature-sensitive cylinder corresponding to the temperature of the inlet side conduit).
And the resultant pressure obtained by adding the biasing force of the spring 88 to the refrigerant pressure in the inlet side conduit portion. In other words, the suction refrigerant in the inlet side pipe portion is limited to a pressure lower than the saturation pressure of the same temperature by an amount corresponding to the biasing force of the spring 88, and as a result, the superheat degree of the suction refrigerant is controlled to be substantially constant.

[発明が解決しようとする問題点] ところが上述の構成では感温筒内封入冷媒の飽和圧力及
び同圧力に対抗して過熱度を制御するばねの付勢力が、
共にスプール弁の開閉動作に直接関与するものであり、
しかも該ばねの付勢力は実質的にスプール弁の動作位置
によって異なるものであるから、該スプール弁の開弁動
作が進むほどばねの付勢力(抵抗)が大きくなって過熱
度は高めに制御され、逆に同閉弁動作ではばねの付勢力
が順次小さくなって過熱度は低めに制御される。換言す
れば高冷房負荷時には絞り過ぎによる冷え不足、低冷房
負荷時には絞り不足による過冷房現象を伴って冷房フィ
ーリングを悪化させる嫌いがある。
[Problems to be Solved by the Invention] However, in the above-mentioned configuration, the biasing force of the spring for controlling the degree of superheat against the saturation pressure of the refrigerant filled in the temperature-sensitive cylinder and the pressure is
Both are directly involved in the opening / closing operation of the spool valve,
Moreover, since the biasing force of the spring substantially differs depending on the operating position of the spool valve, the biasing force (resistance) of the spring increases as the opening operation of the spool valve progresses, and the superheat degree is controlled to be higher. On the contrary, in the valve closing operation, the biasing force of the spring is gradually reduced and the superheat degree is controlled to be low. In other words, there is a dislike that the cooling feeling is deteriorated due to insufficient cooling due to excessive throttling at high cooling load, and overcooling phenomenon due to insufficient throttling at low cooling load.

また、上記スプール弁の有効ストロークを確保するのに
伴って圧力室の容積変化も必然的に大きくなるため、こ
の変化を吸収するには感温筒に封入される冷媒にも相応
の増量が求められることとなり、結果的に感温筒の大型
化や応答性の劣化を招くことになる。
Also, as the effective stroke of the spool valve is ensured, the volume change of the pressure chamber will inevitably increase.Therefore, in order to absorb this change, the refrigerant enclosed in the temperature sensing cylinder must also have a corresponding increase in volume. As a result, the temperature sensing cylinder becomes large and the responsiveness deteriorates.

本発明は、吸入冷媒の過熱度を制御する簡潔な弁機構の
採用により、冷房フィーリングの安定化とともに過熱度
制御精度の向上を図ることを解決すべき技術課題とする
ものである。
An object of the present invention is to solve the technical problems to be solved by stabilizing the cooling feeling and improving the superheat degree control accuracy by adopting a simple valve mechanism for controlling the superheat degree of the suction refrigerant.

[問題点を解決するための手段] 本発明になる弁機構は上記課題解決のため、主体内にス
プール弁を内装したボアを有し、該ボアはスプール弁を
挟んで実質的に該スプールの動作空域を形成する前圧室
と、制御圧力を付加するための背圧室とに区分され、該
前圧室にはスプール弁を該背圧室に向けて付勢するばね
を介装し、該前圧室の軸心方向及びこれとほぼ直交する
方向に弁機構の下流吸入管路及び上流吸入管路をそれぞ
れ連通開口させるとともに、上記弁機構の近傍に配設し
た感温筒内飽和圧力と上流吸入管路圧力との差圧によっ
て作動し、該上流吸入管路と下流吸入管路とを選択的に
上記背圧室に連通する切換弁を設けた新規な構成を採用
している。
[Means for Solving the Problems] In order to solve the above problems, the valve mechanism according to the present invention has a bore in which a spool valve is internally provided in the main body, and the bore substantially sandwiches the spool valve. It is divided into a front pressure chamber forming an operation air space and a back pressure chamber for applying control pressure, and a spring for biasing a spool valve toward the back pressure chamber is interposed in the front pressure chamber, The downstream suction pipe line and the upstream suction pipe line of the valve mechanism are opened to communicate with each other in the axial direction of the front pressure chamber and in a direction substantially orthogonal to the axial center direction, and the saturation pressure in the temperature-sensitive cylinder is provided near the valve mechanism. And a pressure difference between the upstream suction pipeline and the upstream suction pipeline, and a novel configuration is provided in which a switching valve is provided to selectively connect the upstream suction pipeline and the downstream suction pipeline to the back pressure chamber.

上記弁機構は、とくに定圧膨張弁を含んで閉回路に形成
された車両空調用冷凍回路中、圧縮機近傍の吸入管路、
好ましくは圧縮機の吸入部に付属させた形態で配設され
る。上記感温筒は吸入冷媒温度をより忠実に感知するよ
う弁機構の上流又は下流管路に近接して配置されるが、
例えば圧縮機の吐出部若しくは吐出管路温度を直接又は
コイル等で導引して吸入冷媒温度を高めに感知し、結果
的に吸入冷媒の過熱度を幾分低めに制御することもでき
る。
The valve mechanism is a suction line near the compressor in a vehicle air conditioning refrigeration circuit formed in a closed circuit including a constant pressure expansion valve,
Preferably, it is arranged in a form attached to the suction part of the compressor. The temperature sensing tube is arranged close to the upstream or downstream pipeline of the valve mechanism so as to more accurately sense the suction refrigerant temperature.
For example, it is also possible to guide the temperature of the discharge portion or the discharge pipe line of the compressor directly or by using a coil or the like to sense the intake refrigerant temperature to be higher, and consequently control the superheat degree of the intake refrigerant to be somewhat lower.

[作用] 本発明弁機構を有する冷凍回路においては、定圧膨張弁
により蒸発器内の圧力が一定に保持されるとともに、上
記弁機構の流量調節により、蒸発器の全域において飽和
状態を維持することができるので、蒸発温度(冷房風温
度)も安定した状態が得られる。
[Operation] In the refrigeration circuit having the valve mechanism of the present invention, the pressure in the evaporator is kept constant by the constant pressure expansion valve, and the saturated state is maintained over the entire area of the evaporator by adjusting the flow rate of the valve mechanism. As a result, a stable evaporation temperature (cooling air temperature) can be obtained.

従って蒸発器出口における冷媒は飽和状態から僅かに湿
り状態となり、その湿り度は若干変動することにはなる
が、圧縮機へ到達するまでの間に外的要因が吸入管路を
通じて冷媒に影響する過熱度の変動分も含めて、実質的
に圧縮機に吸入される冷媒の過熱度は、これを検知した
該弁機構の流量調節によって制御されるので、吐出冷媒
及び圧縮機本体の過熱を確実に抑止することができる。
Therefore, the refrigerant at the outlet of the evaporator changes from a saturated state to a slightly wet state, and the degree of wetness will fluctuate slightly, but external factors affect the refrigerant through the suction pipeline until it reaches the compressor. The degree of superheat of the refrigerant that is substantially sucked into the compressor, including fluctuations in the degree of superheat, is controlled by the flow rate adjustment of the valve mechanism that detects this. Can be deterred.

とくに本発明弁機構では、感温筒内に封入された冷媒の
飽和圧力が切換弁に必要な微動を促す動作源としてのみ
作用し、流量制御のために比較的大きなストロークを要
するスプール弁の動作源としては圧力の異なる循環冷媒
が交互に作用するものであり、また、同制御圧力と呼応
してスプール弁を付勢するばねは過熱度感知用のばねと
は独立した形態で設けられているため、切換弁及びスプ
ール弁は共に正確かつ円滑に作動する。
In particular, in the valve mechanism of the present invention, the saturation pressure of the refrigerant enclosed in the temperature sensitive cylinder acts only as an operation source for promoting the fine movement required for the switching valve, and the operation of the spool valve requiring a relatively large stroke for flow rate control. Circulating refrigerants having different pressures act alternately as a source, and a spring for urging the spool valve in response to the control pressure is provided in a form independent of the superheat sensing spring. Therefore, both the switching valve and the spool valve operate accurately and smoothly.

なお、スプール弁が全開した高過熱度状態から徐々に過
熱度が低くなり、これが設定値を下回った時点で切換弁
が作動して背圧室には上流吸入管路圧力が付加される
が、このとき全開の状態故にスプール弁による絞り作用
はきわめて微小であり、普通には上流吸入管路圧力と下
流吸入管路圧力との間に生じる差圧は到底スプール弁の
作動力とはなりえない。しかし本発明構成では前圧室に
臨む上流吸入管路と下流吸入管路とがほぼ直交して配置
されているため、冷媒の変向に基づく動圧が下流吸入管
路に作用してばねの付勢力を越える差圧を生じさせるも
のである。
Note that the superheat gradually decreases from the high superheat state where the spool valve is fully opened, and when this falls below the set value, the switching valve operates and upstream suction pipe line pressure is added to the back pressure chamber, At this time, the throttle action by the spool valve is extremely small due to the fully opened state, and normally the differential pressure generated between the upstream suction pipe line pressure and the downstream suction pipe line pressure cannot be the operating force of the spool valve. . However, in the configuration of the present invention, since the upstream suction pipeline and the downstream suction pipeline facing the front pressure chamber are arranged substantially orthogonal to each other, the dynamic pressure based on the deflection of the refrigerant acts on the downstream suction pipeline to cause the spring. It produces a differential pressure that exceeds the biasing force.

[実施例] 以下、図に基づいて本発明の実施例を説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は冷凍回路の概略及び弁機構の実施例を示すもの
で、該弁機構30は吸入冷媒の過熱度が低いときの状態を
表わしている。
FIG. 1 shows an outline of a refrigeration circuit and an embodiment of a valve mechanism, and the valve mechanism 30 shows a state in which the degree of superheat of suction refrigerant is low.

同図において、10は例えばエンジンによって駆動される
圧縮機で、該圧縮機10の吐出管路12から延設される冷媒
循環路(閉回路)には凝縮器14、受液器16、膨張弁18及
び蒸発器20が順次直列状に設けられ、蒸発器20の出口か
ら再び圧縮機10に至る循環路は機能上吸入管路22として
構成されている。そして該吸入管路22中の圧縮機10近傍
には弁機構30が配設され、これにより吸入管路22は該弁
機構30の上流吸入管路22a及び下流吸入管路22bに区分さ
れる。なお、上記膨張弁18は均圧管18aにより蒸発器20
の出口の冷媒圧力を導引し、調節可能なばね力との平衡
によって弁開度が決定される定圧膨張弁である。
In the figure, 10 is a compressor driven by, for example, an engine, and a condenser 14, a receiver 16 and an expansion valve are provided in a refrigerant circulation path (closed circuit) extending from a discharge conduit 12 of the compressor 10. 18 and an evaporator 20 are sequentially provided in series, and a circulation path from the outlet of the evaporator 20 to the compressor 10 is functionally configured as a suction pipe path 22. A valve mechanism 30 is disposed in the suction pipe line 22 near the compressor 10, whereby the suction pipe line 22 is divided into an upstream suction pipe line 22a and a downstream suction pipe line 22b of the valve mechanism 30. In addition, the expansion valve 18 is provided with an equalizer 20 through an equalizer tube 18a.
Is a constant pressure expansion valve that guides the refrigerant pressure at the outlet of the valve and determines the valve opening degree by balancing with the adjustable spring force.

しかして弁機構30の主体31内には有底円孔状のボア32が
穿設され、同ボア32内には有底中空状に形成されて進退
自在に内装される流量調節用のスプール弁33を挟んで、
実質的には該スプール33の動作空域を形成する前圧室32
aと制御圧力を作用させる背圧室32bとに区分され、該前
圧室32aにはスプール弁33の内底壁に衡接して該スプー
ル弁33を背圧室22bに向けて付勢するばね34が介装され
ている。そして該前圧室32aの軸心方向には上記下流吸
入管路22b、同軸心とほぼ直交する方向には上記上流吸
入管路22aがそれぞれ連通開口せしめられ、上記スプー
ル弁33によって両管路22b、22aの連通開口量が制御され
る。
In the main body 31 of the valve mechanism 30, a bore 32 having a circular hole with a bottom is bored, and a hollow valve with a bottom is formed in the bore 32 so that the spool valve is internally and movably installed. Across 33,
The pre-pressure chamber 32 that substantially forms the operating space of the spool 33.
a and a back pressure chamber 32b for exerting a control pressure, and the front pressure chamber 32a is in contact with the inner bottom wall of the spool valve 33 and biases the spool valve 33 toward the back pressure chamber 22b. 34 are installed. Then, the downstream suction pipe line 22b is opened in the axial direction of the front pressure chamber 32a, and the upstream suction pipe line 22a is opened in the direction substantially orthogonal to the coaxial center, and both pipe lines 22b are opened by the spool valve 33. , 22a is controlled.

40は吸入冷媒の過熱度を感知してスプール弁33を動作さ
せる切換弁で、該切換弁40の筐体41内には上流吸入管路
22aと導圧路42を介して連通する吸入圧力室43が設けら
れ、該吸入圧力室43の内壁には隔板44によって端部の封
止されたベローズ45の基部が取付けられており、これに
より該吸入圧力室43はベローズ45によって隔離された換
圧室46と対峙せしめられている。47は上記主体31の上流
吸入管路22a部分に配設された感温筒で、該感温筒47内
には循環冷媒と同種若しくは飽和圧力の幾分高い冷媒が
封入され、同封入冷媒の飽和圧力は密閉管48を介した閉
回路によって上記換圧室46に導通されている。49は通口
50により吸入圧力室43と連通し、導圧路51を介して上記
背圧室32bとも連通する中間室で、該中間室49はさらに
該通口50と同心的に開設された通口52によって低圧室53
にも連接されている。そして該低圧室53は導圧路54を経
て下流吸入管路22bに連通されるとともに、同低圧室53
内にはばね55の付勢力によって該通口52を閉口するボー
ル弁56が介装されている。一方、上記隔板44に結合され
た槓杆57は通口50及び中間室49を通貫して通口52内へと
延出しベローズ45の伸長に伴って該槓杆57が進動した
際、その突端がボール弁56と干渉して通口52を開口する
ようになされている。また槓杆57の中間部には通口50を
開閉するテーパ弁部58が形成されており、槓杆57の進動
時ボール弁56の上記開口動作とは逆に通口50の弁座を閉
止するようになされている。59は吸入圧力室43内に介装
され隔板44と衝接してベローズ45を収縮させる向きに付
勢するばねであり、該ばね59の付勢力は実質的に制御さ
れる過熱度の値に匹敵するものであり、従って上記槓杆
57は隔板44を挟んで作用する内外二様の圧力が平衡する
向きに従動するよう構成されている。
Reference numeral 40 denotes a switching valve that operates the spool valve 33 by detecting the degree of superheat of the suction refrigerant.
A suction pressure chamber 43 communicating with 22a through a pressure guiding path 42 is provided, and a base portion of a bellows 45 whose end is sealed by a partition plate 44 is attached to an inner wall of the suction pressure chamber 43. Thus, the suction pressure chamber 43 is opposed to the exchange pressure chamber 46 separated by the bellows 45. Reference numeral 47 is a temperature-sensing cylinder disposed in the upstream suction pipe line 22a portion of the main body 31.In the temperature-sensing cylinder 47, a refrigerant of the same type as the circulating refrigerant or a slightly higher saturation pressure is enclosed, The saturation pressure is conducted to the pressure conversion chamber 46 by a closed circuit via a closed pipe 48. 49 is the entrance
An intermediate chamber communicating with the suction pressure chamber 43 by 50 and also communicating with the back pressure chamber 32b through the pressure guiding path 51, and the intermediate chamber 49 is further provided with a through hole 52 concentric with the through hole 50. Low pressure chamber 53
Is also connected to. The low pressure chamber 53 communicates with the downstream suction pipe line 22b through the pressure guiding passage 54, and the low pressure chamber 53
A ball valve 56 that closes the passage 52 by the urging force of a spring 55 is provided inside. On the other hand, the sludge rod 57 connected to the partition plate 44 extends through the through hole 50 and the intermediate chamber 49 into the through hole 52, and when the sludge rod 57 moves as the bellows 45 expands, The projecting end interferes with the ball valve 56 to open the through hole 52. Further, a taper valve portion 58 for opening and closing the through hole 50 is formed in the middle portion of the sludge rod 57, and the valve seat of the through hole 50 is closed contrary to the opening operation of the ball valve 56 at the time of advancement of the sludge rod 57. It is done like this. Reference numeral 59 denotes a spring which is interposed in the suction pressure chamber 43 and urges the bellows 45 in a direction in which the bellows 45 contracts by colliding with the partition plate 44, and the urging force of the spring 59 is substantially controlled to a superheat value. It is comparable and therefore the above-mentioned hammer
57 is configured to follow the direction in which the pressures of the inside and outside acting on both sides of the partition plate 44 are balanced.

上述した本発明弁機構を含む冷凍回路においては、膨張
弁18によって蒸発器20内の圧力は一定に制御され、しか
も設定圧力は蒸発器20の全域に亘って常に飽和状態が確
保されるように調節されるので、蒸発器20出口の過熱度
はむしろ低目方向で若干変動することになるが、冒頭述
べたように蒸発器20から圧縮機10に至る吸入管路22の長
さと環境温度により循環冷媒はさらに不確定な管内抵抗
や熱膨張を受ける。そしてこれら環境因子の影響を受け
たのちの冷媒の過熱度は本弁機構30によって正確に検出
され、当該検出値に基づいて作動する弁機構30の流量調
節により吸入冷媒の過熱度は一定値に制御されるもので
ある。
In the refrigeration circuit including the valve mechanism of the present invention described above, the pressure inside the evaporator 20 is controlled to be constant by the expansion valve 18, and the set pressure is always maintained in a saturated state over the entire area of the evaporator 20. Since it is adjusted, the superheat degree at the outlet of the evaporator 20 will rather fluctuate slightly in the lower direction, but as mentioned at the beginning, it depends on the length of the suction pipe line 22 from the evaporator 20 to the compressor 10 and the ambient temperature. The circulating refrigerant is further subjected to uncertain pipe resistance and thermal expansion. Then, the superheat degree of the refrigerant after being affected by these environmental factors is accurately detected by the valve mechanism 30, and the superheat degree of the suction refrigerant becomes a constant value by adjusting the flow rate of the valve mechanism 30 that operates based on the detected value. It is controlled.

いま、図の状態から吸入冷媒の過熱度が高くなり、感温
筒47内飽和圧力つまり換圧室46内圧力と上流吸入管路圧
力つまり吸入圧力室43内圧力との差圧が大きくなって、
これが設定されたばね58の付勢力を越えると、ベローズ
45の伸長に伴って槓杆57が進動(図示左動)し、該槓杆
57の先端がボール弁56と干渉することによって通口52は
開口され、逆にテーパ弁部58のによって通口50の弁座は
閉止される。これにより吸入圧力室43から通口50及び中
間室49を介して背圧室32bに供給されていた上流吸入管
路圧力は減少し、代って導圧路54から低圧室53、開口さ
れた通口52及び中間室49を経て供給される下流吸入管路
圧力が増加するので、背圧室32b内の圧力は順次下流吸
入管路圧力に近接する。従って両側に共に下流吸入管路
圧力が作用することとなったスプール弁33はばね34の付
勢力によって冷媒流路を開放する向きに後退し、循環冷
媒量の増大すなわち吸入冷媒の過熱度を低下させるべく
機能する。
From the state shown in the figure, the degree of superheat of the suctioned refrigerant increases, and the differential pressure between the saturation pressure in the temperature sensing cylinder 47, that is, the pressure inside the pressure conversion chamber 46 and the upstream suction pipe line pressure, that is, the pressure inside the suction pressure chamber 43, increases. ,
When this exceeds the set biasing force of spring 58, the bellows
With the extension of 45, the sludge 57 moves (moves to the left in the figure) to move the sludge.
When the tip of 57 interferes with the ball valve 56, the passage 52 is opened, and conversely, the taper valve portion 58 closes the valve seat of the passage 50. As a result, the upstream suction pipe line pressure supplied to the back pressure chamber 32b from the suction pressure chamber 43 via the through port 50 and the intermediate chamber 49 is reduced, and instead, the low pressure chamber 53 is opened from the pressure guiding passage 54. Since the downstream suction pipe line pressure supplied through the passage 52 and the intermediate chamber 49 increases, the pressure in the back pressure chamber 32b sequentially approaches the downstream suction pipe line pressure. Therefore, the spool valve 33, on which the pressure of the downstream suction pipe acts on both sides, retreats in the direction of opening the refrigerant passage by the biasing force of the spring 34, increasing the amount of circulating refrigerant, that is, reducing the superheat degree of the suction refrigerant. It functions to make it.

また、吸入冷媒の過熱度が低くなり、上記換圧室46内圧
力と吸入圧力室43内圧力との差圧が小さくなると、ばね
59の付勢力によってベローズ45は収縮し、上述の作用と
は逆に槓杆57は退動(図示右動)してテーパ弁部58は通
口50の弁座を開放させ、同時に該槓杆57の先端はボール
弁56との干渉を解いて通口52を閉口させる。これによ
り、低圧室53から通口52及び中間室49を介して背圧室32
bに供給されていた下流吸入管路圧力は減少し、代って
吸入圧力室43から通口50及び中間室49を経た上流吸入管
路圧力が増加するので、背圧室32b内の圧力は順次上流
吸入管路圧力に近接する。従ってスプール弁33の両端に
はばね34の付勢力を上回る差圧を生じて該スプール弁33
が冷媒流路を閉止する向きに前進し、循環冷媒量の減少
すなわち吸入冷媒の過熱度を上昇させるべく機能する。
Further, when the degree of superheat of the suction refrigerant decreases and the differential pressure between the pressure inside the pressure conversion chamber 46 and the pressure inside the suction pressure chamber 43 decreases, the spring
The bellows 45 contracts by the urging force of 59, and conversely to the above-mentioned action, the lever 57 retracts (rightward in the drawing) and the taper valve portion 58 opens the valve seat of the through hole 50, and at the same time, the lever 57 moves. The tip releases the interference with the ball valve 56 and closes the passage 52. As a result, the back pressure chamber 32 passes from the low pressure chamber 53 through the passage 52 and the intermediate chamber 49.
The pressure in the back pressure chamber 32b is reduced because the pressure in the downstream suction pipe, which was supplied to b, decreases, and instead, the pressure in the upstream suction pipe from the suction pressure chamber 43 through the passage 50 and the intermediate chamber 49 increases. The pressure gradually approaches the upstream suction line pressure. Therefore, a pressure difference exceeding the biasing force of the spring 34 is generated at both ends of the spool valve 33, and the spool valve 33
Moves toward the direction of closing the refrigerant flow path, and functions to reduce the amount of circulating refrigerant, that is, increase the degree of superheat of the suction refrigerant.

なお、スプール弁33が全開した高過熱度の状態から、過
熱度低下を検出した切換弁の作動によって背圧室32bに
上流吸入管路圧力が付加された際、スプール弁33の両端
に働く上流吸入管路圧力及び下流吸入管路圧力はきわめ
て近似した値であり、実質的にスプール弁を閉方向に摺
動させるに足る作動力とはなりえないが、上流吸入管路
22aから流入した冷媒が前圧室32aを経て下流吸入管路22
bへとほぼ直角に変向して流れる際、 動圧F=ρ・Q・v2/2 (ρ…密度、Q…流量、v…流速) がスプール弁33を閉止する方向に作用するので、これが
ばね34の付勢力に打勝ってスプール弁33を作動させる。
そして一担スプール弁33が発動して冷媒流量が絞られれ
ば、さらに差圧が大となってスプール弁33の作動を助勢
するものである。
From the state of high superheat when the spool valve 33 is fully opened, when upstream suction pipe line pressure is applied to the back pressure chamber 32b by the operation of the switching valve that detects a decrease in superheat, the upstream acting on both ends of the spool valve 33. The suction line pressure and the downstream suction line pressure are very close to each other and cannot be an operating force enough to slide the spool valve in the closing direction.
The refrigerant that has flowed in from 22a passes through the front pressure chamber 32a and reaches the downstream suction pipe line 22.
When flowing deflected substantially at right angles to b, a dynamic pressure F = ρ · Q · v 2 /2 (ρ ... density, Q ... flow, v ... velocity) so acts in a direction to close the spool valve 33 This overcomes the biasing force of the spring 34 and operates the spool valve 33.
When the spool valve 33 is actuated and the flow rate of the refrigerant is reduced, the differential pressure is further increased to assist the operation of the spool valve 33.

[発明の効果] 本発明になる吸入冷媒の過熱度制御用弁機構は、上述の
ような特有の構成を具備するものであるから、次に記載
する優れた効果を奏することができる。
[Effects of the Invention] Since the intake refrigerant superheat degree control valve mechanism of the present invention has the above-described unique structure, the following excellent effects can be obtained.

(1)蒸発器内全域を飽和状態で使用できるので、蒸発
器の温度安定化すなわち常に良好な冷房フィーリングが
得られる。
(1) Since the entire area of the evaporator can be used in a saturated state, the temperature of the evaporator can be stabilized, that is, a good cooling feeling can always be obtained.

(2)圧縮機に吸入される冷媒の異常過熱に基づいて発
生する潤滑不良や焼付きを抑え、加えて比体積の増大に
よる冷凍能力の低下を確実に防止できる。
(2) Poor lubrication and seizure that occur due to abnormal overheating of the refrigerant sucked into the compressor can be suppressed, and in addition, reduction in refrigerating capacity due to an increase in specific volume can be reliably prevented.

(3)感温筒内に封入される冷媒の飽和圧力は切換弁に
必要な微動を促す動作源としてのみ作用するので、感温
筒の小型化、応答性の向上とともに構造選択の自由度を
高めることができる。
(3) Since the saturation pressure of the refrigerant filled in the temperature sensing cylinder acts only as an operation source that promotes the fine movement required for the switching valve, the temperature sensing cylinder is downsized, the responsiveness is improved, and the freedom of structure selection is increased. Can be increased.

(4)過熱度感知のために切換弁内に導引される上流吸
入管路圧力を同時にスプール弁動作用の制御圧力として
も利用するので、切換弁の構造が格段と簡素化される。
(4) Since the upstream suction pipe line pressure introduced into the switching valve for sensing the degree of superheat is also used as the control pressure for spool valve operation, the structure of the switching valve is greatly simplified.

(5)スプール弁動作用の制御圧力として圧縮機の吐出
圧力を使用せず、とくに吸入冷媒の動圧を利用して該ス
プール弁を確実に作動させるので、吐出圧力が吸入側に
リークして冷凍能力の低下や吸入温度の上昇といった不
具合を生じることがなく、しかも該動圧は圧縮機の起動
時、開放位置にあるスプール弁を閉止方向に導引して冷
媒流量を制限し、起動ショックの低減とともに液圧縮の
防止にも貢献する。
(5) Since the discharge pressure of the compressor is not used as the control pressure for spool valve operation, and the spool valve is operated reliably by utilizing the dynamic pressure of the suction refrigerant, the discharge pressure leaks to the suction side. There are no problems such as a decrease in refrigeration capacity and an increase in suction temperature, and the dynamic pressure limits the refrigerant flow rate by guiding the spool valve in the open position in the closing direction when the compressor is started, thus limiting the start shock. It also contributes to the prevention of liquid compression.

【図面の簡単な説明】[Brief description of drawings]

第1図は冷凍回路中に配設された本発明の実施例を示す
断面図、第2図は冷凍回路中に配設された従来の弁機構
を示す断面図である。 10…圧縮機、12…吐出管路 18…定圧膨張弁、20…蒸発器 22…吸入管路 22a…上流吸入管路 22b…下流吸入管路 30…弁機構、32a…前圧室 32b…背圧室、33…スプール弁 34…ばね、40…切換弁 42、51、54…導圧路 43…吸入圧力室、45…ベローズ 46…換圧室、47…感温筒 49…中間室、53…低圧室 56…ボール弁、57…槓杆 58…テーパ弁部、59…ばね
FIG. 1 is a sectional view showing an embodiment of the present invention arranged in a refrigeration circuit, and FIG. 2 is a sectional view showing a conventional valve mechanism arranged in a refrigeration circuit. 10 ... Compressor, 12 ... Discharge line 18 ... Constant pressure expansion valve, 20 ... Evaporator 22 ... Suction line 22a ... Upstream suction line 22b ... Downstream suction line 30 ... Valve mechanism, 32a ... Front pressure chamber 32b ... Back Pressure chamber, 33 ... Spool valve 34 ... Spring, 40 ... Switching valve 42, 51, 54 ... Pressure guide passage 43 ... Suction pressure chamber, 45 ... Bellows 46 ... Pressure conversion chamber, 47 ... Temperature sensing cylinder 49 ... Intermediate chamber, 53 … Low pressure chamber 56… Ball valve, 57… Mopping rod 58… Taper valve, 59… Spring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 出口 弘幸 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (56)参考文献 特開 昭63−231139(JP,A) 特開 昭63−25466(JP,A) 実開 昭63−198971(JP,U) ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Hiroyuki Deguchi 2-chome Toyota-cho, Kariya city, Aichi Prefecture Toyota Industries Corporation (56) Reference JP-A-63-231139 (JP, A) JP Patent Sho 63-25466 (JP, A) Actually opened Sho 63-198971 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、受液器、定圧膨張弁及び
蒸発器を含んで閉回路をなす冷凍回路中、圧縮機近傍の
吸入管路に配設された弁機構であって、該弁機構は主体
内にスプール弁を内装したボアを有し、該ボアはスプー
ル弁を挟んで実質的に該スプール弁の動作空域を形成す
る前圧室と、制御圧力を付加するための背圧室とに区分
され、該前圧室にはスプール弁を該背圧室に向けて付勢
するばねを介装し、該前圧室の軸心方向及びこれとほぼ
直交する方向には弁機構の下流吸入管路及び上流吸入管
路をそれぞれ連通開口させるとともに、上記弁機構の近
傍に配設した感温筒内飽和圧力と上流吸入管路圧力との
差圧によって作動し、該上流吸入管路と下流吸入管路と
を選択的に上記背圧室に連通する切換弁を設けたことを
特徴とする吸入冷媒の過熱度制御用弁機構。
1. A valve mechanism arranged in a suction pipe line in the vicinity of a compressor in a refrigeration circuit forming a closed circuit including a compressor, a condenser, a liquid receiver, a constant pressure expansion valve and an evaporator, The valve mechanism has a bore in which a spool valve is installed in the main body, and the bore includes a front pressure chamber that substantially forms an operation space of the spool valve with the spool valve interposed therebetween, and a back for applying a control pressure. The front pressure chamber is provided with a spring for biasing the spool valve toward the back pressure chamber, and the valve is provided in the axial direction of the front pressure chamber and in a direction substantially orthogonal thereto. The downstream suction pipe line and the upstream suction pipe line of the mechanism are opened to communicate with each other, and the upstream suction pipe line is operated by the differential pressure between the temperature-sensing cylinder saturation pressure and the upstream suction pipe line pressure arranged near the valve mechanism. A suction valve, which is provided with a switching valve that selectively connects the pipeline and the downstream suction pipeline to the back pressure chamber. Of superheat control valve mechanism.
JP62180786A 1987-07-20 1987-07-20 Valve mechanism for superheat control of suction refrigerant Expired - Lifetime JPH0721373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62180786A JPH0721373B2 (en) 1987-07-20 1987-07-20 Valve mechanism for superheat control of suction refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62180786A JPH0721373B2 (en) 1987-07-20 1987-07-20 Valve mechanism for superheat control of suction refrigerant

Publications (2)

Publication Number Publication Date
JPS6428462A JPS6428462A (en) 1989-01-31
JPH0721373B2 true JPH0721373B2 (en) 1995-03-08

Family

ID=16089299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62180786A Expired - Lifetime JPH0721373B2 (en) 1987-07-20 1987-07-20 Valve mechanism for superheat control of suction refrigerant

Country Status (1)

Country Link
JP (1) JPH0721373B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7275621B2 (en) * 2019-02-11 2023-05-18 株式会社デンソー refrigeration cycle equipment

Also Published As

Publication number Publication date
JPS6428462A (en) 1989-01-31

Similar Documents

Publication Publication Date Title
US3899897A (en) By-pass suction throttling valve in a refrigeration system
US7819333B2 (en) Air conditioning circuit control using a thermostatic expansion valve and sequence valve
US5081847A (en) Variable flow orifice tube
EP1519128A2 (en) Refrigeration cycle
US4500035A (en) Expansion valve
US5044170A (en) Refrigeration system and a thermostatic expansion valve best suited for the same
US20040007015A1 (en) Expansion valve
US4890458A (en) Refrigerating circuit for car air conditioning
JPH0721373B2 (en) Valve mechanism for superheat control of suction refrigerant
JPH0721372B2 (en) Valve mechanism for superheat control of suction refrigerant
JP2567443B2 (en) Flow control mechanism and flow control valve
JPH0587746B2 (en)
JPH0721371B2 (en) Valve mechanism for superheat control of suction refrigerant
JPH0721370B2 (en) Valve mechanism for superheat control of suction refrigerant
JP5369259B2 (en) Expansion valve
JPH0721369B2 (en) Valve mechanism for superheat control of suction refrigerant
US3064447A (en) Control for refrigerating apparatus
JPH05196324A (en) Expansion valve for refrigerating cycle
US20040184925A1 (en) Control valve system
JP3858393B2 (en) Expansion valve with differential pressure valve
JP3963672B2 (en) Expansion valve
JPH06281296A (en) Expansion valve
JPH10176864A (en) Refrigeration cycle using variable capacity compressor
JP2554541Y2 (en) Expansion valve
JPS63150566A (en) Expansion valve