WO2005022053A1 - Compressor or air-conditioning system - Google Patents

Compressor or air-conditioning system Download PDF

Info

Publication number
WO2005022053A1
WO2005022053A1 PCT/DE2004/001883 DE2004001883W WO2005022053A1 WO 2005022053 A1 WO2005022053 A1 WO 2005022053A1 DE 2004001883 W DE2004001883 W DE 2004001883W WO 2005022053 A1 WO2005022053 A1 WO 2005022053A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
air conditioning
conditioning system
pressure
suction
Prior art date
Application number
PCT/DE2004/001883
Other languages
German (de)
French (fr)
Inventor
Willi Parsch
Tilo SCHÄFER
Original Assignee
Luk Fahrzeug-Hydraulik Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luk Fahrzeug-Hydraulik Gmbh & Co. Kg filed Critical Luk Fahrzeug-Hydraulik Gmbh & Co. Kg
Priority to DE112004002149T priority Critical patent/DE112004002149D2/en
Publication of WO2005022053A1 publication Critical patent/WO2005022053A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/225Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves with throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2521On-off valves controlled by pulse signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the invention relates to a compressor for air conditioning systems or an air conditioning system with a compressor, in particular for motor vehicles, preferably for supercritically operated refrigerant gases, such as CO 2 .
  • Such compressors or air conditioning systems are known. Power control in CO 2 systems is implemented via a variable displacement of the compressor.
  • power controls via a bypass and a liquid buffer in the condenser in conjunction with a compressor cycled via a switchable clutch are also known.
  • the displacement control for example, requires complex adjustment mechanisms.
  • the power control via a bypass is energetically disadvantageous.
  • no liquid buffer can be used, for example, in systems operated with the refrigerant CO 2 , since the refrigerant CO 2 cannot always be liquefied in the gas cooler (supercritical operation).
  • a compressor for air conditioning systems or an air conditioning system with a compressor, in particular for motor vehicles, the compressor or the air conditioning system having a suction gas throttle device in the suction pressure region and the compressor being a fixed stroke compressor.
  • the compressor or the air conditioning system can be used for supercritically operated refrigerant gases, such as CO 2 .
  • the suction gas throttle device is preferably used to regulate or limit the capacity of the fixed-stroke air conditioning compressor or the air conditioning system.
  • a compressor according to the invention or an air conditioning system according to the invention is characterized in that the suction gas throttle device has a fixed or adjustable one Throttle cross-section, wherein the adjustable throttle cross-section can be controlled externally, for example mechanically or electrically, or by other adjusting devices having the same effect.
  • a compressor or an air conditioning system in which or in which the suction gas throttle device has a pressure-sensitive component.
  • the suction gas throttle device has a pressure-sensitive component.
  • the outlet pressure PD or the pressure difference PD-P atmosphere or the suction pressure PS or the pressure difference PD-PS or a pressure difference at a throttle can act on the pressure-sensitive component.
  • a compressor or air conditioning system is also preferred, in which the suction gas throttle device has an actuating device that can be actuated by an external signal, such as, for. B. an electromagnet, possibly in addition to the pressure-sensitive component.
  • an external signal such as, for. B. an electromagnet
  • a compressor or air conditioning system is preferred, in which the external signal is generated by evaluating a pressure difference of a throttle element or the outlet pressure PD via a pressure sensor and / or the evaporator temperature or by changing the setpoint value, or by evaluating, for example, the suction pressure PS or the Pressure difference PD - P atmosphere or PD - PS.
  • a compressor or air conditioning system is also preferred, in which the external signal is generated by an electronic control device and the electrical current for an electromagnet may be.
  • a compressor according to the invention or an air conditioning system according to the invention are characterized in that the actuating device is infinitely adjustable or controllable. Furthermore, the evaporator temperature can be continuously or slidably adjustable or controllable, for example between 1 ° Celsius and 12 ° Celsius, by means of the adjusting device or control device. According to the invention, the mass flow can thereby be smoothly or continuously adapted to the power requirement of the air conditioning system or the compressor (sliding power control).
  • the compressor or the air conditioning system preferably has a suction gas throttle device which is controlled by an electronic control device by means of an internal NEN or external regulation, which z. B. pressures or temperatures used as input signal can be adjusted.
  • the compressor or the air conditioning system preferably has a suction gas throttle device which is arranged in a module with an evaporator and expansion valve or at the evaporator outlet or at the receiver outlet or in the suction line or in the inner heat exchanger suction area or on the suction connection (intake tract) of the compressor or in the compressor intake area (suction lamella area) can be.
  • a compressor or an air conditioning system in which the suction gas throttle device can be represented by a constriction in the suction channel cross section.
  • a compressor or air conditioning system is also preferred, in which the suction gas throttle device can be represented by reduced suction lamellae or a reduced inlet cross section to the working space of the cylinder block.
  • a compressor according to the invention or an air conditioning system according to the invention is characterized in that the pressure drop at the suction gas throttle device produces a density drop in the refrigerant, so that the mass flow can be reduced for a given volumetric delivery rate of the air conditioning compressor.
  • This has the advantage that the pressure peaks to be expected in CO 2 systems, for example, as a result of high unregulated mass flows on the pressure side, can be avoided.
  • the system according to the invention also has the advantage of being less expensive than displacement-controlled machines and of being more energy-efficient than bypass controls. It is also advantageous that all types of compressors customary today can be used with the invention.
  • Figure 1 shows an air conditioning system with possible throttling points.
  • Figure 2 shows part of an air conditioning compressor with a narrowed suction channel.
  • Figure 3 shows an air conditioning compressor with a narrowed inlet cross-section to the work area.
  • Figure 4 shows a suction throttle device with a pressure-sensitive component in a schematic representation.
  • FIG. 5 shows a suction gas throttle device with a pressure-sensitive component and an additional external setpoint.
  • Figure 6 shows a suction gas throttle device without a pressure-sensitive component, but with an external control.
  • FIG. 1 the circuit of an air conditioning system for the refrigerant CO 2 is shown.
  • An air conditioning compressor 10 compresses the refrigerant to a high pressure of, for example, 135 bar and pushes this refrigerant under high pressure into a line section 12, which leads to a gas cooler 14.
  • the highly compressed refrigerant is cooled by a corresponding cooling air flow, for example from 180 ° C to 45 ° C, with the cooling and pressure losses in the gas cooler causing the pressure from 135 bar upstream of the gas cooler to a pressure of, for example, 133 bar behind the gas cooler in line section 16.
  • the line section 16 leads the high-pressure coolant to an internal heat exchanger 18, in which the high-pressure gas is further cooled by the counterflow of the low-pressure gas in the region 20 of the internal heat exchanger.
  • the temperature of the refrigerant in the subsequent line section 22 drops to, for example, 30 ° C. at a pressure of approximately 130 bar.
  • the high-pressure refrigerant is then lowered to a low pressure of, for example, 35 bar, the refrigerant dropping to a temperature of approximately 1 to 2 ° C.
  • the cold refrigerant in the line section 26, which is now under low pressure, is passed through an evaporator 28, where it is reheated by an air stream to be cooled for the passenger compartment of the motor vehicle and thereby in the line section 30 with a temperature of approximately 3 ° C. and a pressure of for example 33 bar reaches a receiver 32.
  • the receiver is intended as an expansion tank for the corresponding coolant quantities.
  • the refrigerant is passed via line 34 into the low-pressure side 20 of the internal heat exchanger, where it is heated to about 30 ° C. by the heat exchange with the refrigerant on the high-pressure side and then with a pressure of, for example, 35 bar in the line area 36 to the suction area 40 of the Compressor 10 arrives.
  • the suction gas throttle device can be integrated in the low-pressure line, for example in area 1. This is a preferred installation location because the refrigerant cools even further through the suction gas throttling, for example below 0 ° C., possibly down to -10 ° C., and the inner heat exchanger 18 can be made smaller due to the higher density and the temperature difference.
  • the pressure can drop to 15 bar.
  • the suction gas throttle device can be arranged in the low pressure region 20 of the heat exchanger 18, that is to say in region 2. Another possibility is the arrangement of the suction gas throttle device in a module with evaporator and expansion valve or at the outlet 3 of the receiver 32.
  • FIG. 2 shows a compressor which is to be designed as a fixed stroke compressor and in which the cylinder head 52 can be seen in section.
  • the compressor has a housing 50 which is closed off by a cylinder head 52.
  • the housing has, not shown here, a compressor engine, which, for. B. is driven by a pulley 54 within a belt drive of an internal combustion engine. Separate spaces and thus pressure areas for the intake area 56 and for the exhaust area 58 are provided in the cylinder head itself.
  • the suction area 56 it is now advantageous to provide a constriction in the suction channel area 60 in order to implement the suction gas throttle device.
  • the suction gas throttle device in the region 60 can be both through a narrowed suction channel with a constant throttle cross section and through a narrowed suction channel with an adjustable throttle cross section.
  • section for example in the form of an electromagnetically controllable or electromotively controllable throttle cross section.
  • the throttle cross section can also be realized by a mechanical adjusting device which reacts, for example, to pressures or temperatures.
  • FIG. 3 shows another possibility for arranging a suction gas throttle device.
  • a cross section through a fixed-stroke air conditioning compressor shows a compressor housing 70, which is closed off by a cylinder head 72.
  • a cylinder block 74 is arranged in the housing 70 and has pistons 78 that can move back and forth within cylinder bores 76.
  • the pistons 78 are connected here, for example via connecting rods 80, to receiving ball sockets 82 of a swash plate 84.
  • the swashplate device 84 is rotated by means of a belt pulley 86 via a shaft 88 and thus generates the reciprocating movement of the pistons 78.
  • suction openings 98 are provided in a valve plate 102, which can be opened and closed by suction lamella valves 100.
  • suction gas throttle devices 104 for example in the form of narrowed cross sections, which can be designed both as fixed suction throttles and as adjustable suction throttles.
  • a suction gas throttle device with a pressure-sensitive component is shown schematically in FIG.
  • a pressure-sensitive component 114 here in the form of a schematic piston, is arranged in an opening 112 in a compressor housing part 110.
  • the piston 114 is acted upon on the piston side 116 by the force of a schematically illustrated spring 118.
  • a further spring 122 is effective in the opposite direction.
  • an adjusting screw 124 is arranged in the opening 112, with which the prestressing force of the spring 122 can be adjusted.
  • the piston 114 protrudes with a part 126 from the opening 112 into a channel 128 which is subjected to the suction pressure PS, and the part 126 of the piston 114 blocks part of the passage cross section of the channel 128. This means that the channel 128 for the suction pressure PS through the valve piston 114 in the position shown here is narrowed.
  • the piston 114 On the other side of the piston 114 the
  • Piston guide opening 112 cut by a channel 130, which is acted upon as a channel for the expelled refrigerant with the outlet pressure PD of the compressor.
  • the outlet pressure PD on the piston surface 116 and the suction pressure PS on the piston surface 120 act on the piston 114, that is to say on the pressure-sensitive component.
  • the higher pressure PD in the outlet duct 130 acts against the lower suction pressure PS in the duct 128 and against the biasing force of the spring 122 when the force of the spring 118 can be assumed to be negligible. This is particularly the case when this spring is actually only used for the basic positioning of the piston 114 in the depressurized state against the actual adjusting spring 122.
  • the prestressing force of the spring 122 can then be used by means of the adjusting device 124 to determine at which pressure difference between the outlet pressure PD and the suction pressure PS the intake duct 128 is to be closed. Depending on the pressure changes occurring in operation in the outlet area as well as in the suction area, the piston 114 will be able to assume various positions in a stepless manner.
  • FIG. 5 shows a throttle device with a comparable pressure-sensitive component 114, but the spring 122 and the adjusting screw 124 are replaced by an electromagnetic adjusting device 131.
  • the electromagnet 131 basically consists of a magnet armature 132 which is connected to the piston 114 via a push rod 138 and is brought into a desired basic position in the depressurized and possibly de-energized state by a spring 134 which acts against the spring 118.
  • the electromagnet also contains a coil 136 which, when excited, depending on the design of the magnet, can pull the armature 132 into the coil 136 or push it out.
  • the pressure-sensitive component 114 i.e.
  • the position of the throttling part 126 i.e. the throttle cross-section, can be set and changed remotely via the electromagnet.
  • the magnetic force acts on the adjusting element 114.
  • a further throttle device is shown in FIG. 6, but the outlet pressure PD does not act directly on the valve element.
  • the piston 140 of the throttle valve is accommodated here in a blind bore 142, which has no connection to the outlet pressure channel 130. Only the suction pressure in the channel 128 acts on the piston 140 of the throttle valve.
  • the piston 140 is connected to the electromagnet 131 via the push rod 138, and the other elements of the electromagnet 131 are identical to the description in FIG. 5.
  • the outlet pressure is detected via a pressure sensor and the pressure signal 146 into a pressure sensor Control device 148, in principle in the form of an electronic control.
  • a further input variable for the control device 148 can be the signal 150 of the evaporator temperature, for example, in order to implement a smooth evaporator temperature control accordingly.
  • further or different input signals from the air conditioning circuit are conceivable.
  • the control device 148 in turn generates an output signal 152, for example in the form of a magnetic current, with which the electromagnet 131 is actuated.
  • Both pulse width modulated currents and currents for a proportional valve insert, ie for the use of a proportional magnet, can be generated as the output signal of the climate control 148.
  • an evaporator temperature control system is clearly shown, which in this way can also be implemented in a simple manner with a fixed stroke compressor.
  • the controlled variable ie the outlet pressure PD, is processed externally. Only the magnetic force can act on the adjusting element 140 if the influence of the suction pressure is eliminated by redirection to both piston surfaces.
  • the intake cross section can be designed as a fixed or adjustable throttle. This causes a drop in pressure and thus a decrease in the density of the refrigerant.
  • the compressor sucks into the working cylinders during the suction phase. Due to the reduced density, the mass flow and the torque of the compressor are reduced in accordance with the state equation for a given volumetric flow rate (volume flow) reduces and leads to energy savings.
  • the compressor is also cooled considerably more, which has a positive effect on lubrication and wear reduction.
  • the invention avoids the pressure peaks that would otherwise be expected in CO 2 systems, which would occur as a result of high unregulated mass flows and due to the lack of a liquid buffer on the pressure side. All types of compressor that are common today can be used for the invention. The advantage according to the invention is also reflected in cheaper energy balances than in the bypass controls used today.
  • the invention can preferably be used in automotive air conditioning systems that are operated with CO 2 . In general, however, the invention is valuable for all refrigerant gases which are operated supercritically in an air conditioning system, ie with non-liquefied phases. Compared to displacement-controlled machines with adjustable swivel plates or swash plates, the invention with a fixed lifting machine and a suction gas throttle device is more cost-effective. The invention is therefore particularly advantageous for so-called low-cost air conditioning systems.

Abstract

The invention relates to a compressor (10) for use in an air-conditioning system or to an air-conditioning system comprising such a compressor (10), especially for motor vehicles. The invention is characterized in that the compressor or the air-conditioning system, in the suction pressure area (1, 2, 3, 4, 5, 6), comprises a suction gas throttle and the compressor (10) is a fixed displacement compressor.

Description

Kompressor oder Klimaanlage Compressor or air conditioning
Die Erfindung betrifft einen Kompressor für Klimaanlagen oder eine Klimaanlage mit Kompressor, insbesondere für Kraftfahrzeuge, vorzugsweise für überkritisch betriebene Kältemittelgase, wie beispielsweise CO2.The invention relates to a compressor for air conditioning systems or an air conditioning system with a compressor, in particular for motor vehicles, preferably for supercritically operated refrigerant gases, such as CO 2 .
Derartige Kompressoren oder Klimaanlagen sind bekannt. Dabei wird eine Leistungsregelung bei CO2-Anlagen über einen variablen Hubraum des Kompressors realisiert. Bei Klimaanlagen mit unterkritisch betriebenen Kältemitteln sind außerdem Leistungsregelungen über einen Bypass und einen Flüssigkeitspuffer im Kondensator in Verbindung mit einem über eine schaltbare Kupplung gecycelten Kompressor bekannt.Such compressors or air conditioning systems are known. Power control in CO 2 systems is implemented via a variable displacement of the compressor. In air conditioning systems with subcritically operated refrigerants, power controls via a bypass and a liquid buffer in the condenser in conjunction with a compressor cycled via a switchable clutch are also known.
Diese Leistungsregelungen weisen aber bestimmte Nachteile auf. So erfordert die Hub- raumregelung aufwendige Verstellmechanismen. Die Leistungsregelung über einen Bypass ist energetisch von Nachteil. Außerdem kann beispielsweise bei mit dem Kältemittel CO2 betriebenen Anlagen kein Flüssigkeitspuffer ausgenutzt werden, da im Gaskühler das Kältemittel CO2 nicht immer verflüssigt werden kann (überkritischer Betrieb).However, these performance regulations have certain disadvantages. The displacement control, for example, requires complex adjustment mechanisms. The power control via a bypass is energetically disadvantageous. In addition, no liquid buffer can be used, for example, in systems operated with the refrigerant CO 2 , since the refrigerant CO 2 cannot always be liquefied in the gas cooler (supercritical operation).
Es ist daher Aufgabe der Erfindung, einen Kompressor oder eine Klimaanlage darzustellen, der oder die diese Nachteile nicht aufweist.It is therefore an object of the invention to present a compressor or an air conditioning system which does not have these disadvantages.
Die Aufgabe wird gelöst durch einen Kompressor für Klimaanlagen oder eine Klimaanlage mit Kompressor, insbesondere für Kraftfahrzeuge, wobei der Kompressor oder die Klimaanlage im Saugdruckbereich eine Sauggasdrosseleinrichtung aufweist und der Kompressor ein Fixhub-Kompressor ist. Erfindungsgemäß kann der Kompressor oder die Klimaanlage für überkritisch betriebene Kältemittelgase, wie beispielsweise CO2, verwendet werden. Vorzugsweise wird die Sauggasdrosseleinrichtung zur Leistungsregelung oder Leistungsbegrenzung des Fixhub-Klimakompressors oder der Klimaanlage verwendet.The object is achieved by a compressor for air conditioning systems or an air conditioning system with a compressor, in particular for motor vehicles, the compressor or the air conditioning system having a suction gas throttle device in the suction pressure region and the compressor being a fixed stroke compressor. According to the invention, the compressor or the air conditioning system can be used for supercritically operated refrigerant gases, such as CO 2 . The suction gas throttle device is preferably used to regulate or limit the capacity of the fixed-stroke air conditioning compressor or the air conditioning system.
Ein erfindungsgemäßer Kompressor oder eine erfindungsgemäße Klimaanlage zeichnet sich dadurch aus, dass die Sauggasdrosseleinrichtung einen festen oder verstellbaren Drosselquerschnitt aufweist, wobei der verstellbare Drosselquerschnitt extern gesteuert, beispielsweise mechanisch oder elektrisch, oder durch andere gleichwirkende Versteileinrichtungen verstellt werden kann.A compressor according to the invention or an air conditioning system according to the invention is characterized in that the suction gas throttle device has a fixed or adjustable one Throttle cross-section, wherein the adjustable throttle cross-section can be controlled externally, for example mechanically or electrically, or by other adjusting devices having the same effect.
Bevorzugt wird weiterhin ein Kompressor oder eine Klimaanlage, bei welchem oder bei welcher die Sauggasdrosseleinrichtung ein drucksensitives Bauteil aufweist. Erfindungsgemäß kann auf das drucksensitive Bauteil beispielsweise der Auslassdruck PD oder die Druckdifferenz PD - P-Atmosphäre oder der Saugdruck PS oder die Druckdifferenz PD - PS oder eine Druckdifferenz an einer Drossel wirksam sein.Also preferred is a compressor or an air conditioning system in which or in which the suction gas throttle device has a pressure-sensitive component. According to the invention, for example the outlet pressure PD or the pressure difference PD-P atmosphere or the suction pressure PS or the pressure difference PD-PS or a pressure difference at a throttle can act on the pressure-sensitive component.
Auch wird ein Kompressor oder eine Klimaanlage bevorzugt, bei welchem oder welcher die Sauggasdrosseleinrichtung eine durch ein externes Signal betätigbare Stelleinrichtung aufweist, wie z. B. einen Elektromagneten, ggf. zusätzlich zum drucksensitiven Bauteil. Weiterhin wird ein Kompressor oder eine Klimaanlage bevorzugt, bei welchem oder welcher das externe Signal durch Auswerten einer Druckdifferenz eines Drosselorgans oder des Auslassdruckes PD über einen Drucksensor und/oder der Verdampfertemperatur oder durch eine Sollwertänderung generiert wird, oder durch Auswertung beispielsweise des Saugdruckes PS oder der Druckdifferenz PD - P-Atmosphäre oder PD - PS. Auch wird ein Kompressor oder eine Klimaanlage bevorzugt, bei welchem o- der welcher das externe Signal durch eine elektronische Regeleinrichtung erzeugt wird und ggf. der elektrische Strom für einen Elektromagneten sein kann.A compressor or air conditioning system is also preferred, in which the suction gas throttle device has an actuating device that can be actuated by an external signal, such as, for. B. an electromagnet, possibly in addition to the pressure-sensitive component. Furthermore, a compressor or air conditioning system is preferred, in which the external signal is generated by evaluating a pressure difference of a throttle element or the outlet pressure PD via a pressure sensor and / or the evaporator temperature or by changing the setpoint value, or by evaluating, for example, the suction pressure PS or the Pressure difference PD - P atmosphere or PD - PS. A compressor or air conditioning system is also preferred, in which the external signal is generated by an electronic control device and the electrical current for an electromagnet may be.
Ein erfindungsgemäßer Kompressor oder eine erfindungsgemäße Klimaanlage zeichnen sich dadurch aus, dass die Stelleinrichtung stufenlos verstellbar oder regelbar ist. Wei- terhin kann durch die Stelleinrichtung oder Regeleinrichtung die Verdampfertemperatur stufenlos oder gleitend verstellbar oder regelbar sein, beispielsweise zwischen 1° Celsius und 12° Celsius. Erfindungsgemäß kann dadurch der Massenstrom gleitend oder stufenlos an die Leistungsanforderung der Klimaanlage oder des Kompressors angepasst werden (gleitende Leistungsregelung).A compressor according to the invention or an air conditioning system according to the invention are characterized in that the actuating device is infinitely adjustable or controllable. Furthermore, the evaporator temperature can be continuously or slidably adjustable or controllable, for example between 1 ° Celsius and 12 ° Celsius, by means of the adjusting device or control device. According to the invention, the mass flow can thereby be smoothly or continuously adapted to the power requirement of the air conditioning system or the compressor (sliding power control).
Vorzugsweise weist der Kompressor oder die Klimaanlage eine Sauggasdrosseleinrichtung auf, welche durch eine elektronische Regeleinrichtung mittels einer inter- nen oder externen Regelung, welche z. B. Drücke oder Temperaturen als Eingangssignal verwendet, verstellt werden kann.The compressor or the air conditioning system preferably has a suction gas throttle device which is controlled by an electronic control device by means of an internal NEN or external regulation, which z. B. pressures or temperatures used as input signal can be adjusted.
Vorzugsweise weist der Kompressor oder die Klimaanlage eine Sauggasdros- seleinrichtung auf, welche in einer Baugruppe mit Verdampfer und Expansionsventil oder am Verdampferaustritt oder am Receiverausgang oder in der Saugleitung oder im inneren Wärmetauschersaugbereich oder am Sauganschluss (Ansaugtrakt) des Kompressors oder im Kompressoransaugbereich (Sauglamellenbereich) angeordnet sein kann. Bevorzugt wird weiterhin ein Kompressor oder eine Klimaanlage, bei wel- chem/welcher die Sauggasdrosseleinrichtung durch eine Engstelle im Saugkanalquerschnitt darstellbar ist. Auch wird ein Kompressor oder eine Klimaanlage bevorzugt, bei welchem/welcher die Sauggasdrosseleinrichtung durch verkleinerte Sauglamellen oder einen verkleinerten Einlassquerschnitt zum Arbeitsraum des Zylinderblocks darstellbar ist.The compressor or the air conditioning system preferably has a suction gas throttle device which is arranged in a module with an evaporator and expansion valve or at the evaporator outlet or at the receiver outlet or in the suction line or in the inner heat exchanger suction area or on the suction connection (intake tract) of the compressor or in the compressor intake area (suction lamella area) can be. Also preferred is a compressor or an air conditioning system in which the suction gas throttle device can be represented by a constriction in the suction channel cross section. A compressor or air conditioning system is also preferred, in which the suction gas throttle device can be represented by reduced suction lamellae or a reduced inlet cross section to the working space of the cylinder block.
Ein erfindungsgemäßer Kompressor oder eine erfindungsgemäße Klimaanlage zeichnet sich dadurch aus, dass durch den Druckabfall an der Sauggasdrosseleinrichtung ein Dichteabfall des Kältemittels erzeugt wird, so dass bei vorgegebener volumetrischer Förderleistung des Klimakompressors der Massenstrom verringert werden kann. Das hat den Vorteil, dass die bei CO2-Anlagen beispielsweise zu erwartenden Druckspitzen in Folge hoher ungeregelter Massenströme auf der Druckseite vermieden werden können. Auch hat die erfindungsgemäße Anlage den Vorteil, kostengünstiger als hubraumgere- gelte Maschinen zu sein und energetisch günstiger als Bypassregelungen zu sein. Weiterhin ist vorteilhaft, dass alle heute üblichen Bauarten von Kompressoren mit der Erfin- düng verwendet werden können.A compressor according to the invention or an air conditioning system according to the invention is characterized in that the pressure drop at the suction gas throttle device produces a density drop in the refrigerant, so that the mass flow can be reduced for a given volumetric delivery rate of the air conditioning compressor. This has the advantage that the pressure peaks to be expected in CO 2 systems, for example, as a result of high unregulated mass flows on the pressure side, can be avoided. The system according to the invention also has the advantage of being less expensive than displacement-controlled machines and of being more energy-efficient than bypass controls. It is also advantageous that all types of compressors customary today can be used with the invention.
Die Erfindung wird nun anhand der Figuren beschrieben.The invention will now be described with reference to the figures.
Figur 1 zeigt eine Klimaanlage mit möglichen Drosselstellen.Figure 1 shows an air conditioning system with possible throttling points.
Figur 2 zeigt einen Teil eines Klimakompressors mit verengtem Saugkanal. Figur3 zeigt einen Klimakompressor mit verengtem Einlassquerschnitt zum Arbeitsraum.Figure 2 shows part of an air conditioning compressor with a narrowed suction channel. Figure 3 shows an air conditioning compressor with a narrowed inlet cross-section to the work area.
Figur 4 zeigt eine Saugdrosseleinrichtung mit einem drucksensitiven Bauteil in schematischer Darstellung.Figure 4 shows a suction throttle device with a pressure-sensitive component in a schematic representation.
Figur 5 zeigt eine Sauggasdrosseleinrichtung mit drucksensitivem Bauteil und zusätzlicher externer Sollwertvorgabe.FIG. 5 shows a suction gas throttle device with a pressure-sensitive component and an additional external setpoint.
Figur 6 zeigt eine Sauggasdrosseleinrichtung ohne drucksensitives Bauteil, dafür mit einer externen Regelung.Figure 6 shows a suction gas throttle device without a pressure-sensitive component, but with an external control.
In Figur 1 ist der Kreislauf einer Klimaanlage für das Kältemittel CO2 dargestellt. Ein Klimakompressor 10 verdichtet das Kältemittel auf einen hohen Druck von beispielsweise 135 bar und stößt dieses Kältemittel unter hohem Druck in einen Leitungsabschnitt 12, welcher zu einem Gaskühler 14 führt. In dem Gaskühler 14 wird das hoch verdichtete Kältemittel durch einen entsprechenden Kühlluftstrom abgekühlt, beispielsweise von 180° C auf 45° C, wobei sich durch die Abkühlung und durch die Druckverluste im Gaskühler der Druck von 135 bar vor dem Gaskühler auf einen Druck von beispielsweise 133 bar hinter dem Gaskühler im Leitungsabschnitt 16 absenkt. Der Leitungsabschnitt 16 führt das unter Hochdruck stehenden Kühlmittel zu einem internen Wärmetauscher 18, bei welchem das unter Hochdruck stehende Gas durch den Gegenstrom des unter Niederdruck stehenden Gases im Bereich 20 des internen Wärmetauschers weiter abgekühlt wird. Dadurch sinkt im nachfolgenden Leitungsabschnitt 22 die Temperatur des Kältemittels auf beispielsweise 30° C herab bei einem Druck von etwa 130 bar. In einem Expansionsventil 24 wird dann das unter Hochdruck stehende Kältemittel auf einen niedrigen Druck von beispielsweise 35 bar abgesenkt, wobei das Kältemittel auf eine Temperatur von etwa 1 bis 2° C absinkt. Das nun unter Niederdruck stehende kalte Kältemittel im Leitungsabschnitt 26 wird durch einen Verdampfer 28 geführt, wo es durch einen ab- zukühlenden Luftstrom für den Fahrgastraum des Kraftfahrzeuges wieder erwärmt wird und dadurch im Leitungsabschnitt 30 mit einer Temperatur von etwa 3° C und einem Druck von beispielsweise 33 bar zu einem Receiver 32 gelangt. Der Receiver ist als Ausgleichsbehälter für die entsprechenden Kühlmittelmengen gedacht. Vom Receiver 32 wird über die Leitung 34 das Kältemittel in die Niederdruckseite 20 des internen Wärmetauschers geleitet, wo es durch den Wärmeaustausch mit dem Kältemittel der Hochdruckseite auf etwa 30° C erwärmt wird und dann mit einem Druck von beispielsweise 35 bar im Leitungsbereich 36 zu dem Ansaugbereich 40 des Kompressors 10 gelangt.In Figure 1, the circuit of an air conditioning system for the refrigerant CO 2 is shown. An air conditioning compressor 10 compresses the refrigerant to a high pressure of, for example, 135 bar and pushes this refrigerant under high pressure into a line section 12, which leads to a gas cooler 14. In the gas cooler 14, the highly compressed refrigerant is cooled by a corresponding cooling air flow, for example from 180 ° C to 45 ° C, with the cooling and pressure losses in the gas cooler causing the pressure from 135 bar upstream of the gas cooler to a pressure of, for example, 133 bar behind the gas cooler in line section 16. The line section 16 leads the high-pressure coolant to an internal heat exchanger 18, in which the high-pressure gas is further cooled by the counterflow of the low-pressure gas in the region 20 of the internal heat exchanger. As a result, the temperature of the refrigerant in the subsequent line section 22 drops to, for example, 30 ° C. at a pressure of approximately 130 bar. In an expansion valve 24, the high-pressure refrigerant is then lowered to a low pressure of, for example, 35 bar, the refrigerant dropping to a temperature of approximately 1 to 2 ° C. The cold refrigerant in the line section 26, which is now under low pressure, is passed through an evaporator 28, where it is reheated by an air stream to be cooled for the passenger compartment of the motor vehicle and thereby in the line section 30 with a temperature of approximately 3 ° C. and a pressure of for example 33 bar reaches a receiver 32. The receiver is intended as an expansion tank for the corresponding coolant quantities. From the receiver 32 the refrigerant is passed via line 34 into the low-pressure side 20 of the internal heat exchanger, where it is heated to about 30 ° C. by the heat exchange with the refrigerant on the high-pressure side and then with a pressure of, for example, 35 bar in the line area 36 to the suction area 40 of the Compressor 10 arrives.
Für die Anordnung einer Sauggasdrosseleinrichtung bieten sich vorzugsweise im Niederdruckbereich der Klimaanlage die folgenden Einbauorte an. Die Sauggasdrosseleinrichtung kann integriert in der Niederdruckleitung, beispielsweise im Bereich 1, angeordnet sein. Dies ist ein bevorzugter Einbauort, da durch die Sauggasdrosselung das Käl- temittel noch weiter abkühlt, beispielsweise unter 0° C, gegebenenfalls bis -10° C, und durch die höhere Dichte und den Temperaturunterschied der innere Wärmetauscher 18 kleiner ausgeführt werden kann. Der Druck kann dabei auf 15 bar abfallen. Weiterhin kann die Sauggasdrosseleinrichtung im Niederdruckbereich 20 des Wärmetauschers 18, also im Bereich 2 angeordnet werden. Eine andere Möglichkeit ist die Anordnung der Sauggasdrosseleinrichtung in eine Baugruppe mit Verdampfer und Expansionsventil o- der am Ausgang 3 des Receivers 32. Denkbar ist auch eine Anordnung der Sauggasdrosseleinrichtung im Bereich 4, d. h. in der Niederdrucksaugleitung 36 zwischen dem internen Wärmetauscher 18 und dem Ansaugbereich 40 des Kompressors 10. Weiterhin ist eine Anordnung der Sauggasdrosseleinrichtung im Ansaugbereich am Saugan- schluss 5 des Kompressors möglich. Ebenfalls möglich ist eine Anordnung der Sauggasdrosseleinrichtung innerhalb des Kompressors im Ansaugbereich 6.For the arrangement of a suction gas throttle device, the following installation locations are preferred in the low-pressure area of the air conditioning system. The suction gas throttle device can be integrated in the low-pressure line, for example in area 1. This is a preferred installation location because the refrigerant cools even further through the suction gas throttling, for example below 0 ° C., possibly down to -10 ° C., and the inner heat exchanger 18 can be made smaller due to the higher density and the temperature difference. The pressure can drop to 15 bar. Furthermore, the suction gas throttle device can be arranged in the low pressure region 20 of the heat exchanger 18, that is to say in region 2. Another possibility is the arrangement of the suction gas throttle device in a module with evaporator and expansion valve or at the outlet 3 of the receiver 32. An arrangement of the suction gas throttle device in the area 4, ie. H. in the low-pressure suction line 36 between the internal heat exchanger 18 and the suction area 40 of the compressor 10. Furthermore, an arrangement of the suction gas throttle device in the suction area at the suction connection 5 of the compressor is possible. An arrangement of the suction gas throttle device within the compressor in the suction area 6 is also possible.
In Figur 2 ist ein Kompressor dargestellt, der als Fixhub-Kompressor ausgeführt sein soll und bei dem der Zylinderkopf 52 im Schnitt zu erkennen ist. Der Kompressor weist ein Gehäuse 50 auf, welches durch einen Zylinderkopf 52 abgeschlossen wird. Das Gehäuse weist, hier nicht dargestellt, ein Verdichtertriebwerk auf, welches z. B. durch eine Riemenscheibe 54 innerhalb eines Riementriebs eines Verbrennungsmotors angetrieben wird. Im Zylinderkopf selbst sind abgetrennte Räume und damit Druckbereiche für den Ansaugbereich 56 und für den Ausstoßbereich 58 vorgesehen. Im Ansaugbereich 56 ist es nun vorteilhaft, eine Engstelle im Saugkanalbereich 60 anzubringen, um somit die Sauggasdrosseleinrichtung zu realisieren. Dabei kann die Sauggasdrosseleinrichtung im Bereich 60 sowohl durch einen verengten Saugkanal mit konstantem Drosselquerschnitt als auch durch einen verengten Saugkanal mit verstellbarem Drosselquer- schnitt, beispielsweise in Form eines elektromagnetisch regelbaren oder elektromotorisch regelbaren Drosselquerschnitts, dargestellt werden. Auch kann der Drosselquerschnitt durch eine mechanische Versteileinrichtung, welche beispielsweise auf Drücke oder Temperaturen reagiert, realisiert werden.FIG. 2 shows a compressor which is to be designed as a fixed stroke compressor and in which the cylinder head 52 can be seen in section. The compressor has a housing 50 which is closed off by a cylinder head 52. The housing has, not shown here, a compressor engine, which, for. B. is driven by a pulley 54 within a belt drive of an internal combustion engine. Separate spaces and thus pressure areas for the intake area 56 and for the exhaust area 58 are provided in the cylinder head itself. In the suction area 56, it is now advantageous to provide a constriction in the suction channel area 60 in order to implement the suction gas throttle device. In this case, the suction gas throttle device in the region 60 can be both through a narrowed suction channel with a constant throttle cross section and through a narrowed suction channel with an adjustable throttle cross section. section, for example in the form of an electromagnetically controllable or electromotively controllable throttle cross section. The throttle cross section can also be realized by a mechanical adjusting device which reacts, for example, to pressures or temperatures.
In Figur 3 ist eine weitere Möglichkeit zur Anordnung einer Sauggasdrosseleinrichtung dargestellt. Ein Querschnitt durch einen Fixhub-Klimakompressor zeigt ein Kompressorgehäuse 70, welches durch einen Zylinderkopf 72 abgeschlossen wird. Im Gehäuse 70 ist ein Zylinderblock 74 angeordnet, welcher innerhalb von Zylinderbohrungen 76 hin und her bewegliche Kolben 78 aufweist. Die Kolben 78 sind hier beispielsweise über Pleuel 80 mit Aufnahmekugelpfannen 82 einer Schrägscheibe 84 verbunden. Die Schrägscheibeneinrichtung 84 wird mittels einer Riemenscheibe 86 über eine Welle 88 in Drehungen versetzt und erzeugt damit die Hin- und Herbewegung der Kolben 78. Dabei saugen die Kolben 78 aus dem Ansaugbereich 90 das Kältemittel an und stoßen es im Bereich 92 über Auslassöffnungen 94, welche mit Auslassventilen 96 versehen sind, aus. Im Ansaugbereich 90 sind in einer Ventilplatte 102 Saugöffnungen 98 angebracht, welche durch Ansauglamellenventile 100 geöffnet und verschlossen werden können. Im Bereich dieser Ansaugöffnungen 98 bzw. der Sauglamellen 100 ist es nun möglich, Sauggasdrosseleinrichtungen 104, beispielsweise in Form von verengten Querschnitten, welche sowohl als feste Saugdrosseln als auch als verstellbare Saugdrosseln ausgeführt sein können, zu realisieren.FIG. 3 shows another possibility for arranging a suction gas throttle device. A cross section through a fixed-stroke air conditioning compressor shows a compressor housing 70, which is closed off by a cylinder head 72. A cylinder block 74 is arranged in the housing 70 and has pistons 78 that can move back and forth within cylinder bores 76. The pistons 78 are connected here, for example via connecting rods 80, to receiving ball sockets 82 of a swash plate 84. The swashplate device 84 is rotated by means of a belt pulley 86 via a shaft 88 and thus generates the reciprocating movement of the pistons 78. The pistons 78 suck in the refrigerant from the suction area 90 and push it in the area 92 via outlet openings 94, which are provided with outlet valves 96. In the suction area 90, suction openings 98 are provided in a valve plate 102, which can be opened and closed by suction lamella valves 100. In the area of these suction openings 98 or the suction lamellae 100, it is now possible to implement suction gas throttle devices 104, for example in the form of narrowed cross sections, which can be designed both as fixed suction throttles and as adjustable suction throttles.
In Figur 4 ist eine Sauggasdrosseleinrichtung mit einem drucksensitiven Bauteil schematisch dargestellt. In einem Kompressorgehäuseteil 110 ist in einer Öffnung 112 ein drucksensitives Bauteil 114, hier in Form eines schematisierten Kolbens, angeordnet. Der Kolben 114 wird auf der Kolbenseite 116 von der Kraft einer schematisiert dargestellten Feder 118 beaufschlagt. Auf der Gegenseite 120 des Kolbens 114 ist eine weitere Feder 122 in entgegengesetzter Richtung wirksam. Zusätzlich ist in der Öffnung 112 eine Stellschraube 124 angeordnet, mit welcher die Vorspannkraft der Feder 122 einge- stellt werden kann. Der Kolben 114 ragt mit einem Teil 126 aus der Öffnung 112 in einen Kanal 128 herein, welcher mit dem Saugdruck PS beaufschlagt ist, und dabei versperrt der Teil 126 des Kolbens 114 einen Teil des Durchtrittsquerschnitts des Kanals 128. Das bedeutet, dass der Kanal 128 für den Saugdruck PS durch den Ventilkolben 114 in der hier dargestellten Position verengt wird. Auf der anderen Seite des Kolbens 114 wird dieA suction gas throttle device with a pressure-sensitive component is shown schematically in FIG. A pressure-sensitive component 114, here in the form of a schematic piston, is arranged in an opening 112 in a compressor housing part 110. The piston 114 is acted upon on the piston side 116 by the force of a schematically illustrated spring 118. On the opposite side 120 of the piston 114, a further spring 122 is effective in the opposite direction. In addition, an adjusting screw 124 is arranged in the opening 112, with which the prestressing force of the spring 122 can be adjusted. The piston 114 protrudes with a part 126 from the opening 112 into a channel 128 which is subjected to the suction pressure PS, and the part 126 of the piston 114 blocks part of the passage cross section of the channel 128. This means that the channel 128 for the suction pressure PS through the valve piston 114 in the position shown here is narrowed. On the other side of the piston 114 the
Kolbenführungsöffnung 112 von einem Kanal 130 geschnitten, welcher als Kanal für das ausgestoßene Kältemittel mit dem Auslassdruck PD des Kompressors beaufschlagt wird. Somit wirken auf den Kolben 114, also auf das drucksensitive Bauteil, einerseits der Auslassdruck PD auf der Kolbenfläche 116 und andererseits der Saugdruck PS auf den Kolbenfläche 120. Der höhere Druck PD im Auslasskanal 130 wirkt dabei gegen den niedrigeren Saugdruck PS im Kanal 128 und gegen die Vorspannkraft der Feder 122, wenn die Kraft der Feder 118 als vernachlässigbar angenommen werden kann. Das ist insbesondere dann der Fall, wenn diese Feder eigentlich nur zur Grundpositionierung des Kolbens 114 im drucklosen Zustand gegen die eigentliche Einstellfeder 122 benutzt wird. Durch die Vorspannkraft der Feder 122 kann dann mittels der Einstellvorrichtung 124 bestimmt werden, bei welcher Druckdifferenz von Auslassdruck PD und Saugdruck PS der Ansaugkanal 128 geschlossen werden soll. Entsprechend den im Betrieb auftretenden Druckänderungen im Auslassbereich als auch im Saugbereich wird der Kolben 114 stufenlos verschiedene Positionen einnehmen können.Piston guide opening 112 cut by a channel 130, which is acted upon as a channel for the expelled refrigerant with the outlet pressure PD of the compressor. Thus, the outlet pressure PD on the piston surface 116 and the suction pressure PS on the piston surface 120 act on the piston 114, that is to say on the pressure-sensitive component. The higher pressure PD in the outlet duct 130 acts against the lower suction pressure PS in the duct 128 and against the biasing force of the spring 122 when the force of the spring 118 can be assumed to be negligible. This is particularly the case when this spring is actually only used for the basic positioning of the piston 114 in the depressurized state against the actual adjusting spring 122. The prestressing force of the spring 122 can then be used by means of the adjusting device 124 to determine at which pressure difference between the outlet pressure PD and the suction pressure PS the intake duct 128 is to be closed. Depending on the pressure changes occurring in operation in the outlet area as well as in the suction area, the piston 114 will be able to assume various positions in a stepless manner.
In Figur 5 ist eine Drosseleinrichtung mit einem vergleichbaren drucksensitiven Bauteil 114 dargestellt, wobei aber die Feder 122 und die Stellschraube 124 durch eine elektromagnetische Stelleinrichtung 131 ersetzt sind. Der Elektromagnet 131 besteht prinzi- piell aus einem Magnetanker 132, der über eine Stößelstange 138 mit dem Kolben 114 verbunden ist und im drucklosen und ggf. stromlosen Zustand durch eine Feder 134, welche gegen die Feder 118 wirkt, in eine gewünschte Grundposition gebracht wird. Der Elektromagnet enthält prinzipiell weiterhin eine Spule 136, welche bei Erregung je nach Konstruktion des Magneten den Anker 132 in die Spule 136 hereinziehen kann oder her- ausschieben kann. Zusätzlich zu den Druckeinflüssen auf das drucksensitive Bauteil 114, also der Druckdifferenz zwischen dem Auslassdruck im Kanal 130 und dem Ansaugdruck im Ansaugkanal 128, kann über den Elektromagneten die Position des drosselnden Teiles 126, also der Drosselquerschnitt, ferngesteuert eingestellt und verändert werden. Die hier dargestellt Ausführung entspricht einer so genannten Set-Point-Rege- lung, d. h. die Regelgröße DP = PD - PS wird direkt am Ventil gemessen. Die Magnetkraft wirkt zusätzlich zur Regelgröße auf das Verstellelement 114. ln Figur 6 ist eine weitere Drosseleinrichtung dargestellt, auf die aber nicht der Auslassdruck PD in direkter Form am Ventilelement wirksam wird. Der Kolben 140 des Drosselventils ist hier in einer Sackbohrung 142 untergebracht, die keine Verbindung zum Auslassdruckkanal 130 hat. Auf den Kolben 140 des Drosselventils wirkt also nur der Saug- druck im Kanal 128. Ein Teil des Kolbens 140, der Teil 144, ragt in den Saugkanal 128 hinein und erzeugt somit wieder eine Drosselstelle. Mit dem Elektromagneten 131 ist der Kolben 140 über die Stößelstange 138 verbunden, und die anderen Elemente des Elektromagneten 131 sind identisch mit der Beschreibung in der Figur 5. Anders als in Figur 5 wird aber der Auslassdruck über einen Drucksensor erfasst und das Drucksignal 146 in eine Regeleinrichtung 148, prinzipiell in Form einer elektronischen Regelung, eingebracht. Eine weitere Eingangsgröße für die Regeleinrichtung 148 kann beispielsweise das Signal 150 der Verdampfertemperatur sein, um entsprechend eine gleitende Verdampfertemperaturregelung zu realisieren. Weitere oder andere Eingangssignale aus dem Klimakreislauf sind je nach der gewünschten Regelstrategie denkbar. Die Regelein- richtung 148 wiederum erzeugt ein Ausgangssignal 152, beispielsweise in Form eines Magnetstromes, mit dem der Elektromagnet 131 betätigt wird. Dabei können sowohl pulsweitenmodulierte Ströme als auch Ströme für einen Proportionalventileinsatz, d. h. für die Verwendung eines Proportionalmagneten, als Ausgangssignal der Klimaregelung 148 erzeugt werden. Bei der hier in Figur 6 dargestellten Regelung ist klar erkennbar ei- ne Verdampfertemperaturregelung dargestellt, welche auf diese Weise auch mit einem Fixhub-Kompressor auf einfache Weise realisiert werden kann. Bei dieser Ausführung der Sauggasdrosseleinrichtung wird die Regelgröße, also der Auslassdruck PD, extern verarbeitet. Auf das Verstellelement 140 kann auch ausschließlich die Magnetkraft wirken, wenn man den Einfluss des Saugdruckes durch Umleitung auf beide Kolbenflächen eliminiert.FIG. 5 shows a throttle device with a comparable pressure-sensitive component 114, but the spring 122 and the adjusting screw 124 are replaced by an electromagnetic adjusting device 131. The electromagnet 131 basically consists of a magnet armature 132 which is connected to the piston 114 via a push rod 138 and is brought into a desired basic position in the depressurized and possibly de-energized state by a spring 134 which acts against the spring 118. In principle, the electromagnet also contains a coil 136 which, when excited, depending on the design of the magnet, can pull the armature 132 into the coil 136 or push it out. In addition to the pressure influences on the pressure-sensitive component 114, i.e. the pressure difference between the outlet pressure in the channel 130 and the intake pressure in the intake channel 128, the position of the throttling part 126, i.e. the throttle cross-section, can be set and changed remotely via the electromagnet. The version shown here corresponds to a so-called set point control, ie the controlled variable DP = PD - PS is measured directly at the valve. In addition to the controlled variable, the magnetic force acts on the adjusting element 114. A further throttle device is shown in FIG. 6, but the outlet pressure PD does not act directly on the valve element. The piston 140 of the throttle valve is accommodated here in a blind bore 142, which has no connection to the outlet pressure channel 130. Only the suction pressure in the channel 128 acts on the piston 140 of the throttle valve. A part of the piston 140, the part 144, projects into the suction channel 128 and thus again creates a throttle point. The piston 140 is connected to the electromagnet 131 via the push rod 138, and the other elements of the electromagnet 131 are identical to the description in FIG. 5. Unlike in FIG. 5, however, the outlet pressure is detected via a pressure sensor and the pressure signal 146 into a pressure sensor Control device 148, in principle in the form of an electronic control. A further input variable for the control device 148 can be the signal 150 of the evaporator temperature, for example, in order to implement a smooth evaporator temperature control accordingly. Depending on the desired control strategy, further or different input signals from the air conditioning circuit are conceivable. The control device 148 in turn generates an output signal 152, for example in the form of a magnetic current, with which the electromagnet 131 is actuated. Both pulse width modulated currents and currents for a proportional valve insert, ie for the use of a proportional magnet, can be generated as the output signal of the climate control 148. In the control system shown here in FIG. 6, an evaporator temperature control system is clearly shown, which in this way can also be implemented in a simple manner with a fixed stroke compressor. In this embodiment of the suction gas throttle device, the controlled variable, ie the outlet pressure PD, is processed externally. Only the magnetic force can act on the adjusting element 140 if the influence of the suction pressure is eliminated by redirection to both piston surfaces.
Allen hier vorgeschlagenen Sauggasdrosseleinrichtungen ist gemeinsam, dass zur Begrenzung der Massenströme bei hohen Drehzahlen des Fixhub-Klimakompressors der Ansaugquerschnitt als feste oder verstellbare Drossel ausgeführt sein kann. Dies bewirkt einen Druckabfall und damit einen Dichteabfall des Kältemittels. Der Kompressor untersaugt während der Ansaugphase in die Arbeitszylinder. Durch die verringerte Dichte wird gemäß der Zustandsgieichung bei vorgegebener volumetrischer Förderleistung (Volumenstrom) der Massenstrom verringert, und auch das Drehmoment des Kompressors reduziert sich und führt zur Energieeinsparung. Auch wird der Kompressor wesentlich stärker gekühlt, was sich positiv auf Schmierung und Verschleißreduzierung auswirkt. Durch die Erfindung werden die ansonsten bei CO2-Anlagen zu erwartenden Druckspitzen, welche in Folge hoher ungeregelter Massenströme und durch das Fehlen eines Flüssigkeitspuffers auf der Druckseite auftreten würden, vermieden. Es können für die Erfindung alle heute üblichen Verdichterbauarten verwendet werden. Der erfindungsgemäße Vorteil schlägt sich auch in günstigeren Energiebilanzen als bei den heute verwendeten Bypassregelungen nieder. Angewendet werden kann die Erfindung vorzugsweise bei Automobilklimaanlagen, die mit CO2 betrieben werden. Generell ist die Erfindung aber wertvoll für alle Kältemittelgase, welche in einer Klimaanlage überkritisch, d. h. mit nicht verflüssigten Phasen, betrieben werden. Gegenüber hubraumgeregelten Maschinen mit verstellbaren Schwenkscheiben oder Taumelscheiben ist die Erfindung mit einer Fixhubmaschine und einer Sauggasdrosseleinrichtung kostengünstiger. Damit ist die Erfindung vor allem auch für so genannte Low-Cost-Klimaanlagen vorteilhaft. All suction gas throttle devices proposed here have in common that in order to limit the mass flows at high speeds of the fixed-stroke air conditioning compressor, the intake cross section can be designed as a fixed or adjustable throttle. This causes a drop in pressure and thus a decrease in the density of the refrigerant. The compressor sucks into the working cylinders during the suction phase. Due to the reduced density, the mass flow and the torque of the compressor are reduced in accordance with the state equation for a given volumetric flow rate (volume flow) reduces and leads to energy savings. The compressor is also cooled considerably more, which has a positive effect on lubrication and wear reduction. The invention avoids the pressure peaks that would otherwise be expected in CO 2 systems, which would occur as a result of high unregulated mass flows and due to the lack of a liquid buffer on the pressure side. All types of compressor that are common today can be used for the invention. The advantage according to the invention is also reflected in cheaper energy balances than in the bypass controls used today. The invention can preferably be used in automotive air conditioning systems that are operated with CO 2 . In general, however, the invention is valuable for all refrigerant gases which are operated supercritically in an air conditioning system, ie with non-liquefied phases. Compared to displacement-controlled machines with adjustable swivel plates or swash plates, the invention with a fixed lifting machine and a suction gas throttle device is more cost-effective. The invention is therefore particularly advantageous for so-called low-cost air conditioning systems.
BezuαszeichenlisteLIST OF REFERENCE NUMERALS
Einbauorte SauggasdrosseleinrichtungInstallation locations of suction gas throttle device
Klimakompressorair compressor
Leitungsabschnittline section
Gaskühlergas cooler
Leitungsabschnittline section
Hochdruckseite interner WärmetauscherHigh pressure side of internal heat exchanger
Niederdruckseite interner WärmetauscherLow pressure side of internal heat exchanger
Leitungsabschnittline section
Expansionsventilexpansion valve
Leitungsabschnittline section
VerdampferEvaporator
Leitungsabschnittline section
Receiverreceiver
Leitungsabschnittline section
Leitungsbereichmanagement area
Ansaugbereich KompressorIntake area compressor
Gehäuse KompressorHousing compressor
Zylinderkopf KompressorCylinder head compressor
Riemenscheibepulley
Ansaugbereichsuction
Ausstoßbereichdischarge area
SaugkanalbereichSaugkanalbereich
Kompressorgehäusecompressor housing
Zylinderkopfcylinder head
Zylinderblockcylinder block
Zylinderbohrungencylinder bores
Kolbenpiston
Pleuelpleuel
AufnahmekugelpfannenRecording Kugelpfannen
Schrägscheibeswash plate
Riemenscheibe 88 Wellepulley 88 wave
90 Ansaugbereich90 suction area
92 Auslassbereich92 outlet area
94 Auslassöffnungen94 outlet openings
96 Auslassventile96 exhaust valves
98 Saugöffnungen98 suction openings
100 Ansauglamellenventile100 intake louvre valves
102 Ventilplatte102 valve plate
104 Sauggasdrosseleinrichtungen104 suction gas throttling devices
110 Kompressorgehäuseteil110 compressor housing part
112 Öffnung112 opening
114 Kolben114 pistons
116 Kolbenseite116 piston side
118 Feder118 spring
120 Gegenseite Kolben120 opposite piston
122 Feder122 spring
124 Stellschraube124 set screw
126 Kolbenteil126 piston part
128 Saugdruckkanal128 suction pressure channel
130 Auslassdruckkanal130 outlet pressure channel
131 Elektromagnet131 electromagnet
132 Magnetanker132 magnetic armature
134 Feder134 spring
136 Spule136 coil
138 Stößelstange138 push rod
140 Kolben140 pistons
142 Sackbohrung142 blind hole
144 Kolbenteil144 piston part
146 Drucksignal146 pressure signal
148 Regeleinrichtung148 control device
150 Verdampfertemperatursignal150 evaporator temperature signal
152 Ausgangssignal Regeleinrichtung 152 Control device output signal

Claims

Patentansprüche claims
1. Kompressor für Klimaanlage oder Klimaanlage mit Kompressor, insbesondere für Kraftfahrzeuge, dadurch gekennzeichnet, dass der Kompressor oder die Klimaanlage im Saugdruckbereich eine Sauggasdrosseleinrichtung aufweist und der Kompressor ein Fixhub-Kompressor ist.1. Compressor for air conditioning or air conditioning with a compressor, in particular for motor vehicles, characterized in that the compressor or air conditioning has a suction gas throttle device in the suction pressure region and the compressor is a fixed stroke compressor.
2. Kompressor oder Klimaanlage nach Anspruch 1, dadurch gekennzeichnet, dass ü- berkritisch betriebene Kältemittelgase, wie beispielsweise CO2, verwendet werden können.2. Compressor or air conditioning system according to claim 1, characterized in that supercritically operated refrigerant gases, such as CO 2 , can be used.
3. Kompressor oder Klimaanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Sauggasdrosseleinrichtung zur Leistungsregelung oder Leistungsbegrenzung des Fixhub-Kompressors oder der Klimaanlage dient.3. Compressor or air conditioning system according to claim 1 or 2, characterized in that the suction gas throttle device is used for power control or power limitation of the fixed stroke compressor or the air conditioning system.
Kompressor oder Klimaanlage nach Anspruch 1 bis Anspruch 3, dadurch gekennzeichnet, dass die Sauggasdrosseleinrichtung einen festen oder verstellbaren Drosselquerschnitt aufweist, wobei der verstellbare Drosselquerschnitt extern gesteuert, beispielsweise mechanisch oder elektrisch, verstellt werden kann.Compressor or air conditioning system according to claim 1 to claim 3, characterized in that the suction gas throttle device has a fixed or adjustable throttle cross-section, the adjustable throttle cross-section being externally controlled, for example mechanically or electrically.
Kompressor oder Klimaanlage nach Anspruch 4, dadurch gekennzeichnet, dass die Sauggasdrosseleinrichtung ein drucksensitives Bauteil aufweist.Compressor or air conditioning system according to claim 4, characterized in that the suction gas throttle device has a pressure-sensitive component.
6. Kompressor oder Klimaanlage nach Anspruch 5, dadurch gekennzeichnet, dass auf das drucksensitive Bauteil beispielsweise der Auslassdruck PD oder die Druckdifferenz PD - P-Atmosphäre oder der Saugdruck PS oder die Druckdifferenz PD - PS oder eine Druckdifferenz, welche an einer Drossel erzeugt wird, wirksam sein kann.6. Compressor or air conditioning system according to claim 5, characterized in that on the pressure-sensitive component, for example, the outlet pressure PD or the pressure difference PD - P atmosphere or the suction pressure PS or the pressure difference PD - PS or a pressure difference which is generated at a throttle, can be effective.
7. Kompressor oder Klimaanlage nach Anspruch 4 bis 6, dadurch gekennzeichnet, dass die Sauggasdrosseleinrichtung eine durch ein externes Signal betätigbare Stelleinrichtung aufweist, wie beispielsweise einen Elektromagneten, ggf. zusätzlich zu dem drucksensitiven Bauteil 7. Compressor or air conditioning system according to claim 4 to 6, characterized in that the suction gas throttle device has an actuating device which can be actuated by an external signal, such as an electromagnet, possibly in addition to the pressure-sensitive component
8. Kompressor oder Klimaanlage nach Anspruch 7, dadurch gekennzeichnet, dass das externe Signal durch Auswertung der Druckdifferenz an einer Drosseleinrichtung und/oder des Auslassdruckes mittels eines Drucksensors und/oder der Verdampfertemperatur und/oder durch eine Sollwertänderung generiert wird, ggf. auch durch Auswertung der Drucksignale aus Anspruch 6.8. Compressor or air conditioning system according to claim 7, characterized in that the external signal is generated by evaluating the pressure difference at a throttle device and / or the outlet pressure by means of a pressure sensor and / or the evaporator temperature and / or by a setpoint change, possibly also by evaluation of the pressure signals from claim 6.
9. Kompressor oder Klimaanlage nach Anspruch 7 oder Anspruch 8, dadurch gekennzeichnet, dass das externe Signal durch eine elektronische Regeleinrichtung erzeugt wird und ggf. der Strom für einen Elektromagneten sein kann.9. Compressor or air conditioning system according to claim 7 or claim 8, characterized in that the external signal is generated by an electronic control device and, if appropriate, the current can be for an electromagnet.
10. Kompressor oder Klimaanlage nach Anspruch 7 bis 9, dadurch gekennzeichnet, dass die Stelleinrichtung stufenlos verstellbar oder regelbar ist.10. compressor or air conditioning system according to claim 7 to 9, characterized in that the actuating device is infinitely adjustable or controllable.
11. Kompressor oder Klimaanlage nach Anspruch 10, dadurch gekennzeichnet, dass durch die Stelleinrichtung oder Regeleinrichtung die Verdampfertemperatur stufenlos oder gleitend verstellbar oder regelbar ist, beispielsweise zwischen 1 ° Celsius und 12° Celsius.11. Compressor or air conditioning system according to claim 10, characterized in that the evaporator temperature is infinitely or slidably adjustable or controllable by the adjusting device or control device, for example between 1 ° Celsius and 12 ° Celsius.
12. Kompressor oder Klimaanlage nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass dadurch der Massenstrom gleitend bzw. stufenlos an die Leistungsanforderung der Klimaanlage angepasst werden kann (gleitende Leistungsregelung).12. Compressor or air conditioning system according to claim 10 or 11, characterized in that the mass flow can be adjusted smoothly or continuously to the power requirement of the air conditioning system (sliding power control).
13. Kompressor oder Klimaanlage nach Anspruch 4 bis 12, dadurch gekennzeichnet, dass die Sauggasdrosseleinrichtung durch eine elektronische Regeleinrichtung mit- tels einer internen oder externen Regelung verstellt werden kann.13. Compressor or air conditioning system according to claim 4 to 12, characterized in that the suction gas throttle device can be adjusted by means of an electronic control device by means of an internal or external control.
14. Kompressor oder Klimaanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sauggasdrosseleinrichtung in einer Baugruppe mit Verdampfer und Expansionsventil oder am Verdampferaustritt oder am Receiveraus- gang oder in der Saugleitung oder im inneren Wärmetauschersaugbereich oder am Sauganschluss (Ansaugtrakt) des Kompressors oder im Kompressoransaugbereich (Sauglamellenbereich) angeordnet sein kann. 14. Compressor or air conditioning system according to one of the preceding claims, characterized in that the suction gas throttle device in a module with an evaporator and expansion valve or at the evaporator outlet or at the receiver outlet or in the suction line or in the inner heat exchanger suction area or on the suction connection (intake tract) of the compressor or in Compressor suction area (suction lamella area) can be arranged.
15. Kompressor oder Klimaanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sauggasdrosseleinrichtung durch eine Engstelle im Saugkanalquerschnitt darstellbar ist.15. Compressor or air conditioning system according to one of the preceding claims, characterized in that the suction gas throttle device can be represented by a constriction in the suction channel cross section.
16. Kompressor oder Klimaanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sauggasdrosseleinrichtung durch verkleinerte Sauglamellen oder durch einen verkleinerten Einlassquerschnitt zum Arbeitsraum des Zylinderblocks darstellbar ist.16. Compressor or air conditioning system according to one of the preceding claims, characterized in that the suction gas throttle device can be represented by reduced suction lamellae or by a reduced inlet cross section to the working space of the cylinder block.
17. Kompressor oder Klimaanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch den Druckabfall an der Sauggasdrosseleinrichtung ein Dichteabfall des Kältemittels erzeugt wird, so dass bei vorgegebener volumetrischer Förderleistung des Kompressors der Massenstrom verringert werden kann.17. Compressor or air conditioning system according to one of the preceding claims, characterized in that a drop in density of the refrigerant is generated by the pressure drop at the suction gas throttle device, so that the mass flow can be reduced for a given volumetric delivery rate of the compressor.
18. Kompressor oder Klimaanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch die Sauggasdrosseleinrichtung Druckspitzen auf der Druckseite vermieden werden können.18. Compressor or air conditioning system according to one of the preceding claims, characterized in that pressure peaks on the pressure side can be avoided by the suction gas throttle device.
19. Verfahren zum Betrieb einer Einrichtung nach Anspruch 1 bis 18. 19. A method of operating a device according to claim 1 to 18.
PCT/DE2004/001883 2003-09-02 2004-08-26 Compressor or air-conditioning system WO2005022053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112004002149T DE112004002149D2 (en) 2003-09-02 2004-08-26 Compressor or air conditioning

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10340795 2003-09-02
DE10340795.2 2003-09-02
DE10355957 2003-12-01
DE10355957.4 2003-12-01

Publications (1)

Publication Number Publication Date
WO2005022053A1 true WO2005022053A1 (en) 2005-03-10

Family

ID=34219282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001883 WO2005022053A1 (en) 2003-09-02 2004-08-26 Compressor or air-conditioning system

Country Status (2)

Country Link
DE (2) DE102004041251A1 (en)
WO (1) WO2005022053A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002880A1 (en) * 2004-07-02 2006-01-12 Behr Gmbh & Co. Kg Air conditioner for a motor vehicle
DE102005016433A1 (en) * 2005-04-05 2006-10-12 Bitzer Kühlmaschinenbau Gmbh Refrigerant compressor
WO2007118293A2 (en) * 2006-04-19 2007-10-25 Whirlpool S.A. Flow rate control system in refrigeration circuits, method for controlling a refrigeration system and a refrigeration system
EP2047187A1 (en) * 2006-07-19 2009-04-15 Carrier Corporation Refrigerant system with pulse width modulation for reheat circuit
US7654098B2 (en) 1995-06-07 2010-02-02 Emerson Climate Technologies, Inc. Cooling system with variable capacity control
FR2938050A1 (en) * 2008-11-06 2010-05-07 Valeo Systemes Thermiques Air-conditioning loop for air-conditioning device in vehicle, has valve blocking passage of supercritical fluid i.e. carbon dioxide, inside compressor when pressure of loop is higher than ceiling pressure
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
US8308455B2 (en) 2009-01-27 2012-11-13 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
USRE44636E1 (en) 1997-09-29 2013-12-10 Emerson Climate Technologies, Inc. Compressor capacity modulation
EP2450572A4 (en) * 2009-06-30 2017-07-12 Valeo Japan Co., Ltd. Variable displacement swash plate-type compressor and air conditioning system using said compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007041577A1 (en) 2007-09-01 2009-03-05 Schaeffler Kg Valve plate for compressor is made of plastic with valve sheet injected into it and valve closing blade fixed to valve sheet

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1768557A (en) * 1927-02-28 1930-07-01 Frigidaire Corp Refrigerating apparatus
GB379601A (en) * 1931-01-08 1932-09-01 Carl Baumann Improvements in compression refrigerating plants
US2318157A (en) * 1940-07-22 1943-05-04 Automatic Products Co Suction-pressure-regulating valve
US2363273A (en) * 1943-06-02 1944-11-21 Buensod Stacey Inc Refrigeration
US2418853A (en) * 1944-11-29 1947-04-15 Philco Corp Refrigerating apparatus in which the pressure in the crankcase of the compressor is controlled
US2778196A (en) * 1952-08-18 1957-01-22 William E Davis Automatic control apparatus for refrigeration system
FR1259473A (en) * 1960-03-15 1961-04-28 Chantiers De Latlantique Method and device for controlling the power of compressors comprising two or more cylinder and piston assemblies
US3289431A (en) * 1964-06-04 1966-12-06 Borg Warner Refrigeration system capacity control with pilot operated regulating valve
JPS5344952A (en) * 1976-10-04 1978-04-22 Iwao Iino Refrigeration system
JPS53109211A (en) * 1977-03-04 1978-09-22 Toshiba Corp Heat pump type air conditioner
US4330999A (en) * 1977-07-27 1982-05-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Refrigerant compressor
JPS5862389A (en) * 1981-10-09 1983-04-13 Hitachi Ltd Refrigerating cycle
US4432705A (en) * 1978-09-20 1984-02-21 Carrier Corporation Refrigeration compressor capacity control means and method
DE3407749A1 (en) * 1984-03-02 1985-09-12 Fichtel & Sachs Ag, 8720 Schweinfurt Heat pump having a refrigerant circuit
US4691526A (en) * 1985-05-08 1987-09-08 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Air conditioning unit for vehicle
JPS6428461A (en) * 1987-07-20 1989-01-31 Toyoda Automatic Loom Works Valve mechanism for control of overheating for suction refrigerant
JPS6488065A (en) * 1987-06-30 1989-04-03 Sanden Corp Refrigeration circuit with refrigerant flow control mechanism
US4856292A (en) * 1986-12-27 1989-08-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Pressure control valve assembly
US4870834A (en) * 1987-05-29 1989-10-03 Nippondenso Co., Ltd. Vapor pressure-adjusting valve and refrigeration system using same
US4905477A (en) * 1987-06-30 1990-03-06 Sanden Corporation Refrigerant circuit with passageway control mechanism
JPH0297864A (en) * 1988-10-03 1990-04-10 Nippon Denso Co Ltd Evaporation pressure regulating valve for cooler device
JPH04165272A (en) * 1990-10-26 1992-06-11 Toyota Autom Loom Works Ltd Suction throttle device in cooling circuit
DE19607032A1 (en) * 1995-03-10 1996-09-12 Lindau Tech Forsch & Entw Gmbh Method of regulating output of cooler for passenger space of motor vehicle
EP0952412A2 (en) * 1998-04-16 1999-10-27 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Refrigerating system and method of operating the same
US6301911B1 (en) * 1999-03-26 2001-10-16 Carrier Corporation Compressor operating envelope management
EP1217316A2 (en) * 2000-12-22 2002-06-26 Carrier Corporation Method of controlling refrigerant cycle

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1768557A (en) * 1927-02-28 1930-07-01 Frigidaire Corp Refrigerating apparatus
GB379601A (en) * 1931-01-08 1932-09-01 Carl Baumann Improvements in compression refrigerating plants
US2318157A (en) * 1940-07-22 1943-05-04 Automatic Products Co Suction-pressure-regulating valve
US2363273A (en) * 1943-06-02 1944-11-21 Buensod Stacey Inc Refrigeration
US2418853A (en) * 1944-11-29 1947-04-15 Philco Corp Refrigerating apparatus in which the pressure in the crankcase of the compressor is controlled
US2778196A (en) * 1952-08-18 1957-01-22 William E Davis Automatic control apparatus for refrigeration system
FR1259473A (en) * 1960-03-15 1961-04-28 Chantiers De Latlantique Method and device for controlling the power of compressors comprising two or more cylinder and piston assemblies
US3289431A (en) * 1964-06-04 1966-12-06 Borg Warner Refrigeration system capacity control with pilot operated regulating valve
JPS5344952A (en) * 1976-10-04 1978-04-22 Iwao Iino Refrigeration system
JPS53109211A (en) * 1977-03-04 1978-09-22 Toshiba Corp Heat pump type air conditioner
US4330999A (en) * 1977-07-27 1982-05-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Refrigerant compressor
US4432705A (en) * 1978-09-20 1984-02-21 Carrier Corporation Refrigeration compressor capacity control means and method
JPS5862389A (en) * 1981-10-09 1983-04-13 Hitachi Ltd Refrigerating cycle
DE3407749A1 (en) * 1984-03-02 1985-09-12 Fichtel & Sachs Ag, 8720 Schweinfurt Heat pump having a refrigerant circuit
US4691526A (en) * 1985-05-08 1987-09-08 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Air conditioning unit for vehicle
US4856292A (en) * 1986-12-27 1989-08-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Pressure control valve assembly
US4870834A (en) * 1987-05-29 1989-10-03 Nippondenso Co., Ltd. Vapor pressure-adjusting valve and refrigeration system using same
US4905477A (en) * 1987-06-30 1990-03-06 Sanden Corporation Refrigerant circuit with passageway control mechanism
JPS6488065A (en) * 1987-06-30 1989-04-03 Sanden Corp Refrigeration circuit with refrigerant flow control mechanism
JPS6428461A (en) * 1987-07-20 1989-01-31 Toyoda Automatic Loom Works Valve mechanism for control of overheating for suction refrigerant
JPH0297864A (en) * 1988-10-03 1990-04-10 Nippon Denso Co Ltd Evaporation pressure regulating valve for cooler device
JPH04165272A (en) * 1990-10-26 1992-06-11 Toyota Autom Loom Works Ltd Suction throttle device in cooling circuit
DE19607032A1 (en) * 1995-03-10 1996-09-12 Lindau Tech Forsch & Entw Gmbh Method of regulating output of cooler for passenger space of motor vehicle
EP0952412A2 (en) * 1998-04-16 1999-10-27 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Refrigerating system and method of operating the same
US6301911B1 (en) * 1999-03-26 2001-10-16 Carrier Corporation Compressor operating envelope management
EP1217316A2 (en) * 2000-12-22 2002-06-26 Carrier Corporation Method of controlling refrigerant cycle

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 002, no. 138 (M - 040) 16 November 1978 (1978-11-16) *
PATENT ABSTRACTS OF JAPAN vol. 007, no. 153 (M - 226) 5 July 1983 (1983-07-05) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 305 (M - 0992) 29 June 1990 (1990-06-29) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 464 (M - 1316) 28 September 1992 (1992-09-28) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 18 5 June 2001 (2001-06-05) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7654098B2 (en) 1995-06-07 2010-02-02 Emerson Climate Technologies, Inc. Cooling system with variable capacity control
USRE44636E1 (en) 1997-09-29 2013-12-10 Emerson Climate Technologies, Inc. Compressor capacity modulation
WO2006002880A1 (en) * 2004-07-02 2006-01-12 Behr Gmbh & Co. Kg Air conditioner for a motor vehicle
DE102005016433A1 (en) * 2005-04-05 2006-10-12 Bitzer Kühlmaschinenbau Gmbh Refrigerant compressor
WO2007118293A2 (en) * 2006-04-19 2007-10-25 Whirlpool S.A. Flow rate control system in refrigeration circuits, method for controlling a refrigeration system and a refrigeration system
WO2007118293A3 (en) * 2006-04-19 2007-11-29 Whirlpool Sa Flow rate control system in refrigeration circuits, method for controlling a refrigeration system and a refrigeration system
US8627676B2 (en) 2006-04-19 2014-01-14 Whirlpool S.A. Flow rate control system in refrigeration circuits, method for controlling a refrigeration system and a refrigeration system
AU2007240134B2 (en) * 2006-04-19 2012-01-19 Whirlpool S.A. Flow rate control system in refrigeration circuits, method for controlling a refrigeration system and a refrigeration system
EP2047187A1 (en) * 2006-07-19 2009-04-15 Carrier Corporation Refrigerant system with pulse width modulation for reheat circuit
EP2047187A4 (en) * 2006-07-19 2011-06-08 Carrier Corp Refrigerant system with pulse width modulation for reheat circuit
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
US8807961B2 (en) 2007-07-23 2014-08-19 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
FR2938050A1 (en) * 2008-11-06 2010-05-07 Valeo Systemes Thermiques Air-conditioning loop for air-conditioning device in vehicle, has valve blocking passage of supercritical fluid i.e. carbon dioxide, inside compressor when pressure of loop is higher than ceiling pressure
US8308455B2 (en) 2009-01-27 2012-11-13 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
EP2450572A4 (en) * 2009-06-30 2017-07-12 Valeo Japan Co., Ltd. Variable displacement swash plate-type compressor and air conditioning system using said compressor

Also Published As

Publication number Publication date
DE112004002149D2 (en) 2006-07-13
DE102004041251A1 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
DE19781873B4 (en) Cooling circuit with series evaporators and an adjustable compressor
DE19810789C2 (en) Compressor device and compressor
DE112008002219B4 (en) Capacity control system for a variable capacity compressor and display device for the system
DE112008002404T5 (en) A compressor drive torque calculating device and a displacement control system for a variable displacement compressor
DE102011110549B4 (en) Refrigerant cycle device with two-stage pressure increase
DE10361925B4 (en) Controls for variable-speed compressors
DE102005007321A1 (en) Ejector pump circuit with several evaporators
WO2005022053A1 (en) Compressor or air-conditioning system
DE19831792A1 (en) Automobile air-conditioning system
EP1599696B1 (en) Expansion device for an air conditioning system
DE102006051998A1 (en) Cooling circuit device and control system for a vehicle
DE102004019364A1 (en) Vapor compression cooling circuit with ejector
DE60007125T2 (en) CONTROL OF THE VARIABLE CAPACITY OF A COOLING CIRCUIT
DE102012111455A1 (en) Refrigerant circuit of a vehicle air conditioning system and method for air conditioning a vehicle interior
DE10233628A1 (en) Compressor with an integrated control unit
DE10325095B4 (en) Compressor device and control method for it
EP3126672B1 (en) Reciprocating-piston compressor and control method therefor
DE102004014469A1 (en) Control valve device for an adjustable swash plate compressor
DE3816500A1 (en) METHOD FOR REGULATING THE OPERATION OF A REFRIGERANT COMPRESSOR
DE10255147B4 (en) A method of controlling an air conditioning system powered by a vehicle engine
EP1715263A2 (en) Air conditioning device, in particular for a motor vehicle
DE112009000496T5 (en) Displacement control system for variable displacement compressor
DE102008060382A1 (en) Refrigeration cycle device
DE10135727B4 (en) Control valve fed with AC voltage and swash plate compressor with this control valve
EP4103840A1 (en) Coolant compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120040021499

Country of ref document: DE

REF Corresponds to

Ref document number: 112004002149

Country of ref document: DE

Date of ref document: 20060713

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004002149

Country of ref document: DE

122 Ep: pct application non-entry in european phase