JPH0721368B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPH0721368B2
JPH0721368B2 JP61111192A JP11119286A JPH0721368B2 JP H0721368 B2 JPH0721368 B2 JP H0721368B2 JP 61111192 A JP61111192 A JP 61111192A JP 11119286 A JP11119286 A JP 11119286A JP H0721368 B2 JPH0721368 B2 JP H0721368B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
reservoir
suction port
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61111192A
Other languages
Japanese (ja)
Other versions
JPS62276375A (en
Inventor
鈴木  剛
充彦 神谷
芳信 小久保
省吾 牧野
宏昭 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Publication of JPS62276375A publication Critical patent/JPS62276375A/en
Publication of JPH0721368B2 publication Critical patent/JPH0721368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷凍装置、例えば自動車用空調装置に組み込ま
れる冷凍装置の起動時に冷媒圧縮用圧縮機から応々にし
て発生する騒音の解消策に関する。
Description: TECHNICAL FIELD The present invention relates to a solution to noise that is occasionally generated from a refrigerant compression compressor when a refrigeration system, for example, a refrigeration system incorporated in an air conditioner for automobiles is started. .

〔従来の技術〕[Conventional technology]

自動車用空調装置は、一般に冷媒の圧縮機、凝縮器、減
圧装置及び蒸発器を冷媒配管によって連結させ、冷媒循
環のための閉サイクルを形成させる構成がとられてい
る。
2. Description of the Related Art An automobile air conditioner generally has a configuration in which a refrigerant compressor, a condenser, a pressure reducing device, and an evaporator are connected by a refrigerant pipe to form a closed cycle for circulating the refrigerant.

そして、コンパクトサイズの乗用自動車の場合には、こ
の様な冷凍装置をスペースのゆとりが極めて乏しいエン
ジンルーム内に、圧縮機、凝縮器等の構成部品を分散さ
せる様にして組み込んでいた。
In the case of a compact-sized passenger car, such a refrigerating device is incorporated in an engine room where space is extremely small so that components such as a compressor and a condenser are dispersed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の如く狭いエンジンルーム内に冷凍装置を組み込ん
だ自動車では、朝の気温が急速に上昇する時期に空調装
置を起動させた時応々にして不快感乃至は不安感を与え
る様な騒音を発生することがある。
In a car with a refrigeration system installed in a narrow engine room as described above, when the air conditioner is activated at a time when the temperature in the morning rises rapidly, noise is generated which may cause discomfort or anxiety. I have something to do.

本発明者等は上記の様な騒音の発生原因を追求した所、
下記の事実が判明した。
The inventors of the present invention have pursued the cause of noise as described above,
The following facts have been revealed.

即ち、朝太陽が昇り始めて気温が急速に上昇する様な状
況下では、装置停止中に、圧縮機内にかなり多量の液相
冷媒が滞留しており、この液冷媒が起動時に圧縮作用を
受けることによって上記の如き騒音を生じることがわか
った。
That is, in the situation where the morning sun starts to rise and the temperature rises rapidly, a considerable amount of liquid-phase refrigerant is retained in the compressor while the device is stopped, and this liquid refrigerant is subject to compression at startup. It was found that the above noise was generated.

圧縮機内に多量の液冷媒が溜る理由は次の様に推測する
ことができる。
The reason why a large amount of liquid refrigerant accumulates in the compressor can be estimated as follows.

つまり、冷凍装置を構成している前述の各部品は材質や
大きさがそれぞれ異なるので、各々の熱容量は相違する
し、設置場所も違うので、装置起動前の温度上昇度合に
差異を生じる。冷媒循環サイクル内のより温度の高い個
所はより温度の低い個所に較べて冷媒蒸気圧は高まり、
サイクル内の冷媒圧の分布が偏った状態となるので、冷
媒圧がより低い位置に向けて冷媒が集合して来ることに
なる。圧縮機は熱容量が大きいので、一般に最も温度上
昇の遅れる条件を満たしており、もし圧縮機が冷凍装置
のレイアウト上最も低い位置に取り付けられたとすれ
ば、朝太陽が昇り始めて気温が急速に上昇する様な状況
下では、サイクル各部で凝縮して液相状態にあるまたは
気相の冷媒は温度上昇による冷媒蒸気圧の上昇によっ
て、更には重力差が加わって、圧縮機内の空間に向って
流下あるいは拡散されて来ることになる。
In other words, since the above-mentioned components constituting the refrigeration system are different in material and size, the heat capacities are different and the installation locations are also different, which causes a difference in the temperature rise degree before starting the system. The higher temperature part of the refrigerant circulation cycle has a higher refrigerant vapor pressure than the lower temperature part,
Since the distribution of the refrigerant pressure in the cycle is biased, the refrigerant gathers toward the position where the refrigerant pressure is lower. Since the compressor has a large heat capacity, it generally satisfies the condition that the temperature rise is delayed most, and if the compressor is installed at the lowest position in the layout of the refrigeration system, the morning sun starts to rise and the temperature rises rapidly. Under such circumstances, the refrigerant in the liquid phase or condensed in each part of the cycle or in the gas phase is flowed toward the space inside the compressor due to the increase in the refrigerant vapor pressure due to the temperature rise, and the added gravity difference. It will be spread.

したがって、冷媒圧縮機を冷媒循環サイクルの最も低い
個所に設置することは極力避けるべきである。しかし、
装置全体の設置スペースからしてやむを得ず、圧縮機を
最下位置に取り付けざるを得ない場合も生じる。このよ
うな場合には、装置停止中に圧縮機内への液相冷媒の移
動が生じやすく、その結果圧縮機起動時に液圧縮を生
じ、騒音を発生するという問題が起こる。
Therefore, installing the refrigerant compressor at the lowest point of the refrigerant circulation cycle should be avoided as much as possible. But,
In some cases, the compressor must be installed at the lowest position because of the installation space of the entire device. In such a case, movement of the liquid-phase refrigerant into the compressor is likely to occur while the apparatus is stopped, and as a result, liquid compression occurs at the time of starting the compressor, which causes a problem that noise is generated.

本発明は冷媒圧縮機を他の装置構成部品よりも低い位置
に取り付けざるを得ない場合にも、装置起動時の液圧縮
に起因する騒音問題を良好に防止できる冷凍装置を提供
することを目的とする。
An object of the present invention is to provide a refrigeration system capable of satisfactorily preventing a noise problem caused by liquid compression at the time of starting the device even when the refrigerant compressor has to be mounted at a position lower than other device components. And

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために本発明による冷凍装置は、
圧縮機を冷凍装置構成部品のうち最も低い最下位置に配
置するとともに、前述圧縮機の冷媒吸入口および冷媒吐
出口より低い位置に、冷媒溜りを配置し、この冷媒溜り
を前記冷媒吸入口の冷媒通路に連通させるという技術的
手段を採用する。
In order to achieve the above object, the refrigerating apparatus according to the present invention,
The compressor is arranged at the lowest lowest position of the refrigeration equipment components, and the refrigerant pool is arranged at a position lower than the refrigerant suction port and the refrigerant discharge port of the compressor, and the refrigerant pool is arranged in the refrigerant suction port. The technical means of communicating with the refrigerant passage is adopted.

〔作用及び発明の効果〕[Operation and effect of the invention]

上記技術的手段によれば、圧縮機をその設置可能なスペ
ースなどの事情によりやむを得ず冷媒循環配管系の最も
低い個所に設置した場合にも、朝の気温上昇時刻などに
おいて装置始動前に配管系内の圧力分布が変動すること
などに基づいて圧縮機内に液冷媒が流入し次第に滞留し
ようとする状況が生じても、圧縮機の冷媒吸入口と連通
している冷媒溜り内に液相冷媒が流下し補集されてしま
う。
According to the above technical means, even if the compressor is unavoidably installed at the lowest point of the refrigerant circulation piping system due to the space where it can be installed, etc. Even if a situation occurs in which the liquid refrigerant flows into the compressor and gradually tries to stay due to fluctuations in the pressure distribution of the liquid refrigerant, the liquid-phase refrigerant flows down into the refrigerant reservoir communicating with the refrigerant suction port of the compressor. Will be collected.

従って、上記の装置始動時における液冷媒の圧縮に起因
する騒音の発生が防がれる。
Therefore, it is possible to prevent the generation of noise due to the compression of the liquid refrigerant at the time of starting the device.

冷媒溜り内の冷媒は、装置の運転中に次第に気化して冷
媒の循環路内に戻されるので、冷媒溜りは次回の装置停
止時における液冷媒受入れに備えることができる。
The refrigerant in the refrigerant reservoir gradually vaporizes during the operation of the device and is returned to the refrigerant circulation path, so that the refrigerant reservoir can be prepared for receiving the liquid refrigerant at the next stop of the device.

〔実施例〕〔Example〕

以下に付図に示す実施例に基づいて本発明装置の具体的
な構成を説明する。
A specific configuration of the device of the present invention will be described below based on an embodiment shown in the accompanying drawings.

始めに自動車用空気調和装置に使用される冷凍装置の全
体構成とその作動を冷凍サイクル図としての第3図を参
照しながら説明する。
First, the overall configuration and operation of a refrigerating apparatus used in an automobile air conditioner will be described with reference to FIG. 3 as a refrigerating cycle diagram.

圧縮機1は冷媒吸入口1aと冷媒吐出口1bとを備え、吸入
口1aに冷媒帰路をなす低圧側冷媒配管10が、吐出口1bに
は冷媒往路をなす高圧側冷媒配管11が接続されている。
配管10の始端は減圧装置5の出口に、また配管11の終端
は減圧装置5の入口に接続されている。車室内に設置さ
れた蒸発器6において、蒸発のための気化潜熱を被冷却
空気から奪って冷却仕事を果たした気相冷媒は、圧縮機
1の吸引力によってその吸入口1aに吸入され、高温高圧
に圧縮されたうえ吐出口1bから高圧側冷媒配管11に送り
出される。そして、この冷媒は、先ずサージタンク3を
通過することによって膨張し、消音作用を受けた後、凝
縮器4に流入して図示しない冷却用ファンの働きによっ
て冷却液化する。液化した冷媒は減圧装置としての膨張
弁5を通過して減圧された霧化状態となって蒸発器6に
流入し、図示しないファンによってこの蒸発器6に送風
される被冷却空気(車室内空気叉は車室外空気)から気
化潜熱を奪って空気を冷却すると共に、気相冷媒にもど
って低圧側冷媒配管10に排出され、気液分離と冷媒の一
時貯留機能をもつアキュムレータ7を経て圧縮機1の吸
入口1aに再吸入されて冷媒循環の1サイクルを終える。
蒸発器6で冷却された冷風は車室内へ吹出して車室内の
冷房を行う。
The compressor 1 includes a refrigerant suction port 1a and a refrigerant discharge port 1b. A low pressure side refrigerant pipe 10 serving as a refrigerant return route is connected to the suction port 1a, and a high pressure side refrigerant pipe 11 serving as a refrigerant outward route is connected to the discharge port 1b. There is.
The beginning of the pipe 10 is connected to the outlet of the pressure reducing device 5, and the end of the pipe 11 is connected to the inlet of the pressure reducing device 5. In the evaporator 6 installed in the passenger compartment, the vapor phase refrigerant that has taken the latent heat of vaporization for evaporation from the air to be cooled and has performed cooling work is sucked into the suction port 1a by the suction force of the compressor 1 After being compressed to a high pressure, it is sent out to the high pressure side refrigerant pipe 11 from the discharge port 1b. Then, the refrigerant first expands by passing through the surge tank 3 and receives a sound deadening effect, then flows into the condenser 4 and is liquefied as a cooling liquid by the action of a cooling fan (not shown). The liquefied refrigerant passes through an expansion valve 5 as a decompression device, becomes a decompressed atomized state, flows into an evaporator 6, and is cooled by air (vehicle interior air) blown to the evaporator 6 by a fan (not shown). (Or the air outside the passenger compartment) takes the latent heat of vaporization to cool the air, and returns to the vapor-phase refrigerant to be discharged to the low-pressure side refrigerant pipe 10, and passes through an accumulator 7 having a gas-liquid separation and refrigerant temporary storage function, and then a compressor. The first suction port 1a is re-sucked to complete one cycle of the refrigerant circulation.
The cool air cooled by the evaporator 6 blows out into the vehicle interior to cool the vehicle interior.

そして、本発明装置の特長をなす冷媒溜り2は、圧縮機
1の吸入口1aに接続されている低圧側冷媒配管10に介在
させる様にして吸入口1a及び吐出口1bより低い個所に取
り付けられている。
The refrigerant reservoir 2 which is a feature of the device of the present invention is attached to a position lower than the suction port 1a and the discharge port 1b so as to intervene in the low pressure side refrigerant pipe 10 connected to the suction port 1a of the compressor 1. ing.

第1図は本発明による第1実施例を示すものであって、
自動車用空調装置に組込まれる冷凍装置の圧縮機部分
と、その吸入口1aに接続される様にして取り付けた冷媒
溜り2とを示しており、圧縮機1はその取付け用ブラケ
ットA、B、C、及びDによって自動車のエンジンボデ
ーEにボルトFを用いて固定されている。
FIG. 1 shows a first embodiment according to the present invention,
1 shows a compressor part of a refrigeration system incorporated in an automobile air conditioner and a refrigerant reservoir 2 attached so as to be connected to its suction port 1a. The compressor 1 is provided with its mounting brackets A, B and C. , And D are fixed to the engine body E of the automobile with bolts F.

冷媒溜り2はアルミニウムなどの金属で造られた容器部
分2aと蓋部分2bとをろう付け法その他の方法によって液
密的に接合して構成されている。容器部分2aの下部には
アキュムレータ7に連なる低圧側冷媒配管10の下流端が
管継手21を用いて接続され、また蓋部分2bには圧縮機1
の吸入口1aへの接続用配管22が一体的に形成されてお
り、圧縮機1のハウジング1cの側壁面に水平方向に開口
する吸入口1aに管継手23を用いて連結されている。
The coolant reservoir 2 is configured by liquid-tightly joining a container portion 2a and a lid portion 2b made of a metal such as aluminum by a brazing method or another method. The lower end of the low pressure side refrigerant pipe 10 connected to the accumulator 7 is connected to the lower portion of the container portion 2a using a pipe joint 21, and the lid portion 2b is connected to the compressor 1
A pipe 22 for connecting to the suction port 1a is integrally formed, and is connected to the suction port 1a that opens horizontally in the side wall surface of the housing 1c of the compressor 1 using a pipe joint 23.

第2図は圧縮機1の具体的な構造を部分断面図として示
した。
FIG. 2 shows a specific structure of the compressor 1 as a partial sectional view.

圧縮機1はこの実施例では斜板式の多シリンダタイプの
ものが使われている。13は圧縮機1のハウジング、14は
圧縮機1の回転軸、15は回転軸14に軸嵌された斜板、16
は回転軸14の軸方向に平行させて回転軸を取り巻く様に
して複数個設けられている冷媒圧縮用シリンダのピスト
ンである。斜板15の回転の動きがピストン16に伝えられ
ることによってピストン16は往復動させられる。17はマ
グネットクラッチであって、自動車エンジンの回転力を
断続自在に圧縮機1に伝導させるものである。
In this embodiment, the compressor 1 is a swash plate type multi-cylinder type. Reference numeral 13 is a housing of the compressor 1, 14 is a rotary shaft of the compressor 1, 15 is a swash plate axially fitted to the rotary shaft 14, 16
Are pistons of a plurality of refrigerant compression cylinders that are provided parallel to the axial direction of the rotary shaft 14 so as to surround the rotary shaft. By transmitting the rotational movement of the swash plate 15 to the piston 16, the piston 16 is reciprocated. Reference numeral 17 denotes a magnet clutch which intermittently transmits the rotational force of the automobile engine to the compressor 1.

次に、上記実施例装置の作動を説明する。Next, the operation of the apparatus of the above embodiment will be described.

第3図に示された主要構成部品を備える冷凍装置の場合
には、スペース的に極めてゆとりの乏しいエンジンルー
ム内にこれらの各部品をその望ましい取付け位置関係の
もとに組付けようとすると、必然的に圧縮機1が他の部
品に較べて最も低い個所に落ちつかざるを得ない場合が
応々にして生ずるものである。
In the case of the refrigerating apparatus including the main components shown in FIG. 3, when attempting to assemble each of these parts in the engine room, which is extremely limited in terms of space, under the desired mounting positional relationship, Inevitably, the compressor 1 inevitably has to be settled at the lowest position as compared with other parts.

冷凍サイクルの各構成部品のうちで圧縮機1を他の部品
に較べて最も低い位置に取付けた空調装置では、朝の気
温急上昇時期などに、冷凍装置内で熱容量の非常に大き
い圧縮機1と、熱容量の比較的小さい他の部分とで温度
上昇の差が生じ、圧縮機部分の温度上昇が最も小さく、
従って圧縮機部分の冷媒蒸気圧が最も低くなる。冷凍装
置の他の部分に滞留していた液冷媒が、最も低い位置に
位置し、かつ最も冷媒蒸気圧が低い圧縮機1に向って流
下してくることになる。
In the air conditioner in which the compressor 1 is installed at the lowest position among the components of the refrigeration cycle as compared with the other parts, the compressor 1 having a very large heat capacity in the refrigeration device is used in the morning when the temperature suddenly rises. , The difference in temperature rise between other parts with relatively small heat capacity, the temperature rise in the compressor part is the smallest,
Therefore, the refrigerant vapor pressure in the compressor section becomes the lowest. The liquid refrigerant that has accumulated in other parts of the refrigeration system flows down toward the compressor 1 located at the lowest position and having the lowest refrigerant vapor pressure.

もし、冷媒溜り2が設けてなければ、上述の様な理由に
よって圧縮機1のハウジング1c内に次第に液相冷媒aが
溜まって来る。この滞留液冷媒の液面高さが圧縮機1の
吸入口1aの底面レベル(第1図中の(イ)−(イ)ライ
ン)以下にあれば、ハウジング1c内の空間は低圧側冷媒
配管10と連通状態にあるので、圧縮機1を始動した際
に、圧縮機1の回転に伴う液冷媒の圧縮騒音は生じな
い。液面高さが次第に上昇して(ロ)−(ロ)ラインで
示したレベルにまで高まると、吸入口1aはハウジング1c
内に溜っている液冷媒aによって完全に封鎖されるの
で、それに伴って液冷媒の圧縮騒音が発生し始め、その
騒音の強さは破線で示した液面高さ(ハ)−(ハ)の上
昇と共に次第に高まって来る。
If the refrigerant reservoir 2 is not provided, the liquid phase refrigerant a gradually accumulates in the housing 1c of the compressor 1 for the reason described above. If the liquid level of the accumulated liquid refrigerant is below the bottom level ((a)-(a) line in FIG. 1) of the suction port 1a of the compressor 1, the space inside the housing 1c is a low pressure side refrigerant pipe. Since it is in communication with 10, the compression noise of the liquid refrigerant due to the rotation of the compressor 1 does not occur when the compressor 1 is started. When the liquid level gradually rises and rises to the level indicated by the line (b)-(b), the suction port 1a will move to the housing 1c.
Since it is completely blocked by the liquid refrigerant a accumulated therein, the compression noise of the liquid refrigerant starts to be generated with it, and the intensity of the noise is the liquid level height (c)-(c) indicated by the broken line. Gradually increases with the rise of.

しかし、この実施例装置では圧縮機1の吸入口1より低
い個所に液冷媒入口を設けてある冷媒溜り2が接続され
ているので、上記の如くして圧縮機1のハウジング1c内
に向けて流下して来る液冷媒は、吸入口1aの高さに到達
する以前に冷媒溜り2内に補集することができる。また
高圧側冷媒配11をたどって圧縮機1の吐出口1bに向けて
逆流して来る液相冷媒にあったとしても、圧縮機ハウジ
ング1c内に流入した冷媒のうち前記の(イ)−(イ)水
準を越えて更に流入して来る液冷媒はすべて吸入口1aか
ら冷媒溜り2に向けて排出させられてしまう。従って、
液冷媒溜り2の望ましい容量を実車を用いたフィールド
テストに基づいて設定して置くことによって、朝の気温
急上昇時に圧縮機1を起動しても、圧縮機1内での液相
冷媒圧縮を確実に防止して、騒音の発生原因を確実に取
り除くことができる。
However, in this embodiment, since the refrigerant reservoir 2 having the liquid refrigerant inlet is connected to the compressor 1 at a position lower than the suction port 1, the compressor 1 is directed toward the inside of the housing 1c of the compressor 1 as described above. The liquid refrigerant flowing down can be collected in the refrigerant reservoir 2 before reaching the height of the suction port 1a. Further, even if there is a liquid-phase refrigerant that flows backward toward the discharge port 1b of the compressor 1 by following the high-pressure side refrigerant distribution 11, the above-mentioned (a)-(of the refrigerant that has flowed into the compressor housing 1c B) All the liquid refrigerant that has flowed in beyond the level is discharged from the suction port 1a toward the refrigerant reservoir 2. Therefore,
By setting the desired capacity of the liquid refrigerant pool 2 based on a field test using an actual vehicle, even if the compressor 1 is started in the morning when the temperature rises rapidly, the liquid phase refrigerant compression in the compressor 1 is ensured. Therefore, the cause of noise can be reliably removed.

冷凍装置の始動時に冷媒溜り2内に滞留していた液冷媒
は装置が定常運転状態に入るに従って気化し冷媒循環サ
イクル内に戻される。
The liquid refrigerant that has accumulated in the refrigerant reservoir 2 at the time of starting the refrigeration system is vaporized and returned to the refrigerant circulation cycle as the system enters a steady operation state.

冷媒封入量が1100gの冷凍装置を使用して上記実施例装
置の冷媒圧縮騒音防止効果について実車テストを行った
所、冷媒溜り2を取り除いた場合には、装置始動時に圧
縮機1内の空隙部に流入して来る液相冷媒の量は、気候
条件などによって280〜495ccにも達し、起動時の吐出冷
媒圧のピーク値は10〜40kg/cm2にまで上昇した。そして
この冷媒滞留量の範囲内では耳ざわりな液冷媒圧縮騒音
が発生した。
When an actual vehicle test was performed on the refrigerant compression noise prevention effect of the above-described apparatus using a refrigeration apparatus having a refrigerant filling amount of 1100 g, when the refrigerant pool 2 was removed, a void portion inside the compressor 1 at the time of starting the apparatus. The amount of liquid-phase refrigerant flowing into the tank reached 280 to 495cc depending on climatic conditions, and the peak value of the discharge refrigerant pressure at startup increased to 10 to 40kg / cm 2 . And within the range of this refrigerant retention amount, a harsh noise of liquid refrigerant compression was generated.

一方、本発明装置による冷媒溜り2を取り付けた場合に
は、装置始動時に圧縮機1内の液冷媒滞留量は、130〜1
85ccにまで減少し、起動時の冷媒の吐出ピーク圧も6.5
〜8kg/cm2に低下して液冷媒圧縮騒音は全く発生しなか
った。そして従来圧縮機1の吸入弁から発生していた振
動音も冷媒溜り2による消音効果によって消滅した。
On the other hand, when the refrigerant reservoir 2 according to the device of the present invention is attached, the liquid refrigerant retention amount in the compressor 1 at the time of starting the device is 130 to 1
Reduced to 85cc and the peak discharge pressure of the refrigerant at startup is 6.5
Liquid refrigerant compression noise did not occur at all, dropping to ~ 8 kg / cm 2 . The vibration noise generated from the suction valve of the compressor 1 in the related art is also eliminated by the sound deadening effect of the refrigerant reservoir 2.

第4図は第2実施例を示しており、圧縮機1の吸入口1a
近辺の側面が描かれている。この実施例では冷媒溜り2
は、オメガ型、U字型その他の適宜の下側向きの屈曲形
状が与えられた金属製の短い配管から成り立っている。
もっともスペースに余裕がなければ横向きに屈曲させて
もよい。
FIG. 4 shows the second embodiment, and the suction port 1a of the compressor 1 is shown.
The side face in the vicinity is drawn. In this embodiment, the refrigerant pool 2
Consists of a short pipe made of metal, such as an omega type, a U-shaped type, or the like, provided with an appropriate downward bent shape.
However, if there is not enough space, you may bend it sideways.

曲管状をなす冷媒溜り2は、その一端側が管継手23を介
して圧縮機吸入口1aに、他端側は管継手24を介して低圧
側冷媒配管10に接続されている。この冷媒溜り2の有効
冷媒貯留容積は、(イ)−(イ)線で示されたレベル以
下における曲管内の容積ということになる。
The curved refrigerant reservoir 2 has one end side connected to the compressor suction port 1a via a pipe joint 23 and the other end side connected to the low pressure side refrigerant pipe 10 via a pipe joint 24. The effective refrigerant storage volume of the refrigerant reservoir 2 is the volume in the curved pipe at the level shown by the line (a)-(b) or less.

第5図は第3実施例を示すものであって、圧縮機1の吸
入口近傍の側面を示している。圧縮機吸入口1aに管継手
23を介して接続した可撓性チューブまたは金属管からな
る低圧側冷媒配管10を吸入口1aの近辺において吸入口1a
より低いレベルにまで垂下させることによって、図中の
(イ)−(イ)線以下の点斜線で示した部分が冷媒溜り
2としての役目を果してくれる。
FIG. 5 shows a third embodiment and shows a side surface in the vicinity of the suction port of the compressor 1. Pipe fitting to compressor inlet 1a
A low-pressure side refrigerant pipe 10 made of a flexible tube or a metal pipe connected via 23 is provided near the suction port 1a at the suction port 1a.
By making it hang down to a lower level, the portion shown by the dotted lines below the line (a)-(a) in the figure serves as the coolant reservoir 2.

この図では下向きに配管10をたるませているが、場所に
余裕がなければ吸入口1a(または吐出口1b)より低い位
置で水平方向にたるませても勿論さしつかえない。
In this figure, the pipe 10 is slackened downward, but if there is no room in the location, it is of course possible to sag it horizontally below the inlet 1a (or outlet 1b).

第6図および第7図は第4実施例を示すものであって、
冷媒溜り2を圧縮機1と一体構造として構成したもので
ある。本例においては、2つの容器部材30,31を複数の
ボルト32〜36により締め付けることにより冷媒溜り2を
構成している。また、ボルト34,35,36を圧縮ハウジング
1cのねじ穴1dにねじ込むことにより、冷媒溜り2を圧縮
機1に直接固定し、この両者1,2を一体化している。
6 and 7 show a fourth embodiment,
The refrigerant reservoir 2 and the compressor 1 are integrated with each other. In this example, the refrigerant reservoir 2 is configured by fastening the two container members 30 and 31 with a plurality of bolts 32 to 36. In addition, bolts 34, 35, 36 are compressed housing
The refrigerant reservoir 2 is directly fixed to the compressor 1 by screwing it into the screw hole 1d of 1c, and both 1 and 2 are integrated.

冷媒溜り2の一方の容器部材30の上部に形成した連通口
37によって、冷媒溜り2の内部は冷媒吸入口1aに連通し
ている。他方の容器部材31の下部には低圧冷媒配管10と
接続される冷媒吸入パイプ38が一体形成されている。
Communication port formed in the upper part of one container member 30 of the refrigerant reservoir 2
By 37, the inside of the refrigerant reservoir 2 communicates with the refrigerant inlet 1a. A refrigerant suction pipe 38 connected to the low-pressure refrigerant pipe 10 is integrally formed in the lower portion of the other container member 31.

また、上記両容器部材30,31には、圧縮機1の冷媒吐出
口1bと連通する連通口39,40が形成され、更にこれらと
連通し、かつ外部へ突出する冷媒吐出パイプ41が容器部
材31に一体成形されている。
Further, the both container members 30 and 31 are formed with communication ports 39 and 40 which communicate with the refrigerant discharge port 1b of the compressor 1, and a refrigerant discharge pipe 41 which communicates with these and projects to the outside is formed in the container member. 31 is integrally molded.

ゴム製のOリング42,43,44,45は各通路接続部の気密を
維持するためのシール部材として作用する。
The rubber O-rings 42, 43, 44, 45 act as a seal member for maintaining the airtightness of each passage connecting portion.

なお、第3図の冷凍サイクルでは、冷媒の気液分離およ
び一時貯留用タンクとしてのアキュムレータ7を使用
し、しかもスペース事情によりこのかなり容量の大きい
アキュムレータ7を圧縮機1より低い個所に設けること
ができない場合が示されているが、アキュムレータの代
りにレシーバを用いる冷凍サイクルやヒートポンプサイ
クルにも本発明による技術的思想は適用できる。また必
要に応じて自動車用空調装置以外の使途のためにこの冷
凍装置を用いることも自由である。
In the refrigeration cycle shown in FIG. 3, the accumulator 7 as a tank for gas-liquid separation and temporary storage of the refrigerant is used, and the accumulator 7 having a considerably large capacity may be provided at a location lower than the compressor 1 due to space constraints. Although the case where it is not possible is shown, the technical idea according to the present invention can be applied to a refrigeration cycle or a heat pump cycle in which a receiver is used instead of the accumulator. In addition, this refrigeration system can be freely used for purposes other than the air conditioning system for automobiles as needed.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は本発明の第1実施例を示した図であっ
て、第1図は冷媒溜りを接続させた圧縮機の一部断面側
面図、第2図は圧縮機の一部破断斜視図、第3図は冷凍
サイクル図である。 第4図と第5図はそれぞれ第2実施例と第3実施例を説
明した、圧縮機および冷媒溜り部分の側面図である。第
6図は第4実施例を示す圧縮機の一部断面側面図、第7
図は第6図の分解斜視図である。 1…圧縮機,1a…冷媒吸入口,1b…冷媒吐出口,2…冷媒溜
り,3…アキュムレータ,4…凝縮器,5…減圧装置,6…蒸発
器,10,11…冷媒循環用配管。
1 to 3 are views showing a first embodiment of the present invention, in which FIG. 1 is a partial sectional side view of a compressor to which a refrigerant reservoir is connected, and FIG. Partly broken perspective view, and FIG. 3 is a refrigeration cycle diagram. FIG. 4 and FIG. 5 are side views of the compressor and the refrigerant reservoir portion, respectively, for explaining the second embodiment and the third embodiment. FIG. 6 is a partial sectional side view of a compressor showing a fourth embodiment, FIG.
The figure is an exploded perspective view of FIG. 1 ... Compressor, 1a ... Refrigerant inlet, 1b ... Refrigerant outlet, 2 ... Refrigerant reservoir, 3 ... Accumulator, 4 ... Condenser, 5 ... Pressure reducing device, 6 ... Evaporator, 10, 11 ... Refrigerant circulation piping.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 省吾 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 伊藤 宏昭 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (56)参考文献 特公 昭46−18693(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shogo Makino 1-1, Showa-cho, Kariya city, Aichi Prefecture, Nihon Denso Co., Ltd. (72) Inventor Hiroaki Ito 1-1-cho, Showa-cho, Kariya city, Aichi prefecture Within the corporation (56) References Japanese Patent Publication Sho 46-18693 (JP, B1)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】冷媒の圧縮機、凝縮器、減圧装置、及び蒸
発器を冷媒循環用配管を介して連結させた冷凍装置にお
いて、 前記圧縮機を前記各部品のうち最下位置に配置するとと
もに、前記圧縮機の冷媒吸入口および冷媒吐出口より低
い位置に、冷媒溜りを配置し、この冷媒溜りを前記冷媒
吸入口の冷媒通路に連通させたことを特徴とする冷凍装
置。
1. A refrigeration system in which a refrigerant compressor, a condenser, a pressure reducing device, and an evaporator are connected via a refrigerant circulation pipe, and the compressor is arranged at the lowest position among the respective parts. A refrigerating apparatus, wherein a refrigerant reservoir is arranged at a position lower than a refrigerant inlet and a refrigerant outlet of the compressor, and the refrigerant reservoir is communicated with a refrigerant passage of the refrigerant inlet.
【請求項2】前記冷媒溜りを、前記冷媒吸入口の入口側
に接続される独立の容器から構成することを特徴とする
特許請求の範囲第1項記載の冷凍装置。
2. The refrigerating apparatus according to claim 1, wherein the refrigerant reservoir is composed of an independent container connected to the inlet side of the refrigerant suction port.
【請求項3】前記冷媒溜りを、前記冷媒吸入口の入口側
に接続される低圧側冷媒配管自身の一部で構成すること
を特徴とする特許請求の範囲第1項記載の冷凍装置。
3. The refrigerating apparatus according to claim 1, wherein the refrigerant reservoir is constituted by a part of the low-pressure side refrigerant pipe itself connected to the inlet side of the refrigerant suction port.
【請求項4】前記冷媒留りを、前記圧縮機と一体に構成
することを特徴とする特許請求の範囲第1項記載の冷凍
装置。
4. The refrigerating apparatus according to claim 1, wherein the refrigerant pool is formed integrally with the compressor.
【請求項5】前記圧縮機を自動車のエンジンルーム内に
配置するとともに、前記圧縮機を自動車のエンジンによ
り駆動し、自動車用空調装置の冷凍装置として構成され
ていることを特徴とする特許請求の範囲第1項ないし第
4項のいづれか1つに記載の冷凍装置。
5. The compressor is arranged in an engine room of an automobile, and the compressor is driven by an engine of the automobile to constitute a refrigerating device for an air conditioner for automobiles. The refrigeration apparatus according to any one of the first to fourth aspects.
JP61111192A 1986-02-06 1986-05-15 Refrigeration equipment Expired - Lifetime JPH0721368B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-24656 1986-02-06
JP2465686 1986-02-06

Publications (2)

Publication Number Publication Date
JPS62276375A JPS62276375A (en) 1987-12-01
JPH0721368B2 true JPH0721368B2 (en) 1995-03-08

Family

ID=12144184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111192A Expired - Lifetime JPH0721368B2 (en) 1986-02-06 1986-05-15 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH0721368B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333313A (en) * 2006-06-15 2007-12-27 Denso Corp Low-pressure refrigerant piping in refrigeration cycle device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6552836B2 (en) * 2015-02-26 2019-07-31 シャープ株式会社 refrigerator
JP2020106174A (en) * 2018-12-26 2020-07-09 株式会社デンソー Refrigeration cycle device
JP6860621B2 (en) * 2019-07-02 2021-04-14 シャープ株式会社 Refrigeration cycle equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525039A (en) * 1975-06-30 1977-01-14 Hitachi Ltd Freezing cycle
JPS528554A (en) * 1975-07-09 1977-01-22 Hitachi Ltd Refrigerator evaporator
JPS5486841A (en) * 1977-12-23 1979-07-10 Hitachi Ltd Refrigerating cycle
JPS5843796Y2 (en) * 1978-06-26 1983-10-04 富士通株式会社 Printed board holding structure
JPS5526331U (en) * 1978-08-08 1980-02-20
JPS5694456U (en) * 1979-12-21 1981-07-27
JPS58165272U (en) * 1982-04-30 1983-11-02 三菱重工業株式会社 Sealed rotary compressor with built-in accumulator
JPS597367U (en) * 1982-07-07 1984-01-18 三菱電機株式会社 Accumulator for refrigerant compressor
JPS59124961U (en) * 1983-02-12 1984-08-22 ダイキン工業株式会社 Heat pump air conditioner
JPS59178560U (en) * 1983-05-14 1984-11-29 ダイキン工業株式会社 Refrigeration equipment
JPS6077971U (en) * 1983-11-02 1985-05-31 松下冷機株式会社 Heat pump type refrigeration equipment
JPS60108975U (en) * 1983-12-27 1985-07-24 株式会社東芝 Refrigerated truck
JPS60229817A (en) * 1984-04-26 1985-11-15 Nippon Denso Co Ltd Controller of car refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333313A (en) * 2006-06-15 2007-12-27 Denso Corp Low-pressure refrigerant piping in refrigeration cycle device

Also Published As

Publication number Publication date
JPS62276375A (en) 1987-12-01

Similar Documents

Publication Publication Date Title
JP3116996B2 (en) Recipient integrated refrigerant condenser
US3633377A (en) Refrigeration system oil separator
JP3301169B2 (en) Refrigeration equipment
EP0958952A1 (en) Truck refrigeration unit incorporating horizontal rotary compressor
JP2003090643A (en) Refrigeration cycle system
US6807821B2 (en) Compressor with internal accumulator for use in split compressor
US3449924A (en) Automotive air-conditioning system
US6341647B1 (en) Separator-integrated condenser for vehicle air conditioner
US20020059806A1 (en) Refrigeration cycle apparatus
JP3008765B2 (en) Refrigeration cycle
US6318116B1 (en) Plastic internal accumulator-dehydrator baffle
JPH0721368B2 (en) Refrigeration equipment
US5396784A (en) Oil management system for screw compressor utilized in refrigeration system
US5787573A (en) Method of making air conditioner receiver dryer
JP2001082814A (en) Refrigeration cycle device and accululator using the same
JP4221823B2 (en) Receiver integrated refrigerant condenser
JPH09257337A (en) Condenser with auxiliary machinery
KR100819015B1 (en) Internal oil separator for compressor
US3411319A (en) Accumulator
KR100624025B1 (en) Accumulator for air conditioner
JP4238434B2 (en) Refrigeration cycle equipment
KR200164344Y1 (en) Cooling apparatus for cars
JPS6240298Y2 (en)
JP2000337737A (en) Air conditioner and accumulator
JPH0541318Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term