JP2020106174A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2020106174A
JP2020106174A JP2018243393A JP2018243393A JP2020106174A JP 2020106174 A JP2020106174 A JP 2020106174A JP 2018243393 A JP2018243393 A JP 2018243393A JP 2018243393 A JP2018243393 A JP 2018243393A JP 2020106174 A JP2020106174 A JP 2020106174A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
flow direction
upstream
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018243393A
Other languages
Japanese (ja)
Inventor
竹尾 友宏
Tomohiro Takeo
友宏 竹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018243393A priority Critical patent/JP2020106174A/en
Priority to PCT/JP2019/044813 priority patent/WO2020137231A1/en
Publication of JP2020106174A publication Critical patent/JP2020106174A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Abstract

To avoid insufficiency of refrigeration oil in a compressor at the time of activation after stop for a long period, with a simple configuration.SOLUTION: A refrigeration cycle device is configured such that a plurality of component devices 10 to 13 comprising an outdoor heat exchanger 11 for condensing refrigerant, and a compressor 10 for compressing refrigerant and discharging it toward the outdoor heat exchanger 11 are connected in an annular manner by a pipe 14, and refrigerant is circulated in a predetermined refrigerant flow direction by operating the compressor 10. The refrigerant cycle device is provided with an inclined part 14a in the pipe connecting the compressor 10 and an upstream-side component device 13 located upstream of the compressor 10 in the refrigerant flow direction. The inclined part 14a is inclined so as to become higher toward the downstream side in the refrigerant flow direction.SELECTED DRAWING: Figure 3

Description

本発明は、冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle device.

圧縮機、凝縮器、膨張弁及び蒸発器等が配管で環状に接続された冷凍サイクル装置では、サイクル内を冷媒が循環する。冷媒には、圧縮機を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクル内を循環する。このような冷凍サイクル装置を長時間停止すると、外気温の変動によって圧縮機内から冷凍機油が流出し、圧縮機の起動時に圧縮機内の冷凍機油が不足するおそれがある。 In a refrigeration cycle device in which a compressor, a condenser, an expansion valve, an evaporator, and the like are connected in an annular shape by pipes, a refrigerant circulates in the cycle. Refrigerant oil for lubricating the compressor is mixed in the refrigerant, and a part of the refrigerator oil circulates in the cycle together with the refrigerant. If such a refrigeration cycle apparatus is stopped for a long time, the refrigerating machine oil may flow out from the compressor due to the fluctuation of the outside air temperature, and the refrigerating machine oil in the compressor may run short when the compressor is started.

これに対し、特許文献1では、圧縮機と凝縮器との間に、圧縮機から流出した冷凍機油を回収する貯留タンクを設け、貯留タンクで回収された冷凍機油を自重によって圧縮機に戻すことが提案されている。 On the other hand, in Patent Document 1, a storage tank for recovering refrigerating machine oil flowing out from the compressor is provided between the compressor and the condenser, and the refrigerating machine oil recovered in the storage tank is returned to the compressor by its own weight. Is proposed.

特開2017−48928号公報JP, 2017-48928, A

しかしながら、特許文献1のように、冷凍サイクル装置に冷凍機油を回収する貯留タンクを設ける場合には、装置全体の体格が大きくなる。このため、冷凍サイクル装置の設置スペースが大きくなり、周辺部品と両立させることが困難になる。また、重量物である貯留タンクを設ける場合には、振動耐久性を満足させるために、取り付けブラケットが必要となる。 However, in the case where the refrigeration cycle apparatus is provided with a storage tank for recovering refrigerating machine oil as in Patent Document 1, the size of the entire apparatus becomes large. For this reason, the installation space of the refrigeration cycle apparatus becomes large, and it becomes difficult to make it compatible with peripheral parts. Further, when a heavy storage tank is provided, a mounting bracket is required to satisfy vibration durability.

本発明は上記点に鑑み、簡易な構成で、長時間停止後の起動時に圧縮機で冷凍機油が不足することを回避することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to avoid a shortage of refrigerating machine oil in a compressor at the time of start-up after a long time stop.

上記目的を達成するため、請求項1に記載の発明では、室外熱交換器(11)と、圧縮機(10)とを含む複数の構成機器(10〜13)が配管(14)によって環状に接続され、圧縮機が作動することで冷媒が所定の冷媒流れ方向に循環する冷凍サイクル装置であって、圧縮機と、圧縮機よりも冷媒流れ方向の上流側に位置する構成機器である上流側構成機器(13)とを接続する配管に、冷媒流れ方向の下流側に向かって高くなるように傾斜した傾斜部(14a)が設けられている。 In order to achieve the above object, in the invention according to claim 1, a plurality of constituent devices (10 to 13) including an outdoor heat exchanger (11) and a compressor (10) are annularly formed by a pipe (14). A refrigeration cycle device which is connected and in which a refrigerant circulates in a predetermined refrigerant flow direction when the compressor operates, and is a compressor and an upstream side that is a component device located upstream of the compressor in the refrigerant flow direction. A pipe connecting the constituent device (13) is provided with an inclined portion (14a) inclined so as to become higher toward the downstream side in the refrigerant flow direction.

この傾斜部により、圧縮機の作動停止時に圧縮機の冷媒流れ方向上流側に存在する冷凍機油を、圧縮機が起動するまで、外気温の変動による影響を受けることなく、圧縮機と上流側構成機器を接続する配管の内部に保持することができる。 With this inclined portion, the refrigerating machine oil existing on the upstream side in the refrigerant flow direction of the compressor when the operation of the compressor is stopped is not affected by the fluctuation of the outside temperature until the compressor is started, and the compressor and the upstream side configuration are It can be held inside the piping that connects the equipment.

圧縮機と上流側構成機器を接続する配管に保持された冷凍機油は、冷媒流れ方向において、圧縮機に近い位置に存在している。このため、圧縮機を長時間停止後に起動した場合に、速やかに圧縮機に冷凍機油が供給され、圧縮機で冷凍機油が不足することを回避できる。 The refrigerating machine oil held in the pipe connecting the compressor and the upstream-side component device is present at a position close to the compressor in the refrigerant flow direction. Therefore, when the compressor is started after being stopped for a long time, the refrigerating machine oil is promptly supplied to the compressor, and it is possible to avoid a shortage of the refrigerating machine oil in the compressor.

なお、上記各構成要素の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。 It should be noted that the reference numerals in parentheses of the above-mentioned respective constituent elements show the corresponding relationship with the concrete means described in the embodiments described later.

本発明の実施形態に係る冷凍サイクル装置の全体構成図である。It is the whole refrigerating cycle device lineblock diagram concerning the embodiment of the present invention. 圧縮機からの冷凍機油の流出を説明するための図である。It is a figure for demonstrating outflow of the refrigerator oil from a compressor. 圧縮機、蒸発器及びこれらを接続する配管を示す図である。It is a figure showing a compressor, an evaporator, and piping which connects these.

以下、本発明の一実施形態を図面を用いて説明する。本実施形態は、本発明の冷凍サイクル装置1を車両用空調装置に適用している。本実施形態の冷凍サイクル装置1は、車両用空調装置において、空調対象空間である車室内の空調を行うために、車室内へ送風される送風空気を冷却する。 An embodiment of the present invention will be described below with reference to the drawings. In the present embodiment, the refrigeration cycle device 1 of the present invention is applied to a vehicle air conditioner. In the vehicle air conditioner, the refrigeration cycle apparatus 1 of the present embodiment cools blown air that is blown into the vehicle interior in order to perform air conditioning of the vehicle interior that is the air conditioning target space.

図1に示すように、冷凍サイクル装置1は、圧縮機10、凝縮器11、膨張弁12、蒸発器13を含んだ構成機器を備えている。各構成機器10〜13は配管14で環状に接続されており、圧縮機10が作動することで冷媒が所定の冷媒流れ方向に循環する。具体的には、圧縮機10の作動によって、冷媒は圧縮機10→凝縮器11→膨張弁12→蒸発器13の順に循環する。本明細書における冷媒流れ方向は、圧縮機10の作動中における冷媒流れ方向を示している。 As shown in FIG. 1, the refrigeration cycle apparatus 1 includes constituent devices including a compressor 10, a condenser 11, an expansion valve 12, and an evaporator 13. Each of the constituent devices 10 to 13 is annularly connected by a pipe 14, and when the compressor 10 operates, the refrigerant circulates in a predetermined refrigerant flow direction. Specifically, due to the operation of the compressor 10, the refrigerant circulates in the order of the compressor 10→condenser 11→expansion valve 12→evaporator 13. The refrigerant flow direction in this specification indicates the refrigerant flow direction during operation of the compressor 10.

冷媒としては、例えばR134aといったHFC系冷媒やR1234yfといったHFO系冷媒を用いることができる。冷媒には、圧縮機10を潤滑するための冷凍機油が混入されている。冷凍機油としては、例えばPAGオイル(ポリアルキレングリコールオイル)を用いることができる。PAGオイルは、液相冷媒に相溶性を有している。冷凍機油の一部は冷媒とともにサイクル内を循環する。 As the refrigerant, for example, an HFC refrigerant such as R134a or an HFO refrigerant such as R1234yf can be used. Refrigerant oil for lubricating the compressor 10 is mixed in the refrigerant. As the refrigerator oil, for example, PAG oil (polyalkylene glycol oil) can be used. PAG oil has compatibility with a liquid-phase refrigerant. A part of the refrigerating machine oil circulates in the cycle together with the refrigerant.

圧縮機10は、吸入口から吸入した冷媒を圧縮し、高圧冷媒として吐出口から吐出する。圧縮機10の吸入側は蒸発器13に接続され、圧縮機10の吸入側は凝縮器11に接続されている。圧縮機10の作動中は、冷媒に含まれる冷凍機油によって圧縮機10の摺動部分が潤滑される。 The compressor 10 compresses the refrigerant sucked from the suction port and discharges it as a high-pressure refrigerant from the discharge port. The suction side of the compressor 10 is connected to the evaporator 13, and the suction side of the compressor 10 is connected to the condenser 11. During operation of the compressor 10, the sliding portion of the compressor 10 is lubricated by the refrigerating machine oil contained in the refrigerant.

圧縮機10は、エンジン20とともにエンジンルーム内に配置されている。本実施形態の圧縮機10は、プーリ、ベルト等を介してエンジン20から出力される回転駆動力によって駆動される。 The compressor 10 is arranged in the engine room together with the engine 20. The compressor 10 of the present embodiment is driven by the rotational driving force output from the engine 20 via a pulley, a belt and the like.

凝縮器11は、圧縮機10で圧縮された高温の高圧冷媒と、冷却ファン11aにより送風される外気とを熱交換させることで、高圧冷媒を放熱させて冷却する。放熱器12は、エンジンルーム内の車両の前方側において、図示しないラジエータの前面側に配置される室外熱交換器である。凝縮器11は、圧縮機10よりも車両外部に近い位置に配置される。 The condenser 11 heat-exchanges the high-temperature high-pressure refrigerant compressed by the compressor 10 and the outside air blown by the cooling fan 11a, thereby radiating and cooling the high-pressure refrigerant. The radiator 12 is an outdoor heat exchanger arranged on the front side of a radiator (not shown) on the front side of the vehicle in the engine room. The condenser 11 is arranged closer to the outside of the vehicle than the compressor 10.

膨張弁12は、放熱器11から流出した冷媒を減圧させる。膨張弁12は、蒸発器13出口側冷媒の温度および圧力に基づいて蒸発器13出口側冷媒の過熱度を検知する感温部を有し、蒸発器13出口側冷媒の過熱度が予め定めた基準範囲内となるように機械的機構によって絞り開度を調整する温度式膨張弁を用いることができる。 The expansion valve 12 reduces the pressure of the refrigerant flowing out from the radiator 11. The expansion valve 12 has a temperature sensing unit that detects the superheat degree of the evaporator 13 outlet side refrigerant based on the temperature and pressure of the evaporator 13 outlet side refrigerant, and the evaporator 13 outlet side refrigerant superheat degree is predetermined. A thermal expansion valve that adjusts the throttle opening degree by a mechanical mechanism so as to be within the reference range can be used.

蒸発器13は、膨張弁12にて減圧された低圧冷媒と送風空気とを熱交換させ、低圧冷媒を蒸発させて吸熱作用を発揮させる。なお、蒸発器13が本発明の上流側構成機器に相当している。 The evaporator 13 exchanges heat between the low pressure refrigerant decompressed by the expansion valve 12 and the blown air to evaporate the low pressure refrigerant and exert an endothermic effect. The evaporator 13 corresponds to the upstream component device of the present invention.

蒸発器13は、室内空調ユニット30のケーシング31内に配置された室内熱交換器である。ケーシング31内には、空気流れ上流側から送風ファン32、蒸発器13、ヒータコア21の順に配置されている。送風ファン32で送風された空調風は、蒸発器13及びヒータコア21で温度調整され、車室内に供給される。 The evaporator 13 is an indoor heat exchanger arranged in the casing 31 of the indoor air conditioning unit 30. In the casing 31, the blower fan 32, the evaporator 13, and the heater core 21 are arranged in this order from the upstream side of the air flow. The temperature of the conditioned air blown by the blower fan 32 is adjusted by the evaporator 13 and the heater core 21, and is supplied into the vehicle interior.

ここで、冷凍サイクル装置1を長時間作動停止させた場合における圧縮機10からの冷凍機油の流出について図2を用いて説明する。 Here, the outflow of refrigerating machine oil from the compressor 10 when the refrigeration cycle apparatus 1 is stopped for a long time will be described with reference to FIG.

圧縮機10の作動停止によって、サイクル内の冷媒は循環を停止する。気相冷媒は冷却されて凝縮し、液相冷媒となる。冷凍機油と液相冷媒は、相溶した状態となっている。圧縮機10が停止した状態で、例えば夜間に外気温が低下すると、凝縮器11側は圧縮機10側よりも雰囲気温度が低くなり、凝縮器11側の冷媒圧力は圧縮機10側の冷媒圧力より低くなる。この冷媒圧力差によって、図2(a)に示すように、圧縮機10内の液相冷媒が冷凍機油とともに凝縮器11側に流出する。 By stopping the operation of the compressor 10, the refrigerant in the cycle stops circulating. The vapor phase refrigerant is cooled and condensed to become a liquid phase refrigerant. Refrigerating machine oil and liquid-phase refrigerant are in a compatible state. When the outside air temperature decreases at night, for example, with the compressor 10 stopped, the ambient temperature on the condenser 11 side becomes lower than that on the compressor 10 side, and the refrigerant pressure on the condenser 11 side is the refrigerant pressure on the compressor 10 side. Will be lower. Due to this refrigerant pressure difference, as shown in FIG. 2A, the liquid-phase refrigerant in the compressor 10 flows out together with the refrigerating machine oil to the condenser 11 side.

続いて、例えば日中に外気温が上昇すると、凝縮器11、蒸発器13側は圧縮機10側よりも雰囲気温度が高くなり、凝縮器11、蒸発器13側の冷媒圧力は圧縮機10側の冷媒圧力より高くなる。この冷媒圧力差によって、図2(b)に示すように、気相冷媒が圧縮機10に流入する。気相冷媒は冷凍機油と分離しているため、気相冷媒のみが圧縮機10に流入する。 Then, for example, when the outside air temperature rises during the daytime, the ambient temperature of the condenser 11 and the evaporator 13 side becomes higher than that of the compressor 10 side, and the refrigerant pressure of the condenser 11 and the evaporator 13 side becomes the compressor 10 side. Higher than the refrigerant pressure. Due to this refrigerant pressure difference, the gas-phase refrigerant flows into the compressor 10 as shown in FIG. Since the vapor phase refrigerant is separated from the refrigeration oil, only the vapor phase refrigerant flows into the compressor 10.

その後、図2(c)、図2(d)に示すように、外気温の低下及び上昇が繰り返されることで、圧縮機10からの液相冷媒及び冷凍機油の流出と、圧縮機10への気相冷媒の流入が繰り返される。このため、圧縮機10の停止時間が長くなるほど、圧縮機10内の冷凍機油が少なくなる。 After that, as shown in FIGS. 2C and 2D, the outside air temperature is repeatedly decreased and increased, so that the liquid-phase refrigerant and the refrigerating machine oil flow out from the compressor 10 and the outside air temperature to the compressor 10. The inflow of the vapor phase refrigerant is repeated. Therefore, the longer the stop time of the compressor 10 is, the less the refrigerating machine oil in the compressor 10 is.

上述したように、外気温の変動によって、圧縮機10内の冷凍機油は凝縮器11側に流出する。圧縮機10から流出した冷凍機油は、冷媒流れ方向において、圧縮機10から最も遠い位置に存在する。このため、圧縮機10から流出した冷凍機油は、圧縮機10を起動した後に圧縮機10に循環するまでに時間がかかる。 As described above, the refrigerating machine oil in the compressor 10 flows out to the condenser 11 side due to the fluctuation of the outside air temperature. The refrigerating machine oil flowing out from the compressor 10 exists at the farthest position from the compressor 10 in the refrigerant flow direction. Therefore, it takes time for the refrigerating machine oil flowing out of the compressor 10 to circulate in the compressor 10 after starting the compressor 10.

次に、圧縮機10と蒸発器13を接続する配管14について説明する。図3に示すように、圧縮機10と蒸発器13を接続する配管14には、冷媒流れ方向下流側に向かって高くなるように傾斜した第1傾斜部14aが設けられている。第1傾斜部14aは、圧縮機10よりも冷媒流れ方向上流側に設けられている。なお、第1傾斜部14aが本発明の傾斜部に相当している。 Next, the pipe 14 that connects the compressor 10 and the evaporator 13 will be described. As shown in FIG. 3, the pipe 14 that connects the compressor 10 and the evaporator 13 is provided with a first inclined portion 14a that is inclined so as to become higher toward the downstream side in the refrigerant flow direction. The first inclined portion 14a is provided on the upstream side of the compressor 10 in the refrigerant flow direction. The first inclined portion 14a corresponds to the inclined portion of the present invention.

配管14における第1傾斜部14aの冷媒流れ方向下流側の端部には、鉛直方向上方に向かって突出した第1上端部14bが設けられている。配管14における第1傾斜部14aの冷媒流れ方向上流側の端部には、鉛直方向下方に向かって突出した下端部14cが設けられている。第1上端部14bは、下端部14cよりも高い位置に設けられている。本実施形態の圧縮機10は、第1上端部14bよりも下方に位置している。 A first upper end portion 14b protruding upward in the vertical direction is provided at an end portion of the pipe 14 on the downstream side in the refrigerant flow direction of the first inclined portion 14a. A lower end portion 14c protruding downward in the vertical direction is provided at an end portion of the pipe 14 on the upstream side in the refrigerant flow direction of the first inclined portion 14a. The first upper end portion 14b is provided at a position higher than the lower end portion 14c. The compressor 10 of the present embodiment is located below the first upper end portion 14b.

配管14における下端部14cの冷媒流れ方向上流側には、冷媒流れ方向上流側に向かって高くなるように傾斜した第2傾斜部14dが設けられている。下端部14cを挟んだ第1傾斜部14aと第2傾斜部14dは、鉛直方向下方に突出するV字状に形成されている。なお、第2傾斜部14dが本発明の上流側傾斜部に相当している。 On the upstream side of the lower end portion 14c of the pipe 14 in the refrigerant flow direction, a second inclined portion 14d that is inclined so as to become higher toward the upstream side of the refrigerant flow direction is provided. The first inclined portion 14a and the second inclined portion 14d sandwiching the lower end portion 14c are formed in a V shape protruding downward in the vertical direction. The second inclined portion 14d corresponds to the upstream inclined portion of the present invention.

配管14における第2傾斜部14dの冷媒流れ方向上流側には、鉛直方向上方に向かって突出する第2上端部14eが設けられている。第2上端部14eは、下端部14cよりも上方に位置している。本実施形態の蒸発器13は、第2上端部14eよりも下方に位置している。 A second upper end portion 14e protruding upward in the vertical direction is provided on the upstream side of the second inclined portion 14d in the pipe 14 in the refrigerant flow direction. The second upper end portion 14e is located above the lower end portion 14c. The evaporator 13 of this embodiment is located below the second upper end portion 14e.

圧縮機10の作動中は、冷凍サイクル装置1の全体に冷媒及び冷凍機油が循環している。圧縮機10の作動停止時に圧縮機10の冷媒流れ方向上流側に存在する冷凍機油は、配管14の第1傾斜部14aによって、圧縮機10側への移動が妨げられる。このため、圧縮機10の作動停止時に圧縮機10の冷媒流れ方向上流側に存在する冷凍機油は、圧縮機10と蒸発器13を接続する配管14の内部に貯留される。 During operation of the compressor 10, the refrigerant and the refrigerating machine oil circulate throughout the refrigeration cycle apparatus 1. Refrigerating machine oil existing on the upstream side in the refrigerant flow direction of the compressor 10 when the operation of the compressor 10 is stopped is prevented from moving toward the compressor 10 by the first inclined portion 14a of the pipe 14. Therefore, the refrigerating machine oil existing on the upstream side in the refrigerant flow direction of the compressor 10 when the operation of the compressor 10 is stopped is stored in the pipe 14 that connects the compressor 10 and the evaporator 13.

第1傾斜部14aの鉛直方向高さHが高いほど、圧縮機10と蒸発器13を接続する配管14の内部に貯留できる冷凍機油の量を多くすることができる。また、第1傾斜部14aの鉛直方向高さHが高いほど、冷凍機油の圧縮機10側への移動が妨げられる。第1傾斜部14aの鉛直方向高さHは、下端部14cから第1上端部14bまでの鉛直方向高さである。 As the vertical height H of the first inclined portion 14a is higher, the amount of refrigerating machine oil that can be stored inside the pipe 14 that connects the compressor 10 and the evaporator 13 can be increased. Further, as the vertical height H of the first inclined portion 14a is higher, the movement of the refrigerating machine oil toward the compressor 10 side is hindered. The vertical height H of the first inclined portion 14a is the vertical height from the lower end portion 14c to the first upper end portion 14b.

第1傾斜部14aの鉛直方向高さHは、圧縮機10の作動時に圧縮機10で必要とされる冷凍機油の量に応じて任意に設定することができる。本実施形態では、第1傾斜部14aの鉛直方向高さHを80mmとしている。また、水平方向に対する第1傾斜部14aの傾斜角度は、第1傾斜部14aができるだけ長くなるように設定すればよい。 The vertical height H of the first inclined portion 14a can be arbitrarily set according to the amount of refrigerating machine oil required in the compressor 10 during operation of the compressor 10. In this embodiment, the height H of the first inclined portion 14a in the vertical direction is 80 mm. Further, the inclination angle of the first inclined portion 14a with respect to the horizontal direction may be set so that the first inclined portion 14a is as long as possible.

以上説明した本実施形態では、圧縮機10と蒸発器13を接続する配管14において、冷媒流れ下流側に向かって高くなるように傾斜する第1傾斜部14aを設けている。これにより、圧縮機10の停止後に、圧縮機10と蒸発器13を接続する配管14に冷凍機油を貯留することができる。圧縮機10と蒸発器13を接続する配管14に貯留された冷凍機油は、圧縮機10が起動するまで、外気温の変動による影響を受けることなく、配管14内に保持される。 In the embodiment described above, the pipe 14 that connects the compressor 10 and the evaporator 13 is provided with the first inclined portion 14a that inclines so as to become higher toward the refrigerant flow downstream side. Thereby, the refrigerating machine oil can be stored in the pipe 14 connecting the compressor 10 and the evaporator 13 after the compressor 10 is stopped. The refrigerating machine oil stored in the pipe 14 that connects the compressor 10 and the evaporator 13 is retained in the pipe 14 without being affected by the fluctuation of the outside temperature until the compressor 10 is activated.

圧縮機10と蒸発器13を接続する配管14に保持された冷凍機油は、冷媒流れ方向において、圧縮機10に近い位置に存在している。このため、圧縮機10を長時間停止後に起動した場合に、速やかに圧縮機10に冷凍機油が供給されるため、圧縮機10で冷凍機油が不足することを回避できる。これにより、第1傾斜部14aを設けるという簡易な構成で、起動直後に圧縮機10で冷凍機油が不足することを回避できる。 The refrigerating machine oil held in the pipe 14 connecting the compressor 10 and the evaporator 13 exists at a position close to the compressor 10 in the refrigerant flow direction. Therefore, when the compressor 10 is started after being stopped for a long time, the refrigerating machine oil is promptly supplied to the compressor 10, so that the compressor 10 can be prevented from running out of the refrigerating machine oil. This makes it possible to avoid a shortage of refrigerating machine oil in the compressor 10 immediately after startup with a simple configuration in which the first inclined portion 14a is provided.

また、本実施形態では、下端部14cよりも冷媒流れ上流側において、冷媒流れ上流側に向かって高くなるように傾斜する第2傾斜部14dが設けられている。このため、圧縮機10と蒸発器13を接続する配管14に存在する冷凍機油が蒸発器13に流入することを防ぐことができ、冷凍機油を配管14内に保持することができる。これにより、圧縮機10の起動直後に圧縮機10に冷凍機油をより速やかに供給することができる。 Further, in the present embodiment, the second inclined portion 14d that is inclined so as to be higher toward the refrigerant flow upstream side is provided on the refrigerant flow upstream side than the lower end portion 14c. Therefore, the refrigerating machine oil existing in the pipe 14 connecting the compressor 10 and the evaporator 13 can be prevented from flowing into the evaporator 13, and the refrigerating machine oil can be retained in the pipe 14. As a result, the refrigerating machine oil can be supplied to the compressor 10 immediately after the compressor 10 is started.

また、本実施形態では、下端部14cを挟んだ第1傾斜部14aと第2傾斜部14dとがV字状になっているので、圧縮機10と蒸発器13を接続する配管14に貯留できる冷凍機油の量を多くすることができる。 In addition, in the present embodiment, since the first inclined portion 14a and the second inclined portion 14d that sandwich the lower end portion 14c are V-shaped, they can be stored in the pipe 14 that connects the compressor 10 and the evaporator 13. The amount of refrigerating machine oil can be increased.

(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiments, but can be variously modified as follows without departing from the spirit of the present invention.

(1)上記実施形態では、圧縮機10の冷媒流れ方向上流側に位置する上流側構成機器が蒸発器13である例について説明したが、これに限らず、上流側構成機器が蒸発器13とは異なる構成機器であってもよい。この場合には、圧縮機10と、蒸発器13とは異なる上流側構成機器とを接続する配管14に傾斜部14a、14d等を設ければよい。 (1) In the above-described embodiment, an example in which the upstream component device located upstream in the refrigerant flow direction of the compressor 10 is the evaporator 13 has been described, but the invention is not limited to this, and the upstream component device is the evaporator 13. May be different components. In this case, the inclined portions 14a, 14d and the like may be provided in the pipe 14 that connects the compressor 10 and the upstream component equipment different from the evaporator 13.

(2)上記実施形態では、第1上端部14bよりも圧縮機10が低い位置に設けられているが、第1上端部14bと圧縮機10を同じ高さとしてもよく、第1上端部14bよりも圧縮機10が高くなるようにしてもよい。 (2) In the above embodiment, the compressor 10 is provided at a position lower than the first upper end portion 14b, but the first upper end portion 14b and the compressor 10 may have the same height, or the first upper end portion 14b. The compressor 10 may be higher than the compressor 10.

(3)上記実施形態では、第2上端部14eよりも蒸発器13が低い位置に設けられているが、第2上端部14eと蒸発器13を同じ高さとしてもよく、第2上端部14eよりも蒸発器13が高くなるようにしてもよい。 (3) In the above embodiment, the evaporator 13 is provided at a position lower than the second upper end 14e, but the second upper end 14e and the evaporator 13 may have the same height, or the second upper end 14e. The evaporator 13 may be higher than the above.

10 圧縮機
11 凝縮器(室外熱交換器)
12 膨張弁
13 蒸発器(上流側構成機器、室内熱交換器)
14 配管
14a 第1傾斜部(傾斜部)
14c 下端部
14d 第2傾斜部(上流側傾斜部)
10 Compressor 11 Condenser (outdoor heat exchanger)
12 Expansion valve 13 Evaporator (upstream component equipment, indoor heat exchanger)
14 Piping 14a 1st inclined part (inclined part)
14c Lower end portion 14d Second inclined portion (upstream side inclined portion)

Claims (3)

冷媒を凝縮する室外熱交換器(11)と、前記冷媒を圧縮して前記室外熱交換器に向かって吐出する圧縮機(10)とを含む複数の構成機器(10〜13)が配管(14)によって環状に接続され、前記圧縮機が作動することで冷媒が所定の冷媒流れ方向に循環する冷凍サイクル装置であって、
前記圧縮機と、前記圧縮機よりも前記冷媒流れ方向の上流側に位置する前記構成機器である上流側構成機器(13)とを接続する前記配管に、前記冷媒流れ方向の下流側に向かって高くなるように傾斜した傾斜部(14a)が設けられている冷凍サイクル装置。
Plural component devices (10 to 13) including an outdoor heat exchanger (11) that condenses the refrigerant and a compressor (10) that compresses the refrigerant and discharges the refrigerant toward the outdoor heat exchanger are pipes (14). ) Is connected in a ring shape, the refrigerant is circulated in a predetermined refrigerant flow direction by operating the compressor, a refrigeration cycle device,
In the pipe that connects the compressor and the upstream-side component device (13) that is the component device located upstream of the compressor in the refrigerant flow direction, toward the downstream side in the refrigerant flow direction. A refrigeration cycle apparatus provided with an inclined portion (14a) inclined so as to be higher.
前記圧縮機と前記上流側構成機器とを接続する前記配管において、前記傾斜部の前記冷媒流れ方向の上流側に、鉛直方向下方に向かって突出する下端部(14c)が設けられている請求項1に記載の冷凍サイクル装置。 In the pipe connecting the compressor and the upstream component, a lower end portion (14c) protruding downward in the vertical direction is provided on the upstream side of the inclined portion in the refrigerant flow direction. The refrigeration cycle apparatus according to 1. 前記圧縮機と前記上流側構成機器とを接続する前記配管において、前記下端部の前記冷媒流れ方向の上流側に、前記冷媒流れ方向上流側に向かって高くなるように傾斜した上流側傾斜部(14d)が設けられている請求項2に記載の冷凍サイクル装置。 In the pipe that connects the compressor and the upstream-side component device, on the upstream side in the refrigerant flow direction of the lower end portion, an upstream-side inclined portion that is inclined so as to become higher toward the refrigerant flow direction upstream side ( 14d) is provided, The refrigerating-cycle apparatus of Claim 2.
JP2018243393A 2018-12-26 2018-12-26 Refrigeration cycle device Pending JP2020106174A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018243393A JP2020106174A (en) 2018-12-26 2018-12-26 Refrigeration cycle device
PCT/JP2019/044813 WO2020137231A1 (en) 2018-12-26 2019-11-15 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243393A JP2020106174A (en) 2018-12-26 2018-12-26 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2020106174A true JP2020106174A (en) 2020-07-09

Family

ID=71126526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243393A Pending JP2020106174A (en) 2018-12-26 2018-12-26 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2020106174A (en)
WO (1) WO2020137231A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4530773Y1 (en) * 1967-09-30 1970-11-25
JPS62276375A (en) * 1986-02-06 1987-12-01 株式会社デンソー Refrigerator
JP2003042599A (en) * 2001-08-01 2003-02-13 Denso Corp Refrigerating cycle device
JP2003240360A (en) * 2002-02-14 2003-08-27 Hachiyo Engneering Kk Carbon dioxide gas cooling system using natural cold source

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4980454U (en) * 1972-10-26 1974-07-11
JPS5526331U (en) * 1978-08-08 1980-02-20
JPH07318176A (en) * 1994-03-29 1995-12-08 Nippondenso Co Ltd Freezer
JP4172240B2 (en) * 2002-09-26 2008-10-29 株式会社デンソー Air conditioner for vehicles
JP2007333313A (en) * 2006-06-15 2007-12-27 Denso Corp Low-pressure refrigerant piping in refrigeration cycle device
CN201443826U (en) * 2009-07-30 2010-04-28 山东沃得格伦中央空调设备有限公司 Air-cooled fan coil unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4530773Y1 (en) * 1967-09-30 1970-11-25
JPS62276375A (en) * 1986-02-06 1987-12-01 株式会社デンソー Refrigerator
JP2003042599A (en) * 2001-08-01 2003-02-13 Denso Corp Refrigerating cycle device
JP2003240360A (en) * 2002-02-14 2003-08-27 Hachiyo Engneering Kk Carbon dioxide gas cooling system using natural cold source

Also Published As

Publication number Publication date
WO2020137231A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
US10451317B2 (en) Refrigeration cycle device
CN107923663B (en) Low capacity, low GWP HVAC systems
JP2011510258A (en) Refrigerant vapor compression system with lubricant cooler
JP6309169B2 (en) Air conditioner
US9581366B2 (en) Air conditioner
JP2009192090A (en) Refrigerating cycle device
EP2453186B1 (en) Air conditioner
JP2015128916A (en) Refrigeration cycle device
JP5963539B2 (en) Air conditioner
JP4078786B2 (en) Refrigeration and air conditioning cycle equipment
JP5871723B2 (en) Air conditioner and control method thereof
JP6758506B2 (en) Air conditioner
KR101275921B1 (en) Hermetic type compressor
JP5871681B2 (en) Refrigeration cycle and refrigeration showcase
JP2012102992A (en) Parallel flow multi-stage condensation subcooler for outdoor unit
JP5517891B2 (en) Air conditioner
WO2020137231A1 (en) Refrigeration cycle apparatus
JP6507453B2 (en) Vehicle air conditioner
WO2021085330A1 (en) Refrigeration device
JP5895683B2 (en) Refrigeration equipment
WO2017138243A1 (en) Refrigeration cycle device
JP7246573B2 (en) refrigeration air conditioner
CN110160290B (en) Air conditioning apparatus
WO2023218834A1 (en) Compressor module
WO2020070828A1 (en) Refrigeration cycle apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221115