JPH07210822A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH07210822A
JPH07210822A JP528194A JP528194A JPH07210822A JP H07210822 A JPH07210822 A JP H07210822A JP 528194 A JP528194 A JP 528194A JP 528194 A JP528194 A JP 528194A JP H07210822 A JPH07210822 A JP H07210822A
Authority
JP
Japan
Prior art keywords
thin film
magnetic
alloy
film
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP528194A
Other languages
Japanese (ja)
Inventor
Shinji Kobayashi
伸二 小林
Naoto Matono
直人 的野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP528194A priority Critical patent/JPH07210822A/en
Publication of JPH07210822A publication Critical patent/JPH07210822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a magnetic head suitable for high density magnetic recording by forming a soft magnetic alloy thin film as a magnetic thin film to constitute a magnetic core. CONSTITUTION:At least each one layer of Ni-Fe alloy crystal magnetic thin film 1 and Co-Zr alloy amorphous magnetic thin film 2 are laminated. In figure (a), the crystal magnetic thin film 1 is formed only in the lower side of the amorphous magnetic thin film 2. In figure (b), thin films 1 are formed on the upper and lower sides of the thin film 2, In figure (c) thin films 2 and thin films 1 are alternately laminated. In any case, the lowermost layer of the laminated thin film body is a crystal magnetic thin film 1. The amorphous state of the Co-Zr alloy thin film is promoted with mismatching of the atomic arrangement with the Ni-Fe alloy thin film during formed or promoted with diffusion of atoms from the Ni-Fe alloy thin film into the Co-Zr alloy thin film. Since the Ni-Fe alloy thin film has excellent heat resistance and corrosion resistance, the heat resistance and corrosion resistance of the laminated thin film body as a whole are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、HDD(ハード・ディ
スク・ドライブ)等の磁気記録再生装置に使用される磁
気ヘッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head used in a magnetic recording / reproducing apparatus such as an HDD (hard disk drive).

【0002】[0002]

【従来の技術】磁気コアや通電コイルが薄膜体で構成さ
れる薄膜磁気ヘッドの磁気コア材としては、従来、Ni
−Fe系合金薄膜が用いらることが多かった。70〜9
0原子%Ni−Fe合金薄膜は高透磁率を有し耐食性に
も優れているが、飽和磁束密度が高々1.0T程度であ
るため、最近の高密度磁気記録システムには対応できな
くなってきている。
2. Description of the Related Art Conventionally, as a magnetic core material of a thin film magnetic head in which a magnetic core and a current-carrying coil are thin film bodies, Ni
Often, Fe-based alloy thin films were used. 70-9
The 0 atom% Ni-Fe alloy thin film has a high magnetic permeability and excellent corrosion resistance, but since the saturation magnetic flux density is at most about 1.0T, it cannot be applied to recent high-density magnetic recording systems. There is.

【0003】一方、高飽和磁束密度で高透磁率の磁性薄
膜としては、特開昭59−125607号にCo−Zr
系非晶質合金薄膜が開示されている。Zrの含有量が5
原子%程度以上のCo−Zr合金は、スパッタリング法
にて成膜されることにより非晶質化して優れた軟磁気特
性を示し、Zr含有量が5原子%のときの飽和磁束密度
は約1.5Tで、高密度磁気記録用磁気ヘッドの磁気コ
ア材として好適である。
On the other hand, as a magnetic thin film having a high saturation magnetic flux density and a high magnetic permeability, Co-Zr is disclosed in JP-A-59-125607.
Based amorphous alloy thin films are disclosed. Zr content is 5
A Co-Zr alloy of about atomic% or more exhibits excellent soft magnetic characteristics by being amorphized by being formed into a film by a sputtering method, and has a saturation magnetic flux density of about 1 when the Zr content is 5 atomic%. It is suitable for a magnetic core material of a magnetic head for high density magnetic recording at 0.5T.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Zr含
有量が5〜6原子%程度のCo−Zr系合金薄膜は、非
晶質化が可能ではあるものの成膜条件の設定、制御が難
しく、成膜後も熱的に不安定で、磁気ヘッドの製造プロ
セスにおける加熱処理によって特性が劣化するという問
題がある。
However, although a Co--Zr alloy thin film having a Zr content of about 5 to 6 atomic% can be amorphized, it is difficult to set and control film forming conditions. There is a problem in that the characteristics are deteriorated by the heat treatment in the manufacturing process of the magnetic head, because the characteristics are thermally unstable even after the film formation.

【0005】また、薄膜磁気ヘッドとしての実用時に
は、記録電流によるコイルの発熱のために磁気コアが加
熱、冷却というヒートサイクルを受け、熱的に不安定な
非晶質合金薄膜の磁気特性が徐々に劣化していくという
問題もある。
In practical use as a thin film magnetic head, the magnetic core undergoes a heat cycle of heating and cooling due to heat generation of the coil due to the recording current, and the thermally unstable amorphous alloy thin film gradually exhibits magnetic characteristics. There is also the problem of deterioration.

【0006】このような問題は、Zr含有量の増大や第
3元素の添加によってある程度改善されるが、Zr含有
量の増大や第3元素の添加は、磁性原子としてのCoの
含有量低下を意味し、飽和磁束密度の低下をもたらす。
Although such a problem is improved to some extent by increasing the Zr content or adding the third element, increasing the Zr content or adding the third element causes a decrease in the content of Co as a magnetic atom. This means that the saturation magnetic flux density is lowered.

【0007】本発明は、飽和磁束密度が高くて耐熱性や
耐食性にも優れた軟磁性合金薄膜の構成を明らかにする
ことにより、高密度磁気記録に適した磁気ヘッドを提供
するものである。
The present invention provides a magnetic head suitable for high density magnetic recording by clarifying the structure of a soft magnetic alloy thin film having a high saturation magnetic flux density and excellent heat resistance and corrosion resistance.

【0008】[0008]

【課題を解決するための手段】本発明による磁気ヘッド
は、磁気コアの少なくとも一部が、Ni−Fe系合金等
からなる結晶質の磁性薄膜とCo−Zr系合金等からな
る非晶質の磁性薄膜とを少なくとも1層づつ積層した薄
膜体にて構成され、該積層薄膜体の最下層が、前記結晶
質の磁性薄膜にて構成されることを特徴とするものであ
る。
In the magnetic head according to the present invention, at least a part of the magnetic core is a crystalline magnetic thin film made of a Ni--Fe alloy or the like and an amorphous magnetic thin film made of a Co--Zr alloy or the like. A magnetic thin film is formed by laminating at least one layer each, and the lowermost layer of the laminated thin film is formed by the crystalline magnetic thin film.

【0009】[0009]

【作用】上記本発明の構成によれば、Co−Zr系合金
薄膜の形成過程におけるNi−Fe系合金薄膜との原子
配列の非整合性や、Ni−Fe系合金薄膜中の原子がC
o−Zr系合金薄膜中に拡散すること等により、Co−
Zr系合金薄膜の非晶質化が促進される。
According to the above-described structure of the present invention, the atomic arrangement inconsistency with the Ni-Fe alloy thin film during the formation of the Co-Zr alloy thin film and the atoms in the Ni-Fe alloy thin film are changed to C.
By diffusing into the o-Zr alloy thin film, Co-
Amorphization of the Zr-based alloy thin film is promoted.

【0010】また、Ni−Fe系合金薄膜は耐熱性、耐
食性に優れているため、該Ni−Fe系合金薄膜とCo
−Zr系合金薄膜とを積層すれば、Co−Zr系合金薄
膜の飽和磁束密度を低下させることなく、積層薄膜体と
しての耐熱性、耐食性が向上する。
Since the Ni-Fe alloy thin film is excellent in heat resistance and corrosion resistance, the Ni-Fe alloy thin film and Co
When laminated with the -Zr alloy thin film, the heat resistance and corrosion resistance of the laminated thin film are improved without lowering the saturation magnetic flux density of the Co-Zr alloy thin film.

【0011】さらに、Ni−Fe系合金薄膜は、薄膜磁
気ヘッドにおいて磁気コア層の成膜下地となるSiO2
等の酸化物絶縁体層に対する付着力が強いため、該Ni
−Fe系合金薄膜をCo−Zr系合金薄膜と酸化物絶縁
体層との間に介在させることによって、高飽和磁束密度
の積層薄膜体からなる磁気コア層が酸化物絶縁体層上に
強固に形成されることになり、薄膜磁気ヘッドとしての
信頼性が向上する。
Further, the Ni--Fe alloy thin film is a SiO 2 film forming base of a magnetic core layer in a thin film magnetic head.
The strong adhesion to the oxide insulator layer such as
By interposing the -Fe-based alloy thin film between the Co-Zr-based alloy thin film and the oxide insulator layer, the magnetic core layer made of a laminated thin film body having a high saturation magnetic flux density is firmly formed on the oxide insulator layer. As a result, the reliability of the thin film magnetic head is improved.

【0012】[0012]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0013】本発明の磁気ヘッドにおいては、磁気コア
の少なくとも一部が、図1の(a)〜(c)に示すよう
に、Ni−Fe系合金等からなる結晶質の磁性薄膜1と
Co−Zr系合金等からなる非晶質の磁性薄膜2とを少
なくとも1層づつ積層した薄膜体にて構成される。そし
て、図1の(a)は非晶質磁性薄膜2の下側のみに結晶
質磁性薄膜1を配した例、(b)は非晶質磁性薄膜2の
下側及び上側に結晶質磁性薄膜1を配した例、(c)は
非晶質磁性薄膜2と結晶質磁性薄膜1とを交互に積層し
た例を示しているが、いずれの場合でも積層薄膜体の最
下層は結晶質の磁性薄膜1にて構成される。なお、図1
において符号3にて示されているのは、前記積層薄膜体
の成膜下地である。
In the magnetic head of the present invention, as shown in FIGS. 1A to 1C, at least a part of the magnetic core has a crystalline magnetic thin film 1 made of Ni--Fe alloy or the like and Co. A thin film body is formed by laminating at least one layer of an amorphous magnetic thin film 2 made of a —Zr-based alloy or the like. 1A shows an example in which the crystalline magnetic thin film 1 is arranged only under the amorphous magnetic thin film 2, and FIG. 1B shows a crystalline magnetic thin film under and above the amorphous magnetic thin film 2. 1 shows an example in which 1 is arranged, (c) shows an example in which the amorphous magnetic thin film 2 and the crystalline magnetic thin film 1 are alternately laminated. In either case, the bottom layer of the laminated thin film body is crystalline magnetic. It is composed of the thin film 1. Note that FIG.
Reference numeral 3 in FIG. 3 denotes a film forming base of the laminated thin film body.

【0014】本発明の実施対象となる磁気ヘッドとして
は、磁気コアや通電コイルが薄膜体で構成される薄膜磁
気ヘッドのみならず、磁気コアを構成する薄膜体が非磁
性基板に挟持されてなる磁気ヘッドや、フェライト製磁
気コアのギャップ突き合わせ部に磁性薄膜を配したMI
G(メタルインギャップ)型の磁気ヘッド等が挙げられ
る。
As a magnetic head to which the present invention is applied, not only a thin film magnetic head in which a magnetic core and a current-carrying coil are formed of a thin film but also a thin film forming a magnetic core is sandwiched between non-magnetic substrates. MI with a magnetic thin film at the gap abutting part of the magnetic head or ferrite magnetic core
A G (metal in gap) type magnetic head or the like can be used.

【0015】ここで、本発明を特徴づける積層薄膜体に
おける、結晶質磁性薄膜の膜厚について説明する。
Here, the film thickness of the crystalline magnetic thin film in the laminated thin film which characterizes the present invention will be described.

【0016】図2は、ガラス基板上に各種膜厚のNi−
Fe合金薄膜を形成し、その上に厚さ1μmのCo−Z
r合金薄膜を形成した積層薄膜体における、保磁力Hc
(曲線A)及び飽和磁束密度Bs(曲線B)を示すもの
である。
FIG. 2 shows Ni-of various thicknesses on a glass substrate.
An Fe alloy thin film is formed and Co-Z with a thickness of 1 μm is formed on the thin film.
Coercive force Hc in a laminated thin film body formed with an r alloy thin film
(Curve A) and saturation magnetic flux density Bs (curve B) are shown.

【0017】成膜にはマルチカソード型のマグネトロン
スパッタ装置を用い、Ni−Fe合金としては約80原
子%Niのもの、Co−Zr合金としては約5.5原子
%Zrのものを用いた。また、磁性薄膜に異方性を付与
して透磁率を向上させるため、基板の周辺に永久磁石を
設置して基板表面に平行な所定の方向に30Oeの静磁
場を印加しながら成膜した。
A multi-cathode type magnetron sputtering apparatus was used for film formation, and a Ni—Fe alloy with about 80 atomic% Ni and a Co—Zr alloy with about 5.5 atomic% Zr were used. Further, in order to impart anisotropy to the magnetic thin film and improve the magnetic permeability, a permanent magnet was installed around the substrate and a film was formed while applying a static magnetic field of 30 Oe in a predetermined direction parallel to the substrate surface.

【0018】図2によれば、Co−Zr膜の下にNi−
Fe膜を介在させることによる保磁力の低下、すなわち
軟磁気特性の向上は、Ni−Fe膜の厚さが50Åの場
合でも顕著に認められるが、Ni−Fe膜の膜厚増大に
伴う薄膜積層体としての保磁力低下の傾向は、Ni−F
e膜の厚さが100Åを越えると徐々に緩やかなものと
なり、500Åを越えると、それ以上保磁力が低下しな
くなる。
According to FIG. 2, Ni-- is formed under the Co--Zr film.
The decrease in coercive force due to the interposition of the Fe film, that is, the improvement of the soft magnetic characteristics is noticeable even when the thickness of the Ni—Fe film is 50 Å, but the thin film lamination accompanying the increase in the film thickness of the Ni—Fe film The tendency of the coercive force of the body to decrease is Ni-F.
e When the thickness of the film exceeds 100 Å, it gradually becomes gentle, and when it exceeds 500 Å, the coercive force does not decrease any more.

【0019】一方、Ni−Fe膜の膜厚増大に伴う薄膜
積層体としての飽和磁束密度の低下傾向は直線的で、C
o−Zr単層膜の約1.55TをNi−Fe単層膜の約
1.0Tで単純に希釈したものと見なすことができ、C
o−Zr膜におけるZr含有量の増大に伴う飽和磁束密
度の低下傾向(後述の図3、図4参照)のように単純希
釈則から下方に大きくずれるようなことがない。
On the other hand, the decreasing tendency of the saturation magnetic flux density as a thin film laminated body is linear with the increase of the film thickness of the Ni--Fe film.
It can be considered that about 1.55 T of the o-Zr single layer film is simply diluted with about 1.0 T of the Ni-Fe single layer film, and C
There is no large downward shift from the simple dilution rule as in the tendency of the saturation magnetic flux density to decrease with the increase of the Zr content in the o-Zr film (see FIGS. 3 and 4 described later).

【0020】次に、非晶質となるべき磁性合金薄膜の非
晶質化組成領域について説明する。
Next, the amorphized composition region of the magnetic alloy thin film to be made amorphous will be described.

【0021】図3は、ガラス基板上にNi−Fe合金薄
膜(厚さ300Å)を形成し、その上に各種組成のCo
−Zr合金薄膜(厚さ1μm)を形成した積層薄膜体に
おける、保磁力Hc(曲線C)及び飽和磁束密度Bs
(曲線D)を示すものであり、図4は、ガラス基板上に
直接形成した各種組成のCo−Zr合金薄膜(厚さ1μ
m)における、保磁力Hc(曲線E)及び飽和磁束密度
Bs(曲線F)を示すものである。
In FIG. 3, a Ni--Fe alloy thin film (thickness 300 Å) is formed on a glass substrate, and Co having various compositions is formed thereon.
-Coercive force Hc (curve C) and saturation magnetic flux density Bs in a laminated thin film body formed with a Zr alloy thin film (thickness 1 μm)
FIG. 4 shows (curve D), and FIG. 4 shows Co—Zr alloy thin films (thickness 1 μm) having various compositions formed directly on a glass substrate.
m) shows the coercive force Hc (curve E) and the saturation magnetic flux density Bs (curve F) in m).

【0022】図3と図4とを比較すればわかるように、
Co−Zr単層膜では保磁力が1Oe以下となる組成領
域が約5原子%Zr以上であるのに対して、Co−Zr
膜とNi−Fe膜との積層膜では保磁力が1Oe以下と
なる組成領域が約4.5原子%Zr以上にまで広がり、
保磁力が約1Oeとなるときの飽和磁束密度は約0.0
3T高くなる。
As can be seen by comparing FIGS. 3 and 4,
In the Co-Zr single layer film, the composition region in which the coercive force is 1 Oe or less is about 5 atom% Zr or more, whereas Co-Zr
In the laminated film of the film and the Ni—Fe film, the composition region in which the coercive force is 1 Oe or less extends to about 4.5 atomic% Zr or more,
The saturation magnetic flux density is about 0.0 when the coercive force is about 1 Oe.
3T higher.

【0023】なお、保磁力の1Oeという値は、磁気ヘ
ッドの磁気コア材として要求される軟磁気特性の目安と
なる値であり、図3及び図4において、保磁力が1Oe
となるCo−Zr膜の組成付近を境にしてZr高濃度側
で保磁力が著しく小さくなっているのは、その組成付近
を境にしてZr高濃度側でCo−Zr膜が非晶質化して
いることに対応した現象であると考えられる。
The value of the coercive force of 1 Oe is a standard value of the soft magnetic characteristics required for the magnetic core material of the magnetic head. In FIGS. 3 and 4, the coercive force is 1 Oe.
The coercive force is remarkably reduced on the high Zr concentration side near the composition of the Co-Zr film, which is the reason why the Co-Zr film becomes amorphous on the Zr high concentration side near the composition. It is considered to be a phenomenon corresponding to

【0024】また、昇温に伴う保磁力の上昇に関して
も、保磁力が1Oe以上となる温度を結晶化温度と見な
せば、Ni−Fe膜上に形成されたCo−Zr膜では、
Co−Zr単層膜に比べて結晶化温度が約15℃上昇し
た。
Regarding the increase in coercive force due to temperature rise, if the temperature at which the coercive force is 1 Oe or more is regarded as the crystallization temperature, the Co--Zr film formed on the Ni--Fe film is
The crystallization temperature was increased by about 15 ° C as compared with the Co-Zr single layer film.

【0025】さらに、5〜6原子%ZrのCo−Zr単
層膜においては、成膜時の基板温度が100℃を越える
と結晶化して保磁力が著しく増大するのに対して、Ni
−Fe膜上に形成したCo−Zr膜では、基板温度を2
00℃にしても保磁力が大ききくなるようなことがなか
った。
Further, in the Co—Zr single layer film of 5 to 6 atomic% Zr, when the substrate temperature at the time of film formation exceeds 100 ° C., crystallization and coercive force remarkably increase.
In the Co-Zr film formed on the -Fe film, the substrate temperature is set to 2
Even at 00 ° C, the coercive force did not become large.

【0026】次に、本発明を特徴づける積層薄膜体の耐
食性について説明する。
Next, the corrosion resistance of the laminated thin film which characterizes the present invention will be described.

【0027】図5は、厚さ1μmのCo−Zr単層膜
(白ヌキの三角印)、厚さ300ÅのNi−Fe膜上に
厚さ1μmのCo−Zr膜を形成した2層膜(黒塗りの
四角印)、厚さ300ÅのNi−Fe膜上に厚さ1μm
のCo−Zr膜を形成し、さらにその上に厚さ300Å
のNi−Fe膜を形成した3層膜(白ヌキの四角印)に
ついて、JIS規格(規格番号JIS−Z2317)に
準じた塩水噴霧試験を行い、時間経過に伴う飽和磁束密
度の変化を、初期の飽和磁束密度の値で規格化して示し
たものである。
FIG. 5 shows a Co-Zr single-layer film (white triangle) with a thickness of 1 μm, and a two-layer film (Co-Zr film with a thickness of 1 μm formed on a Ni-Fe film with a thickness of 300 Å). Black square mark), 1 μm thick on a 300-Å-thick Ni-Fe film
Co-Zr film is formed and the thickness of 300Å
For the three-layer film (white squares) with the Ni-Fe film of No. 3, a salt spray test according to the JIS standard (standard number JIS-Z2317) was performed, and the change in the saturation magnetic flux density with the passage of time was initially measured. The values are standardized by the value of the saturation magnetic flux density.

【0028】図5によれば、Ni−Fe膜とCo−Zr
膜との積層膜はCo−Zr単層膜に比べて耐食性に優れ
ていることがわかり、特にCo−Zr膜の上下にNi−
Fe膜を形成した積層膜では、飽和磁束密度の低下がほ
とんど認められない。
According to FIG. 5, the Ni-Fe film and the Co-Zr film are formed.
It was found that the laminated film with the film is superior in corrosion resistance as compared with the Co-Zr single layer film.
In the laminated film formed with the Fe film, almost no decrease in saturation magnetic flux density is observed.

【0029】[0029]

【発明の効果】以上のように、本発明の磁気ヘッドにお
いては、磁気コアを構成する磁性薄膜が、高飽和磁束密
度で軟磁気特性や耐熱性、耐食性にも優れた軟磁性合金
薄膜で構成されることになり、該磁気ヘッドは高密度磁
気記録に適したものとなる。
As described above, in the magnetic head of the present invention, the magnetic thin film forming the magnetic core is made of a soft magnetic alloy thin film having a high saturation magnetic flux density and excellent soft magnetic characteristics, heat resistance and corrosion resistance. As a result, the magnetic head becomes suitable for high density magnetic recording.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例による積層薄膜体の断面図であ
る。
FIG. 1 is a cross-sectional view of a laminated thin film body according to an embodiment of the present invention.

【図2】本発明実施例及び比較例を示す実験結果図であ
る。
FIG. 2 is an experimental result diagram showing an example of the present invention and a comparative example.

【図3】本発明実施例及び比較例を示す実験結果図であ
る。
FIG. 3 is an experimental result diagram showing an example of the present invention and a comparative example.

【図4】比較例を示す実験結果図である。FIG. 4 is an experimental result diagram showing a comparative example.

【図5】本発明実施例及び比較例を示す実験結果図であ
る。
FIG. 5 is an experimental result diagram showing an example of the present invention and a comparative example.

【符号の説明】 1 結晶質磁性薄膜 2 非晶質磁性薄膜 3 成膜下地[Explanation of symbols] 1 crystalline magnetic thin film 2 amorphous magnetic thin film 3 film-forming substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁気コアの少なくとも一部が、結晶質の
磁性薄膜と非晶質の磁性薄膜とを少なくとも1層ずつ積
層した薄膜体にて構成され、該積層薄膜体の最下層が、
前記結晶質の磁性薄膜にて構成されることを特徴とする
磁気ヘッド。
1. At least a part of the magnetic core is composed of a thin film body in which at least one layer of a crystalline magnetic thin film and at least one layer of an amorphous magnetic thin film are laminated, and the bottom layer of the laminated thin film body is
A magnetic head comprising the crystalline magnetic thin film.
【請求項2】 前記結晶質の磁性薄膜がNi−Fe系合
金からなり、前記非晶質の磁性薄膜がCo−Zr系合金
からなることを特徴とする請求項1記載の磁気ヘッド。
2. The magnetic head according to claim 1, wherein the crystalline magnetic thin film is made of a Ni—Fe based alloy, and the amorphous magnetic thin film is made of a Co—Zr based alloy.
【請求項3】 前記結晶質の磁性薄膜の厚さが1層につ
き50Å以上であることを特徴とする請求項1記載の磁
気ヘッド。
3. The magnetic head according to claim 1, wherein the thickness of the crystalline magnetic thin film is 50 Å or more per layer.
JP528194A 1994-01-21 1994-01-21 Magnetic head Pending JPH07210822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP528194A JPH07210822A (en) 1994-01-21 1994-01-21 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP528194A JPH07210822A (en) 1994-01-21 1994-01-21 Magnetic head

Publications (1)

Publication Number Publication Date
JPH07210822A true JPH07210822A (en) 1995-08-11

Family

ID=11606865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP528194A Pending JPH07210822A (en) 1994-01-21 1994-01-21 Magnetic head

Country Status (1)

Country Link
JP (1) JPH07210822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115088A (en) * 2013-12-13 2015-06-22 シーゲイト テクノロジー エルエルシー Magnetoresistive sensor shield

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115088A (en) * 2013-12-13 2015-06-22 シーゲイト テクノロジー エルエルシー Magnetoresistive sensor shield

Similar Documents

Publication Publication Date Title
US5126907A (en) Thin film magnetic head having at least one magnetic core member made at least partly of a material having a high saturation magnetic flux density
JPH08339508A (en) Thin-film magnetic head and its production as wheel as magnetic memory device
JPH0744110B2 (en) High saturation magnetic flux density soft magnetic film and magnetic head
US5227940A (en) Composite magnetic head
JP2007335788A (en) Magnetic shield and manufacturing method thereof, and thin-film magnetic head
JPH06318516A (en) Soft magnetic multilayer film and magnetic head using same
JPH07210822A (en) Magnetic head
JPS6129105A (en) Magnetic alloy thin film
JPH01124108A (en) Thin-film magnetic head
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JPH0283809A (en) Production of thin-film magnetic head
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JP3232592B2 (en) Magnetic head
JP2551008B2 (en) Soft magnetic thin film
JPH03132005A (en) Magnetic thin film and magnetic head using this film
JPH1139605A (en) Magnetic head
JPH05174334A (en) Magneto-resistance effect type magnetic head
JP2639719B2 (en) Magnetic film for magnetic head
JPH01260615A (en) Magnetic head
JPH06282834A (en) Perpendicular magnetic recording medium and manufacture thereof
JPH0376102A (en) Multilayer magnetic thin film and magnetic head using the same
JPH05226151A (en) Soft magnetic alloy film to be used for magnetic head and having high saturation flux density and high heat resistance and magnetic head
JPS59207675A (en) Magnetoresistance element
JPS60244007A (en) Multilayer type thin film permanent magnet
JPH0827895B2 (en) Magnetic circuit device and manufacturing method thereof