JPH07209238A - Method and apparatus of c/s macrocell corrosion measurement for metal pipe - Google Patents

Method and apparatus of c/s macrocell corrosion measurement for metal pipe

Info

Publication number
JPH07209238A
JPH07209238A JP6023760A JP2376094A JPH07209238A JP H07209238 A JPH07209238 A JP H07209238A JP 6023760 A JP6023760 A JP 6023760A JP 2376094 A JP2376094 A JP 2376094A JP H07209238 A JPH07209238 A JP H07209238A
Authority
JP
Japan
Prior art keywords
value
corrosion
energization
pipe
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6023760A
Other languages
Japanese (ja)
Other versions
JP2791425B2 (en
Inventor
Hideaki Okuma
秀明 大熊
Shigeo Shuto
茂夫 周東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Pressure Gas Safety Institute of Japan
Original Assignee
High Pressure Gas Safety Institute of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Pressure Gas Safety Institute of Japan filed Critical High Pressure Gas Safety Institute of Japan
Priority to JP6023760A priority Critical patent/JP2791425B2/en
Publication of JPH07209238A publication Critical patent/JPH07209238A/en
Application granted granted Critical
Publication of JP2791425B2 publication Critical patent/JP2791425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Pipeline Systems (AREA)

Abstract

PURPOSE:To measure a C/S macrocell corrosion and the extent thereof quickly and accurately by obtaining the variation width of conduction and comparing a predetermined correlation between the variation width of conduction and the actual measurement of maximum corrosion rate. CONSTITUTION:After turning a conduction switch 10 off, the potential of a buried piping is measured with reference to a reference electrode 6 and stored in a microcomputer 1. The switch 10 is then turned on and a current if fed between a conduction electrode 7 and the piping 3. The potential of the piping 3 is measured with reference to the electrode 6 and the current flowing through a lead 11, the piping 3, the soil 2, the electrode 7 and a lead 12 is measured. The measurements are sent to the microcomputer 14 where the variation width of conduction is calculated based on these three measurements. The maximum C/S corrosion rate of the piping, corresponding to the variation width of conduction, is then determined with reference to a prestored correlation between the variation width of conduction based on the measurements at each part and the maximum C/S macrocell corrosion rate thus predicting the corrosion rate of an existing metal piping 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属製埋設配管のC/
Sマクロセル腐食の測定法及び装置に関し、さらに詳し
くは、C/S間すなわちコンクリ−ト(Concret
e)と土壌(Soil)との間にまたがって或いはそれ
らを通して配設されたLPG等のガス用金属製配管に生
じるマクロセル腐食を測定する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to C / C for buried metal pipes.
More specifically, it relates to a measuring method and apparatus for S macrocell corrosion, and more specifically, between C / S, that is, concrete (Concret).
The present invention relates to a method and an apparatus for measuring macrocell corrosion that occurs in a metal pipe for a gas such as LPG, which is arranged across or through between e) and soil (Soil).

【0002】[0002]

【従来の技術】家庭用、病院、学校、その他各種の施設
用、あるいは各種工場用等の燃料として供給されるLP
G等のガスは、ボンベ等のガス貯槽からその配管を、
各種施設等を構成するコンクリ−ト中への埋設、土壌
から各種施設等を構成するコンクリ−ト中への埋設、
これら及びが複合形式による埋設、その他種々の形
式で敷設し、これらガス配管を通じてバ−ナ−その他の
燃焼器、暖房機器等へ供給されている。
2. Description of the Related Art LP supplied as fuel for households, hospitals, schools, various other facilities, or various factories
For gas such as G, pipe the gas from a gas storage tank such as a cylinder.
Buried in concrete that constitutes various facilities, etc., buried in concrete that constitutes various facilities from soil,
These and are laid in a composite type and laid in various types, and are supplied to burners and other combustors, heating equipment, etc. through these gas pipes.

【0003】LPG等のガスの配管は、通常、鋼管等の
金属製で構成されるが、例えばその鋼管が土壌中に配設
されたものである場合、その周囲の土壌が均質な状態で
ある場合には、腐食の進行は緩慢であり、このため腐食
孔が短期間に発生することは通常有り得ないが、しかし
最近の腐食事例によると、その配管の敷設時から数年以
内に腐食孔が発生している例が数多く報告されている。
[0003] Gas pipes such as LPG are usually made of metal such as steel pipes. When the steel pipes are arranged in soil, for example, the surrounding soil is in a homogeneous state. In some cases, the progress of corrosion is slow, and it is therefore unlikely that corrosion pits will occur in a short period of time. Many cases have been reported.

【0004】これらの腐食は、濃淡電池作用、異種金属
の接触作用、迷走電流の作用、バクテリアの作用、或い
はこれらの複合作用、その他各種の原因によるものであ
る。そしてこれらのうちでも、迷走電流によるものが最
も激しい腐食を起すが、これに次ぐものとして、異種金
属の接触作用の一種である鉄筋コンクリ−ト中の鉄筋と
ガス配管等の配管との接触による地中埋設管の腐食が指
摘されている。
[0004] These corrosions are caused by a concentration cell action, a contact action of different metals, an action of a stray current, an action of bacteria, a combined action of these, and various other causes. Among them, the one caused by stray current causes the most severe corrosion, but the second one is the one caused by the contact between the rebar in the rebar concrete and the pipe such as the gas pipe, which is a kind of contact action of dissimilar metals. Corrosion of underground pipes has been pointed out.

【0005】ガス管の自然腐食には、大きく分けてマク
ロセル腐食とミクロセル腐食とがあるが、このうちマク
ロセル腐食は、異種の金属や環境が異なる同種の金属間
に電池作用により電流が流れるマクロセルすなわち巨視
的電池現象により生じ、このセルで負極となっている側
の金属に発生するものである。
The natural corrosion of the gas pipe is roughly divided into macro cell corrosion and micro cell corrosion. Of these, macro cell corrosion is a macro cell corrosion in which a current flows between different metals or metals of the same kind having different environments due to a battery action. It is generated by a macroscopic battery phenomenon and is generated in the metal on the negative electrode side of this cell.

【0006】これを土壌中に埋設され、そこからコンク
リ−ト中へ配設された鉄製(鋼管)のガス配管について
みると、コンクリ−ト中の鋼管の電位は、中性土壌中の
鋼管の電位より貴であり、このためコンクリ−ト中の鋼
管と土壌中の鋼管とがつながっている配管では電池が形
成され、これによって電位的に卑である土壌中に埋設さ
れた部分が腐食することになる。
[0006] Looking at the gas pipe made of iron (steel pipe) which is buried in soil and arranged in the concrete therefrom, the electric potential of the steel pipe in the concrete is the same as that of the steel pipe in neutral soil. Since it is more noble than the electric potential, a battery is formed in the pipe where the steel pipe in the concrete and the steel pipe in the soil are connected, and this causes corrosion of the part buried in the soil that is electric potential base. become.

【0007】そして、その鋼管が鉄筋コンクリ−ト中へ
の埋設管である場合、鉄筋コンクリ−ト中の鉄筋との接
触作用だけでなく、コンクリ−トは、それ自体強いアル
カリ性(pH12.5程度)を示すが、これがその中に
埋め込まれた鉄筋や鋼管の電位を貴とするように作用す
る。
When the steel pipe is a pipe embedded in the reinforcing bar concrete, not only the contact action with the reinforcing bar in the reinforcing bar concrete but also the concrete itself has strong alkalinity (pH about 12.5). ), Which acts to make the electric potential of the reinforcing bars and steel pipes embedded in it noble.

【0008】このため、ガス用鋼管を土壌からコンクリ
−ト内へと設置すると、高い電位をもつコンクリ−ト内
の鋼管から、地中に埋設した低い電位をもつ鋼管へ向け
て電流が流れ、この電流が地中に埋設した鋼管の表面か
ら地中に流れ出し、土壌を通ってコンクリ−ト内の鋼管
へ戻り、これにより地中に埋設された鋼管の表面から地
中に電流が流れ出る部分が腐食を起こすことになる。
Therefore, when the gas steel pipe is installed from the soil into the concrete, an electric current flows from the steel pipe in the concrete having a high potential to the steel pipe having a low potential buried in the ground, This current flows from the surface of the steel pipe buried in the ground into the ground, returns to the steel pipe in the concrete through the soil, and the part where the current flows from the surface of the steel pipe buried in the ground into the ground It will cause corrosion.

【0009】この場合、コンクリ−ト中に埋め込まれた
鋼管の面積が小さければ、腐食電流は少量で腐食の進行
は弱く、腐食上の問題が短期間に生じることはないが、
腐食電流は、埋め込まれた鋼管の面積が大きいほど大き
く、その進行が激しくなり、そしてこのコンクリ−トが
鉄筋コンクリ−トである場合、その鉄筋とガス管とが接
触していれば、コンクリ−トの中に大量の鋼管を埋め込
んだことと同じことになってしまう。
In this case, if the area of the steel pipe embedded in the concrete is small, the corrosion current is small and the progress of the corrosion is weak, so that the corrosion problem does not occur in a short period of time.
The larger the area of the embedded steel pipe, the larger the corrosion current, and the more severe the progress thereof becomes. If this concrete is a rebar concrete, if the rebar and the gas pipe are in contact with each other, the corrosion current will increase. It would be the same as embedding a large amount of steel pipes inside.

【0010】[0010]

【発明が解決しようとする課題】以上のように、鉄製等
の金属製埋設ガス配管におけるマクロセルの形成は、そ
の腐食の要因として重要であり、したがってこのセルの
形成は事前に回避さけれなければならないが、このため
には、その配管について、そのような腐食の原因となる
マクロセルの有無を予め察知し、その量的割合について
も予め計測できれば、対策を講じてこのマクロセルに起
因する腐食を未然に防ぐことができる。
As described above, the formation of macrocells in a metal-embedded gas pipe made of iron or the like is important as a factor for its corrosion. Therefore, the formation of these cells must be avoided in advance. However, for this purpose, if the presence or absence of macrocells that cause such corrosion is detected in advance for the piping and the quantitative ratio can also be measured in advance, countermeasures will be taken to prevent corrosion due to this macrocell. Can be prevented.

【0011】本発明者は、このような観点から、各種金
属製ガス埋設管の腐食に係る実測・実態調査を実施して
きているが、その一環として実施した通電試験におい
て、そのガス配管が白管(配管用炭素鋼鋼管のうち、亜
鉛めっきを施した管)等の金属製の配管である場合、電
位の変化を通電電流で除した値すなわち通電変化幅と最
大腐食速度の実測値との間に高い相関性があることを見
い出した。
From this point of view, the inventor of the present invention has carried out actual measurement and actual condition investigations on corrosion of various metal gas buried pipes. In the case of metal piping such as (galvanized carbon steel tube for piping), the value obtained by dividing the change in potential by the applied current, that is, between the change width of the applied current and the measured value of the maximum corrosion rate It was found that there is a high correlation with.

【0012】ここで、通電変化幅(mV/mA)とは、
金属製埋設管の管対地電位分布の測定において、ガス管
が引き込まれる建屋側に近い埋設管の電位値(mV)か
ら、通電時の電位値(mV)を差し引き、これで得られ
た電位の差を、その通電時の通電電流値(mA)で除し
たものであり、下記の式で示されるものである。
Here, the current change width (mV / mA) is
In the measurement of the pipe-to-ground potential distribution of a metal buried pipe, the potential value (mV) during energization is subtracted from the potential value (mV) of the buried pipe near the side of the building into which the gas pipe is drawn, and the resulting potential The difference is divided by the energization current value (mA) during energization, which is represented by the following formula.

【数4】 [Equation 4]

【0013】図1は、各所で実測して得た、この通電変
化幅(mV/mA)と最大腐食速度の実測値との関係を
示す一例を図示したものである。その腐食速度の実測値
は「mm/yr」すなわち年(yr)当たりの腐食深さ
をミリメ−トル(mm)単位で示している。図1に示す
とおり、通電変化幅の値が小さくなるに従い、最大腐食
速度の実測値が相対的に大きくなる傾向が認められ、こ
の両者間に一定の強い相対的関係があることが分かる。
FIG. 1 is a diagram showing an example of the relationship between the variation width (mV / mA) of the energization and the actual measurement value of the maximum corrosion rate obtained by actual measurement at various places. The measured value of the corrosion rate is "mm / yr", that is, the corrosion depth per year (yr) is shown in units of millimeters (mm). As shown in FIG. 1, the measured value of the maximum corrosion rate tends to be relatively large as the value of the change width of energization becomes small, and it can be seen that there is a certain strong relative relationship between the two.

【0014】本発明は、通電変化幅(mV/mA)と最
大腐食速度の実測値との間におけるこのような相関性す
なわち相関関係を利用し、これを基準ないし目安に、対
象とする埋設配管の電位と電流との測定値を対比、処理
することにより、金属配管のC/Sマクロセル腐食の有
無及びその程度を測定し得る腐食測定法を提供し、また
その対比、処理を自動処理手段、例えばマイクロコンピ
ュ−タ−により行うすることにより、そのC/Sマクロ
セル腐食の有無及びその程度を的確かつ迅速に測定し得
る腐食測定法及び装置を提供することを目的とする。
The present invention utilizes such a correlation between the change width of energization (mV / mA) and the actual measured value of the maximum corrosion rate, that is, as a reference or standard, the target buried pipe. The present invention provides a corrosion measuring method capable of measuring the presence or absence of C / S macrocell corrosion of metal pipes and the degree thereof by comparing and processing the measured values of the electric potential and the electric current of C, and the comparison and the processing are performed automatically. It is an object of the present invention to provide a corrosion measuring method and apparatus capable of accurately and quickly measuring the presence or absence of C / S macrocell corrosion and the degree thereof by carrying out by, for example, a micro computer.

【0015】[0015]

【課題を解決するための手段】本発明は、LPG等のガ
ス用金属製埋設配管に対するC/Sマクロセル腐食の測
定法であって、金属製埋設配管の通電変化幅と最大腐食
速度の実測値との相関関係を予め設定した後、対象とす
る金属製埋設配管の電位値、通電時の電位値及び通電時
の電流値を計測し、これらの計測値を基に通電変化幅を
算出し、この算出値を上記予め設定した通電変化幅と最
大腐食速度の実測値との相関関係と対比させることによ
り、その金属製埋設配管の腐食速度を測定することを特
徴とする金属製埋設配管のC/Sマクロセル腐食の腐食
測定法を提供するものである。
The present invention is a method for measuring C / S macrocell corrosion for a metal buried pipe for gas such as LPG, which is an actual measurement value of a change width of electric current and a maximum corrosion rate of the metal buried pipe. After presetting the correlation with, the potential value of the target metal buried pipe, the potential value during energization and the current value during energization are measured, and the energization change width is calculated based on these measured values, By comparing this calculated value with the correlation between the preset width of change in energization and the actual measurement value of the maximum corrosion rate, the corrosion rate of the metal embedded piping is measured, and the C of the metal embedded piping is characterized. / S provides a corrosion measurement method for macrocell corrosion.

【0016】ここで、通電変化幅(mV/mA)とは、
金属製埋設管の管対地電位の測定において、ガス管が引
き込まれる建屋側に近い埋設配管の電位値から、通電時
の電位値を差し引き、これで得られた電位の差を、その
通電時の通電電流値で除したものであり、下記の式で示
される。
Here, the current change width (mV / mA) is
When measuring the ground potential of a metal buried pipe, the potential value during energization is subtracted from the potential value of the buried pipe near the building where the gas pipe is drawn, and the difference in potential obtained by this is the It is divided by the energizing current value, and is expressed by the following formula.

【数5】 [Equation 5]

【0017】また、本発明に係る上記腐食測定法におい
ては、対象とする金属製埋設配管の電位、通電時の電位
及び通電時の電流の計測値を基に通電変化幅を算出し、
この算出値を仮通電変化幅と最大腐食速度の実測値との
相関関係と対比する処理をマイクロコンピュ−タ−等の
自動処理手段により行うことにより、その算出、処理を
的確かつ迅速に実施することができる。
Further, in the above-described corrosion measuring method according to the present invention, the energization change width is calculated based on the measured values of the electric potential of the target metallic buried pipe, the electric potential during energization and the current during energization,
By carrying out a process of comparing the calculated value with the correlation between the temporary energization change width and the actual measured value of the maximum corrosion rate by an automatic processing means such as a micro computer, the calculation and the process are executed accurately and promptly. be able to.

【0018】また、本発明は、金属製埋設配管の通電変
化幅と最大腐食速度の実測値との相関関係を予め設定し
た後、対象とする金属製埋設配管の電位値、通電時の電
位値及び通電時の電流値を計測し、これらの計測値を基
に通電変化幅を算出し、この算出値を上記予め設定した
通電変化幅と最大腐食速度の実測値との相関関係と対比
させることにより、その金属製埋設配管の腐食速度を測
定するようにしてなることを特徴とする金属製埋設配管
のC/Sマクロセル腐食の腐食測定装置を提供するもの
である。
Further, according to the present invention, after the correlation between the variation range of the current flow of the metal buried pipe and the actual measured value of the maximum corrosion rate is set in advance, the potential value of the target metal buried pipe and the potential value at the time of current conduction are set. And measuring the current value during energization, calculating the energization change width based on these measured values, and comparing this calculated value with the correlation between the preset energization change width and the actual measured value of the maximum corrosion rate. According to the present invention, there is provided a corrosion measuring device for C / S macrocell corrosion of a metal buried pipe, characterized in that the corrosion rate of the metal buried pipe is measured.

【0019】ここで、通電変化幅(mV/mA)とは、
金属製埋設管の管対地電位の測定において、埋設配管の
電位値から、通電時の電位値を差し引き、これで得られ
た電位の差を、その通電時の通電電流値で除したもので
あり、下記の式で示されるものである。
Here, the current change width (mV / mA) means
In the measurement of the ground potential of a metal buried pipe, the potential value at energization is subtracted from the potential value of the buried pipe, and the difference in potential obtained by this is divided by the energizing current value at energization. , Is expressed by the following formula.

【数6】 [Equation 6]

【0020】この装置において、対象とする金属製埋設
配管の建屋側の電位、通電時の電位及び通電時の電流の
計測値を基に通電変化幅を算出し、この算出値を通電変
化幅と最大腐食速度の実測値との相関関係と対比する処
理を自動処理手段により行うようにすることにより、そ
の測定、算出、処理を的確かつ迅速に実施することがで
き、この自動処理手段としては、望ましくはマイクロコ
ンピュ−タ−を用いるのが好適である。
In this apparatus, the energization change width is calculated based on the measured values of the electric potential on the building side of the target buried metal pipe, the electric potential during energization and the current during energization, and this calculated value is referred to as the energization change width. By performing the processing that correlates with the correlation with the actual measurement value of the maximum corrosion rate by the automatic processing means, the measurement, calculation, and processing can be performed accurately and quickly.As this automatic processing means, It is preferable to use a micro computer.

【0021】その自動処理にマイクロコンピュ−タ−を
使用する場合、その装置の態様及びこの操作としては、
電源、電位計、電流計、通電電極及びマイクロコンピュ
−タ−等を一体に備え、マイクロコンピュ−タ−によ
り、対象とする金属製埋設配管について、それら電位
計、電流計により計測した埋設配管の電位値、通電電極
への通電時の電位値及び電流値を基に通電変化幅(mV
/mA)を下記式により算出するとともに、この算出値
を、下記式に従って予め設定した通電変化幅(mV/m
A)と最大腐食速度の実測値との相関関係と対比させる
ようにすることにより、その金属製埋設配管のC/Sマ
クロセル腐食の腐食速度を、自動的に、迅速かつ的確に
測定することができる。
When a microcomputer is used for the automatic processing, the mode of the apparatus and its operation are as follows.
A power supply, an electrometer, an ammeter, a current-carrying electrode, a micro computer, etc. are integrally provided, and the target metal buried pipes of the target are buried by the micro computer. Based on the electric potential value and the electric potential value and electric current value at the time of energizing the energizing electrode, the energization change width (mV
/ MA) is calculated by the following formula, and the calculated value is set in advance according to the following formula.
By comparing the correlation between A) and the actual measured value of the maximum corrosion rate, the corrosion rate of C / S macrocell corrosion of the metal buried pipe can be measured automatically, quickly and accurately. it can.

【0022】[0022]

【実施例】以下、図面に従い、本発明の実施例を説明す
るが、本発明がこの実施例に限定されないことは勿論で
ある。図2は、本発明に係るC/Sマクロセル腐食測定
装置の概略を示すものである。図2中、1は建屋(の
壁)・コンクリ−ト、2は土壌であり、3は金属製のガ
ス配管である。この金属製配管3は、図示のとおり、建
屋1のコンクリ−トから土壌2へと通して配設されてい
る。
Embodiments of the present invention will be described below with reference to the drawings, but it goes without saying that the present invention is not limited to these embodiments. FIG. 2 shows the outline of the C / S macro cell corrosion measuring device according to the present invention. In FIG. 2, 1 is a building (wall) / concrete, 2 is soil, and 3 is a metal gas pipe. As shown in the drawing, the metal pipe 3 is arranged from the concrete of the building 1 to the soil 2.

【0023】また、4は電位計(電圧計)、5は電流
計、6は基準電極、7は通電電極、8は可変抵抗、9は
電源、10は通電スイッチであり、これらは図示のとお
りに配線される。このうち通電電極7は土壌2中へ設置
され、一方電位計(電圧計)4は、配線11により配管
3の建屋への立上がり部に接続されている。なお、図中
12は、通電電極7への導線、13はそれら電位及び電
流の測定値の信号伝達用の導線である。
Reference numeral 4 is an electrometer (voltmeter), 5 is an ammeter, 6 is a reference electrode, 7 is a conducting electrode, 8 is a variable resistor, 9 is a power source, and 10 is a conducting switch. Be wired to. Among these, the energizing electrode 7 is installed in the soil 2, while the electrometer (voltmeter) 4 is connected to the building 3 of the pipe 3 by the wiring 11. In the figure, 12 is a conducting wire to the current-carrying electrode 7, and 13 is a conducting wire for transmitting signals of the measured values of the potential and current.

【0024】電圧計4及び電流計5での測定値は、マイ
クロコンピュ−タ−14へ送られ、ここで埋設配管の電
位、通電時の電位及び通電時の電流の各値(電位=m
V、電流=mA)を基に、前記式に従い「通電変化幅
(mV/mA)」を算出し、また図1に示すような対応
する腐食速度を測定する。このため、マイクロコンピュ
−タ−14には、予めこれらの処理を行う記憶機能、計
算機能、比較機能等をセットしておく。
The values measured by the voltmeter 4 and the ammeter 5 are sent to the microcomputer 14, where the potential of the buried pipe, the potential during energization and the current during energization (potential = m).
Based on V, current = mA), the "current change width (mV / mA)" is calculated according to the above formula, and the corresponding corrosion rate as shown in FIG. 1 is measured. For this reason, a storage function, a calculation function, a comparison function and the like for performing these processes are set in the microcomputer 14 in advance.

【0025】以上の構成を備える金属配管のC/Sマク
ロセル腐食測定装置を使用して、測定が必要な配管すな
わち測定の対象とする金属製配管について、各必要値す
なわち埋設配管の電位、通電時の電位及び通電時の電流
を測定し、これらによって通電変化幅(mV/mA)を
求め、対応する腐食速度を測定するが、以下、この過程
について説明する。
Using the C / S macrocell corrosion measuring device for metal pipes having the above-mentioned structure, each required value, that is, the potential of the buried pipe, and the current when the pipe is energized The electric potential and the electric current during energization are measured, the energization change width (mV / mA) is obtained from these, and the corresponding corrosion rate is measured. This process will be described below.

【0026】まず、図1に示すような、各所で得た実測
値に基づき、「通電変化幅(mV/mA)」と、これに
対応する金属配管のC/Sマクロセル腐食の最大腐食速
度との相関関係を予め設定し、これで設定した両者の相
関関係をマイクロコンピュ−タ−14に記憶させてお
く。
First, based on the measured values obtained at various places as shown in FIG. 1, the "current change width (mV / mA)" and the corresponding maximum corrosion rate of C / S macrocell corrosion of metal pipes Is set in advance, and the set correlation between the two is stored in the microcomputer 14.

【0027】次いで、この装置をC/Sマクロセル腐食
速度の測定が必要な又はその測定を意図する既設の金属
製導管に図2のようにセットした後、通電スイッチ10
をオフ(off)とし、基準電極6を基準に埋設配管の
電位を計測し、その値を「埋設配管電位値」としてマイ
クロコンピュ−タ−14へ送信して記憶させる。
Next, this apparatus is set in an existing metal conduit for which the C / S macrocell corrosion rate is required or intended to be measured as shown in FIG.
Is turned off, the potential of the buried pipe is measured with the reference electrode 6 as a reference, and the value is transmitted to the microcomputer 14 as the “buried pipe potential value” and stored therein.

【0028】引続き、通電スイッチ10をオン(on)
とし、通電電極7と配管3との間に電流を流し、基準電
極6を基準に埋設配管3の電位を計測して「通電時電位
値」とするとともに、導線11、配管3、土壌2、通電
電極7及び導線12間に流れる電流を測定し、この値を
「通電時電流値」として導線13を通じてマイクロコン
ピュ−タ−14へ送信する。
Subsequently, the energizing switch 10 is turned on.
Then, a current is caused to flow between the energizing electrode 7 and the pipe 3, and the potential of the buried pipe 3 is measured with the reference electrode 6 as a reference to obtain the “potential value during energization”, and the conductor 11, the pipe 3, the soil 2, The current flowing between the current-carrying electrode 7 and the conducting wire 12 is measured, and this value is sent to the microcomputer 14 through the conducting wire 13 as the "current value during energization".

【0029】マイクロコンピュ−タ−14において、そ
れら「埋設配管電位値」、「通電時電位値」及び「通電
時電流値」の各実測値を基に通電変化幅(mV/mA)
を算出し、この値を、マイクロコンピュ−タ−14によ
り、これに予め記憶させた前記通電変化幅とC/Sマク
ロセル腐食の最大腐食速度との相互関係と対比させるこ
とにより、その通電変化幅に対応する当該金属配管のC
/Sマクロセル腐食の最大腐食速度を打出し、当該既設
金属製配管のC/Sマクロセル腐食の速度を予測する。
In the micro-computer 14, the width of change in energization (mV / mA) based on the measured values of the "buried pipe potential value", "potential value during energization" and "current value during energization".
Then, by comparing this value with the correlation between the above-mentioned energization change width and the maximum corrosion rate of C / S macrocell corrosion stored in advance by the microcomputer 14, the energization change width is calculated. C of the metal pipe corresponding to
The maximum corrosion rate of / S macrocell corrosion is determined, and the rate of C / S macrocell corrosion of the existing metal pipe is predicted.

【0030】[0030]

【発明の効果】以上のとおり、本発明に係る金属配管の
C/Sマクロセル腐食測定法及び装置によれば、金属製
埋設ガス配管において、これに生じるC/Sマクロセル
腐食の有無を予め察知することができ、またその腐食の
速度ないしは程度を予測することができ、これにより、
そのC/Sマクロセルに起因する腐食を未然に防ぐこと
ができる。
As described above, according to the method and apparatus for measuring C / S macrocell corrosion of metal piping according to the present invention, the presence or absence of C / S macrocell corrosion occurring in the metal buried gas piping is detected in advance. And the rate or extent of its corrosion can be predicted, which
Corrosion due to the C / S macro cell can be prevented in advance.

【0031】また、この腐食測定法及び装置を自動処理
手段により行うようにすれば、そのC/Sマクロセル腐
食の察知、予測及び予防を迅速かつ正確に、しかも自動
的に行うことができ、この自動処理手段としては、特に
マイクロコンピュ−タ−が好適に使用することができ
る。
Further, if this corrosion measuring method and apparatus are carried out by an automatic processing means, the detection, prediction and prevention of the C / S macrocell corrosion can be carried out quickly, accurately and automatically. As the automatic processing means, a micro computer can be preferably used.

【図面の簡単な説明】[Brief description of drawings]

【図1】金属製埋設配管に対する実測値から得た通電変
化幅(mV/mA)と最大腐食速度の実測値との関係を
示す図。
FIG. 1 is a diagram showing a relationship between an energization change width (mV / mA) obtained from an actual measurement value for a buried metal pipe and an actual measurement value of a maximum corrosion rate.

【図2】本発明に係るC/Sマクロセル腐食測定装置の
概略を示す図。
FIG. 2 is a diagram showing an outline of a C / S macrocell corrosion measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

1 建屋(の壁)・コンクリ−ト 2 土壌 3 金属製のガス配管 4 電位計(電圧計) 5 電流計 6 基準電極 7 通電電極 8 可変抵抗 9 電源 10 通電スイッチ 14 マイクロコンピュ−タ− 1 Building (wall) / Concrete 2 Soil 3 Metal gas pipe 4 Electrometer (voltmeter) 5 Ammeter 6 Reference electrode 7 Energizing electrode 8 Variable resistance 9 Power supply 10 Energizing switch 14 Microcomputer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】金属製埋設配管の通電変化幅と最大腐食速
度の実測値との相関関係を予め設定した後、対象とする
金属製埋設配管の電位値、通電時の電位値及び通電時の
電流値を計測し、これらの計測値を基に通電変化幅を算
出し、この算出値を上記予め設定した通電変化幅と最大
腐食速度の実測値との相関関係と対比させることによ
り、その金属製埋設配管の腐食速度を測定することを特
徴とする金属製埋設配管のC/Sマクロセル腐食の腐食
測定法。ここで、通電変化幅(mV/mA)とは、金属
製埋設管の管対地電位の測定において、埋設配管の電位
値から、通電時の電位値を差し引き、これで得られた電
位の差を、その通電時の通電電流値で除したものであ
り、下記の式で示されるものである。 【数1】
1. A potential value of a target metal buried pipe, a potential value when power is applied, and a current value when power is applied after presetting a correlation between an energization change width of a metal buried pipe and an actually measured value of a maximum corrosion rate. Measuring the current value, calculating the energization change width based on these measured values, by comparing the calculated value with the correlation between the preset energization change width and the actual measurement value of the maximum corrosion rate, the metal A corrosion measurement method for C / S macrocell corrosion of a metal buried pipe, characterized by measuring the corrosion rate of the buried pipe. Here, the energization change width (mV / mA) is the difference between the potentials obtained by subtracting the potential value during energization from the potential value of the buried pipe in the measurement of the ground potential of the metal buried pipe. , Which is divided by the value of the energizing current during energization, and is represented by the following formula. [Equation 1]
【請求項2】対象とする金属製埋設配管の建屋側の電
位、通電時の電位及び通電時の電流の計測値を基に通電
変化幅を算出し、この算出値を通電変化幅と最大腐食速
度の実測値との相関関係と対比する処理をマイクロコン
ピュ−タ−等の自動処理手段により行うことを特徴とす
る請求項1記載の金属製埋設ガス配管のC/Sマクロセ
ル腐食の腐食測定法。
2. An energization change width is calculated based on measured values of a potential of a target buried metal pipe on the building side, an energized potential, and an energized current, and the calculated value is used as the energization change width and maximum corrosion. 2. The method for measuring corrosion of C / S macrocell corrosion of a metal buried gas pipe according to claim 1, wherein the processing that correlates with the correlation with the measured value of the speed is performed by an automatic processing means such as a micro computer. .
【請求項3】金属製埋設配管の通電変化幅と最大腐食速
度の実測値との相関関係を予め設定した後、対象とする
金属製埋設配管の電位値、通電時の電位値及び通電時の
電流値を計測し、これらの計測値を基に通電変化幅を算
出し、この算出値を上記予め設定した通電変化幅と最大
腐食速度の実測値との相関関係と対比させることによ
り、その金属製埋設配管の腐食速度を測定するようにし
てなることを特徴とする金属製埋設配管のC/Sマクロ
セル腐食の腐食測定装置。ここで、通電変化幅(mV/
mA)とは、金属製埋設管の管対地電位の測定におい
て、埋設配管の電位値から、通電時の電位値を差し引
き、これで得られた電位の差を、その通電時の通電電流
値で除したものであり、下記の式で示されるものであ
る。 【数2】
3. The potential value of the target metallic buried pipe, the potential value at the time of energization, and the value at the time of energization are set after presetting the correlation between the variation range of the energization of the buried metal pipe and the measured value of the maximum corrosion rate. By measuring the current value, calculating the energization change width based on these measured values, by comparing the calculated value with the correlation between the preset energization change width and the actual measurement value of the maximum corrosion rate, the metal A corrosion measuring device for C / S macrocell corrosion of a metal buried pipe, characterized in that the corrosion rate of the buried pipe is measured. Here, the energization change width (mV /
mA) is the difference between the potentials obtained by subtracting the potential value at the time of energization from the potential value of the buried pipes in the measurement of the pipe-to-ground potential of the metal buried pipe, and the value of the energizing current at the time of energization. The values are divided by the following formula. [Equation 2]
【請求項4】対象とする金属製埋設配管の建屋側の電
位、通電時の電位及び通電時の電流の計測値を基に通電
変化幅を算出し、この算出値を通電変化幅と最大腐食速
度の実測値との相関関係と対比する処理を自動処理手段
により行うようにしてなることを特徴とする請求項3記
載の金属製埋設ガス配管のC/Sマクロセル腐食の腐食
測定装置。
4. An energization change width is calculated based on measured values of a potential of a target buried metal pipe on the building side, an energization potential, and an energization current, and the calculated value is used as the energization change width and maximum corrosion. 4. The corrosion measuring device for C / S macrocell corrosion of a metal buried gas pipe according to claim 3, wherein a process for comparing with a correlation with an actual measured value of speed is performed by an automatic processing means.
【請求項5】自動処理手段がマイクロコンピュ−タ−で
あることを特徴とする請求項4記載のLPG等のガス用
金属製埋設配管のC/Sマクロセル腐食の腐食測定装
置。
5. A corrosion measuring device for C / S macrocell corrosion of a buried metal pipe for a gas such as LPG according to claim 4, wherein the automatic processing means is a micro computer.
【請求項6】電源、電位計、電流計、通電電極、マイク
ロコンピュ−タ−等を一体に備え、マイクロコンピュ−
タ−により、対象とする金属製埋設配管について、それ
ら電位計、電流計により計測した埋設配管の電位値、通
電電極への通電時の電位値及び電流値を基に通電変化幅
(mV/mA)を下記式により算出するとともに、この
算出値を下記式に従って予め設定した通電変化幅(mV
/mA)と最大腐食速度の実測値との相関関係と対比さ
せるようにしてなることを特徴とする金属製埋設配管の
C/Sマクロセル腐食の腐食測定装置。 【数3】
6. A micro computer including a power source, an electrometer, an ammeter, a current-carrying electrode, a micro computer, etc.
For the target buried metal pipe, the potential change value (mV / mA) for the target buried metal pipe based on the potential value of the buried pipe measured by those electrometers and ammeters, and the potential value and current value when current is applied to the current-carrying electrode. ) Is calculated by the following formula, and this calculated value is preset by the following formula.
/ MA) and the correlation between the actual measured value of the maximum corrosion rate and the correlation, and the corrosion measurement device for C / S macrocell corrosion of a buried metal pipe. [Equation 3]
JP6023760A 1994-01-25 1994-01-25 C / S macrocell corrosion measurement method and apparatus for metal piping Expired - Lifetime JP2791425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6023760A JP2791425B2 (en) 1994-01-25 1994-01-25 C / S macrocell corrosion measurement method and apparatus for metal piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6023760A JP2791425B2 (en) 1994-01-25 1994-01-25 C / S macrocell corrosion measurement method and apparatus for metal piping

Publications (2)

Publication Number Publication Date
JPH07209238A true JPH07209238A (en) 1995-08-11
JP2791425B2 JP2791425B2 (en) 1998-08-27

Family

ID=12119296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6023760A Expired - Lifetime JP2791425B2 (en) 1994-01-25 1994-01-25 C / S macrocell corrosion measurement method and apparatus for metal piping

Country Status (1)

Country Link
JP (1) JP2791425B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234547A (en) * 2005-02-24 2006-09-07 Osaka Gas Co Ltd Method of estimating corrosion
JP2009162705A (en) * 2008-01-10 2009-07-23 Chugoku Electric Power Co Inc:The Method of diagnosing steel materials buried in soil
JP2010197116A (en) * 2009-02-24 2010-09-09 Hitachi Plant Technologies Ltd Method and apparatus for diagnosing pitting of stainless steel, and method and apparatus for diagnosing pitting of seawater pump using stainless steel as structural member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234547A (en) * 2005-02-24 2006-09-07 Osaka Gas Co Ltd Method of estimating corrosion
JP4522289B2 (en) * 2005-02-24 2010-08-11 大阪瓦斯株式会社 Corrosion estimation method
JP2009162705A (en) * 2008-01-10 2009-07-23 Chugoku Electric Power Co Inc:The Method of diagnosing steel materials buried in soil
JP2010197116A (en) * 2009-02-24 2010-09-09 Hitachi Plant Technologies Ltd Method and apparatus for diagnosing pitting of stainless steel, and method and apparatus for diagnosing pitting of seawater pump using stainless steel as structural member

Also Published As

Publication number Publication date
JP2791425B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
KR101680798B1 (en) System of impressed current cathodic protection for realtime monitoring corrosion of coldest place pipeline, and method for the same
JP2006145492A (en) Measurement evaluation method and device for stray current corrosion risk of cathode-protected burial metal
JPH0749327A (en) Method and equipment for measuring true electrochemical potential of structure in electrolyte
JPH07209238A (en) Method and apparatus of c/s macrocell corrosion measurement for metal pipe
JPH09236565A (en) Apparatus for measuring corrosion of embedded pipe
JP2004198410A (en) Method for inspecting defect in coated pipe, and method for diagnosing corrosion
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JP5086287B2 (en) Soundness measurement evaluation method of plastic coating in buried metal pipeline
Evitts et al. Cathodic protection
JPH0423748B2 (en)
JP2535177B2 (en) Deterioration determination method for reinforced concrete structure
JP4932759B2 (en) Corrosion risk measurement and evaluation method for buried metal pipelines
JP4522289B2 (en) Corrosion estimation method
JP4599203B2 (en) Embedded pipe corrosion diagnosis system and buried pipe corrosion diagnosis method
JP6857710B2 (en) Soil corrosion evaluation device
JP2848850B2 (en) Corrosion protection system for steel pipes for gas transport
JP4614804B2 (en) Corrosion location estimation method
JPS60231154A (en) Measurement of metal corrosion
DK171925B1 (en) Method for determining the rate of corrosion in reinforced concrete
JPH0334822B2 (en)
JPH06288958A (en) Method for detecting corroded part of cast-iron pipe buried in ground
JP6291295B2 (en) Inspection method of laying pipe
JPH10104104A (en) Apparatus for electrically inspecting water leakage in building
CN115113007A (en) Device and method for evaluating insulating property of anticorrosive coating of pipeline at crossing section of directional drill
JP2006053072A (en) Method and system for inspecting insulated state

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term