JP2535177B2 - Deterioration determination method for reinforced concrete structure - Google Patents
Deterioration determination method for reinforced concrete structureInfo
- Publication number
- JP2535177B2 JP2535177B2 JP62179909A JP17990987A JP2535177B2 JP 2535177 B2 JP2535177 B2 JP 2535177B2 JP 62179909 A JP62179909 A JP 62179909A JP 17990987 A JP17990987 A JP 17990987A JP 2535177 B2 JP2535177 B2 JP 2535177B2
- Authority
- JP
- Japan
- Prior art keywords
- potential
- concrete
- corrosion
- reinforcing bar
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は鉄筋コンクリート構造物の劣化判定方法に関
するものである。TECHNICAL FIELD The present invention relates to a deterioration determination method for a reinforced concrete structure.
(従来の技術) 鉄筋コンクリート構造物は、塩化物、酸素などの腐食
因子の浸透、拡散、鉄筋の発錆という潜在的プロセスを
経て、コンクリートの劣化や鉄筋の腐食が進行し、コン
クリート表面にかぶり部のひびわれやはく離などの変状
をきたす。(Prior art) Reinforced concrete structures undergo a potential process of permeation and diffusion of corrosion factors such as chloride and oxygen, and rusting of the reinforcing bar, which leads to deterioration of the concrete and corrosion of the reinforcing bar, resulting in a covered part on the concrete surface. Defects such as cracking and peeling.
一般に、鉄筋コンクリート構造物の維持補修は、この
ような段階になって始めて措置がとられてきたが、この
時点で補修補強すると相当の費用を必要とする。Generally, maintenance and repair of reinforced concrete structures have been taken only at such a stage, but repair and reinforcement at this point requires a considerable cost.
したがって、劣化の兆候をできるだけ早期に発見、予
測し、腐食因子の浸入を抑制するなど適切な処置を施す
ことが重要となる。Therefore, it is important to detect and predict signs of deterioration as early as possible and to take appropriate measures such as suppressing the infiltration of corrosion factors.
そこで、従来は、鉄筋コンクリート構造物の劣化の兆
候を早期に発見、予測する方法として一般に定期的な目
視による外観を調査する方法、構造物を部分的に破壊し
てコンクリートの塩分分析や中性化を調査する方法及び
自然電位法等がある。Therefore, conventionally, as a method of early detection and prediction of signs of deterioration of reinforced concrete structures, generally a method of regularly visual inspection of the appearance, partial destruction of the structure to analyze the concrete salt content and neutralization There is a method of investigating and the self potential method.
目視による外観の調査方法は、構造物のコンクリート
表面に目視により観察して、ひび割れ、かぶりコンクリ
ートのはく離、錆汁の溶出等の特徴を描き出すものであ
る。The visual inspection method is to visually inspect the concrete surface of the structure to draw out features such as cracks, exfoliation of cover concrete, and elution of rust juice.
また、塩分分析や中性化の調査方法はコンクリートの
表面から鉄筋位置までコアボーリングを行って適当な間
隔で採取した試料の塩化物量及び中性化深さにより鉄筋
の腐蝕度及び発錆の可能性を調査推定するものである。In addition, salinity analysis and neutralization investigation methods are possible for corrosiveness and rusting of reinforcing bars depending on the chloride content and neutralization depth of samples taken at appropriate intervals by core boring from the concrete surface to the reinforcing bar position. It is to estimate the sex.
さらに自然電位法は、コンクリート中にある鉄筋を照
合電極を用いて推定された電位の値によって鉄筋の腐食
度を推定するものである。Furthermore, the self-potential method estimates the degree of corrosion of the reinforcing bar by the value of the potential of the reinforcing bar in the concrete, which was estimated using the reference electrode.
(発明が解決するための問題点) しかしながら上記方法における目視による外観の調査
方法はコンクリート表面に、ひび割れ、はく離あるいは
錆汁などが目視確認できない場合には、容易に健全であ
ると判断される危険性があり、かつ主観的になり易いた
め定性的に判断し、定量的な判断をするのが困難であっ
た。(Problems to be solved by the invention) However, the method of visually inspecting the appearance in the above method is easily judged to be sound if cracks, peeling, rust, etc. cannot be visually confirmed on the concrete surface. It is difficult to make a qualitative judgment and a quantitative judgment because it has a certain nature and tends to be subjective.
また塩分分析や中性化の調査方法は、構造物を部分的
に調査するので構造物全体の劣化が把握できず、調査分
析に時間がかかるとともにコアボーリングや分析の費用
が高価であるという問題があった。In addition, in the salinity analysis and neutralization survey methods, since the structure is partially surveyed, deterioration of the entire structure cannot be grasped, and it takes time for survey analysis and the cost of core boring and analysis is expensive. was there.
さらに自然電位法は鉄筋の腐食度を判定する基準値を
用いて内部鉄筋の腐食度を推定するため実際の腐食度と
一致せずかつ定量的な把握が困難であった。Furthermore, since the self-potential method estimates the degree of corrosion of internal rebar using the standard value for determining the degree of corrosion of rebar, it did not match the actual degree of corrosion and was difficult to quantitatively grasp.
本発明は以上の様な問題点に鑑みてなされたものであ
り、その目的は、コンクリートの劣化や鉄筋の腐食によ
る鉄筋コンクリート構造物の劣化の兆候を早期かつ正確
であるとともに容易に発見予測できる鉄筋コンクリート
構造物の劣化検査方法を提供することである。The present invention has been made in view of the problems as described above, and an object thereof is reinforced concrete that can early and accurately find and predict signs of deterioration of reinforced concrete structures due to deterioration of concrete and corrosion of reinforcing bars. A method of inspecting deterioration of a structure is provided.
(問題点を解決するための手段) 以上の問題点を解決するための本発明の手段は、自然
電位法によりコンクリート構造物の所望範囲における鉄
筋の自然電位を測定して該自然電位の平均自然電位に基
づいて自然電位分布図を作図するとともに、電気抵抗法
により前記所望範囲におけるコンクリートの比抵抗を測
定して該比抵抗に基づいて比抵抗分布図を作図し、これ
ら自然電位分布図と比抵抗分布図とを重ね合わせること
により鉄筋の腐食領域を判定する鉄筋コンクリート構造
物の劣化判定方法である。(Means for Solving Problems) Means of the present invention for solving the above problems is to measure the natural potential of reinforcing bars in a desired range of a concrete structure by the natural potential method and to calculate the average natural potential of the natural potentials. Along with drawing a self-potential distribution map based on the electric potential, measure the specific resistance of the concrete in the desired range by the electrical resistance method and draw a specific resistance distribution map based on the specific resistance, and compare these with the self-potential distribution map. It is a deterioration determination method for a reinforced concrete structure that determines a corrosion area of a reinforcing bar by superimposing it on a resistance distribution map.
(作用) 而して、上記構成によれば自然電位法により測定した
平均自然電位に基づいて作成した鉄筋の腐食範囲(−25
0mV以下)を表示した自然電位分布図と、電気抵抗法に
より、測定した比抵抗に基づいて作図したコンクリート
の劣化範囲(35000Ω・cm以下)を表示した比抵抗分布
図とを重ね合わせ、これらが互いに合致した範囲が鉄筋
の耐力低下を引き起す腐食(−250mV以下、35000Ω・cm
以下)の範囲と判断する。(Operation) Therefore, according to the above configuration, the corrosion range of the rebar (−25
(0 mV or less) and the electric potential distribution map, and the resistivity distribution map showing the deterioration range (35000 Ω · cm or less) of concrete drawn based on the resistivity measured by the electric resistance method are superposed. Corrosion that causes the strength of the reinforcing bars to decrease in the range where they match each other (-250 mV or less, 35000 Ω · cm
The following) is considered to be the range.
(実施例) 以下、本発明の一実施例を図面に基づいて説明する。(Embodiment) An embodiment of the present invention will be described below with reference to the drawings.
第1図は本発明の平均自然電位測定を示す断面図であ
り、電位差計1は入力抵抗11Ω以上、感量10mV以下のも
のを使用し、一方の端子がリード線等の導線2を介して
鉄筋コンクリート構造物M内の鉄筋mに接続されるとと
もに他方の端子が照合電極3に接続されている。FIG. 1 is a cross-sectional view showing the measurement of the average spontaneous potential of the present invention. As the potentiometer 1, an input resistance of 11Ω or more and a sensitivity of 10 mV or less is used, and one terminal is provided with a conductor wire 2 such as a lead wire. It is connected to the reinforcing bar m in the reinforced concrete structure M and the other terminal is connected to the reference electrode 3.
また、該鉄筋mとの接続に対象とする鉄筋が全て互い
に電気的に連続されている場合は、一箇所にそうでない
場合は互いに連続しているグループごとの一箇所にワニ
口クリップ或いは溶接で接続する。In addition, if all the reinforcing bars to be connected to the reinforcing bar m are electrically continuous with each other, at one place, otherwise, with alligator clips or welding at one continuous group. Connecting.
照合電極3は環境に左右されない比較的安定した電位
をもつ飽和塩化銀電極、飽和硫酸銅電極、飽和カロメル
電極を用い、その先端に水溶液を含ませた吸水材4、例
えばスポンジ、ろ紙、ウェス等が嵌着されている。The reference electrode 3 is a saturated silver chloride electrode, a saturated copper sulfate electrode, or a saturated calomel electrode having a relatively stable potential that does not depend on the environment, and a water absorbing material 4 containing an aqueous solution at its tip, such as sponge, filter paper, waste cloth, etc. Is fitted.
これは、照合電極3をコンクリート表面の測定点に接
触させる際にその溶液がコンクリート内に浸透したり、
逆にコンクリート中の塩分等が照合電極を汚染しないよ
うにするためであり、その水溶液は水道水或いは河川水
等である。This is because the solution penetrates into the concrete when the matching electrode 3 is brought into contact with the measurement point on the concrete surface,
On the contrary, this is to prevent the salt in the concrete from contaminating the reference electrode, and its aqueous solution is tap water or river water.
次に平均自然電位の測定方法について説明する。 Next, a method of measuring the average spontaneous potential will be described.
まず始めに、第2図に示すようにコンクリート表面n
の任意の箇所に測定箇所に5〜10cm間隔の格子状の測定
点Pを設定する。First of all, as shown in FIG. 2, the concrete surface n
Set grid-like measurement points P at intervals of 5 to 10 cm at measurement points at arbitrary points.
この測定間隔は隣り合う測定点間の電位差が20mV以上
になる場合は小さく設定するようにする。This measurement interval should be set small when the potential difference between adjacent measurement points is 20 mV or more.
また、コンクリート中の鉄筋nの電位はコンクリート
の含水率によって大きく変動することがあるので、測定
点P部をあらかじめ水等でぬらした状態にしておく。Further, the electric potential of the reinforcing bar n in the concrete may greatly vary depending on the water content of the concrete, so that the measurement point P part is wet with water or the like in advance.
而して照合電極3を各測定点Pに約5分間ずつ接触さ
せ、全ての測定点Pの平均自然電位(測定した電位をあ
る代表的な範囲で平均した値)を測定し、それを第3図
に示すような対象部材における電位分布図aを作成す
る。Then, the reference electrode 3 is brought into contact with each measurement point P for about 5 minutes, and the average spontaneous potential (value obtained by averaging the measured potentials in a certain representative range) of all the measurement points P is measured. A potential distribution map a for the target member as shown in FIG. 3 is created.
この平均自然電位測定においては−250mV付近が鉄筋
の腐食の境界であるためこの電位分布図aにおける−25
0mV以下の範囲a1は鉄筋の腐食している範囲であると定
めることができる。In this average spontaneous potential measurement, the vicinity of −250 mV is the boundary of the corrosion of the rebar, so −25 in this potential distribution map a
The range a 1 of 0 mV or less can be defined as the range where the reinforcing bars are corroded.
次に比抵抗の測定方法について説明する。 Next, a method of measuring the specific resistance will be described.
コンクリートの電気抵抗は腐食電流の流れやすさと関
係があり、含水量や塩分量が多くなるとその値は低下し
て腐食が促進される。The electrical resistance of concrete is related to the ease with which a corrosion current flows, and when the water content or salt content increases, the value decreases and corrosion is promoted.
そこで、比抵抗測定は、第4図に示す如く前記自然電
位を測定したコンクリート表面nの表層部に4本の電極
(鉄釘)5を挿入し、両側の電極に10mA、3HZの交流を
通電することにより内側の2本の電極用の電圧を測定し
て、 ρ=2πaV/I(a:電極の間隔、I:電流) の式によって比抵抗ρを求める。Therefore, for the resistivity measurement, as shown in FIG. 4, four electrodes (iron nails) 5 were inserted into the surface layer of the concrete surface n on which the spontaneous potential was measured, and an alternating current of 10 mA, 3 HZ was applied to both electrodes. By doing so, the voltages for the two inner electrodes are measured, and the specific resistance ρ is obtained by the formula ρ = 2πaV / I (a: electrode interval, I: current).
そして、該比抵抗ρをに基づいて第5図に示すごとく
対象部材における抵抗分布図bを作成する。Then, based on the specific resistance ρ, a resistance distribution map b for the target member is created as shown in FIG.
この比抵抗測定においては、35000Ω・cm付近が鉄筋
の発錆の境界であるため前記比抵抗分布における35000
Ω・cm以下の範囲bは鉄筋が完全に腐食している範囲で
あると定めることができる。In this specific resistance measurement, since the boundary of rusting of the reinforcing bar is around 35000 Ωcm, 35,000 in the specific resistance distribution described above.
The range b of Ω · cm or less can be defined as the range where the reinforcing bars are completely corroded.
したがって、第3図に示す平均自然電位の分布図にお
ける−250mVの範囲a1と第5図に示す比抵抗の分布図に
おける35000Ω・cm以下の範囲b1とが重なり合う第6図
に示す部分分布図Cが鉄筋の耐力低下を引越す腐食の範
囲C1(平均自然電位−250mV以下、比抵抗35000Ω・cm以
下)であると定めることができる。Therefore, the partial distribution shown in FIG. 6 in which the range a 1 of −250 mV in the distribution map of average spontaneous potential shown in FIG. 3 and the range b 1 of 35000 Ω · cm or less in the distribution map of resistivity shown in FIG. It can be determined that FIG. C shows the range C 1 of corrosion (average spontaneous potential −250 mV or less, specific resistance 35000 Ω · cm or less) that causes a decrease in proof stress of the reinforcing bar.
なお、実験の結果、前述した互いに重なりあう範囲C1
には実際に顕著な腐食が見られたが、これ以外部分には
顕著な腐食が見られなかった。As a result of the experiment, the above-mentioned overlapping range C 1
Actually, significant corrosion was observed in the steel, but no significant corrosion was observed in other parts.
(発明の効果) 本発明は以上の様な方法にしたことにより下記の効果
を有する。(Effects of the Invention) The present invention has the following effects by adopting the method as described above.
従来方法に比べて、より正確にかつ定期的に鉄筋の
腐食を判定することができる。As compared with the conventional method, the corrosion of the reinforcing bar can be determined more accurately and regularly.
塩分分布や中性化深さの測定に伴うコアボーリン
グ、試料採取:分析等を行う必要が無いので低コストで
かつ迅速に作業をすることができる。Since it is not necessary to perform core boring, sampling: analysis, etc. associated with the measurement of salinity distribution and neutralization depth, it is possible to work quickly and at low cost.
構造物全体をきめ細かく調査することができるの
で、従来手法に比べて、劣化診断に正確さを期すことが
できる。Since the entire structure can be investigated in detail, the deterioration diagnosis can be made more accurate than the conventional method.
上記手法を併用することによって、劣化の早期発見
が可能となり、前もって維持補修の対策を企てることが
できる。By using the above-mentioned method together, it becomes possible to detect deterioration at an early stage, and it is possible to plan a maintenance / repair measure in advance.
第1図は平均自然電位測定法を示す断面図、第2図は測
定点を示す平面図、第3図は電位分布図、第4図は比抵
抗測定法の概略図、第5図は比抵抗分布図、第6図は、
鉄筋の耐力低下を引越す腐食範囲の分布図である。 1:電位差計、M:鉄筋コンクリート構造物、m:鉄筋、3:照
合電極、4……吸水材、P……測定点、5……鉄筋。Fig. 1 is a sectional view showing the average spontaneous potential measuring method, Fig. 2 is a plan view showing measuring points, Fig. 3 is a potential distribution diagram, Fig. 4 is a schematic diagram of the resistivity measuring method, and Fig. 5 is a ratio diagram. Resistance distribution diagram, Fig. 6
It is a distribution map of the corrosion range which moves the yield strength decrease of the reinforcing bar. 1: Potentiometer, M: Reinforced concrete structure, m: Reinforcing bar, 3: Reference electrode, 4 ... Water absorbing material, P ... Measuring point, 5 ... Reinforcing bar.
Claims (1)
望範囲における鉄筋の自然電位を測定して該自然電位の
平均自然電位に基づいて自然電位分布図を作図するとと
もに、電気抵抗法により前記所望範囲におけるコンクリ
ートの比抵抗を測定して該比抵抗に基づいて比抵抗分布
図を作図し、これら自然電位分布図と比抵抗分布図とを
重ね合わせることにより鉄筋の腐食領域を判定する鉄筋
コンクリート構造物の劣化判定方法。1. A self-potential method is used to measure the self-potential of a reinforcing bar in a desired range of a concrete structure, and a self-potential distribution map is drawn based on the average self-potential of the self-potential. Of the reinforced concrete structure for determining the corrosion area of the reinforcing bar by measuring the specific resistance of the concrete and drawing a specific resistance distribution map based on the specific resistance, and superimposing these natural potential distribution maps and specific resistance distribution maps Deterioration determination method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62179909A JP2535177B2 (en) | 1987-07-21 | 1987-07-21 | Deterioration determination method for reinforced concrete structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62179909A JP2535177B2 (en) | 1987-07-21 | 1987-07-21 | Deterioration determination method for reinforced concrete structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6425050A JPS6425050A (en) | 1989-01-27 |
JP2535177B2 true JP2535177B2 (en) | 1996-09-18 |
Family
ID=16074032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62179909A Expired - Fee Related JP2535177B2 (en) | 1987-07-21 | 1987-07-21 | Deterioration determination method for reinforced concrete structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2535177B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015209743A (en) * | 2014-04-30 | 2015-11-24 | 国立研究開発法人物質・材料研究機構 | Desalination treatment method, desalination treatment system, re-alkalization treatment method, and re-alkalization treatment system for concrete, and saline content sensor and ph sensor used therewith |
JP2018124286A (en) * | 2018-03-13 | 2018-08-09 | 国立研究開発法人物質・材料研究機構 | Desalination processing system for concrete, re-alkalization processing system and salt content sensor and ph sensor used therefor |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5142054B2 (en) * | 2010-02-05 | 2013-02-13 | 飛島建設株式会社 | Concrete filling condition inspection method |
JP6325317B2 (en) * | 2013-04-09 | 2018-05-16 | 東日本高速道路株式会社 | Unit equipment support and movement system in narrow gap section |
JP6753718B2 (en) * | 2016-07-25 | 2020-09-09 | 株式会社Nttファシリティーズ | Corrosion degree estimation method, corrosion degree estimation device and program |
JP6753717B2 (en) * | 2016-07-25 | 2020-09-09 | 株式会社Nttファシリティーズ | Corrosion degree estimation method, corrosion degree estimation device and program |
-
1987
- 1987-07-21 JP JP62179909A patent/JP2535177B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015209743A (en) * | 2014-04-30 | 2015-11-24 | 国立研究開発法人物質・材料研究機構 | Desalination treatment method, desalination treatment system, re-alkalization treatment method, and re-alkalization treatment system for concrete, and saline content sensor and ph sensor used therewith |
JP2018124286A (en) * | 2018-03-13 | 2018-08-09 | 国立研究開発法人物質・材料研究機構 | Desalination processing system for concrete, re-alkalization processing system and salt content sensor and ph sensor used therefor |
Also Published As
Publication number | Publication date |
---|---|
JPS6425050A (en) | 1989-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4861453A (en) | Corrosion detecting probe for steel buried in concrete | |
Law et al. | Measurement of loss of steel from reinforcing bars in concrete using linear polarisation resistance measurements | |
JPH0514224B2 (en) | ||
CN207557160U (en) | System is monitored for the Multifunctional corrosion of reinforced concrete structure | |
JP2535177B2 (en) | Deterioration determination method for reinforced concrete structure | |
JP3326587B2 (en) | Method for detecting corrosion points of steel in concrete | |
US20220260548A1 (en) | Electrochemical measurement system and method for monitoring a concrete structure | |
JPS59132354A (en) | Nondestructive cathode separation test method and device forpipe wrap coating | |
JP6370701B2 (en) | Soil corrosion evaluation method | |
JP2003107025A (en) | Method for calculating corrosion rate of macrocell in concrete member | |
JPS59217147A (en) | Method and apparatus for inspecting corrosion of steel material in concrete | |
Klinghoffer | In situ monitoring of reinforcement corrosion by means of electrochemical methods | |
JP2007017405A (en) | Method for evaluating reinforcement corrosion rate | |
Andrade et al. | Techniques for measuring the corrosion rate (polarization resistance) and the corrosion potential of reinforced concrete structures | |
JPH10221292A (en) | Detecting method for steel material corrosion in concrete | |
JP2511234B2 (en) | Probe for detecting corrosion degree of buried rebar | |
JPH0423748B2 (en) | ||
JP7113419B2 (en) | Apparatus for detecting corroded portions of reinforcing bars in concrete and method for detecting the same | |
JP2000044364A (en) | Detection of repair-needing portion of concrete structure and its repair | |
CN108267491B (en) | Device and method for testing corrosion rate of angle steel at atmosphere-concrete interface | |
JPH09236565A (en) | Apparatus for measuring corrosion of embedded pipe | |
JP6732236B2 (en) | Method and system for measuring rebar corrosion environment in concrete | |
JPH0367219B2 (en) | ||
JP2017129435A (en) | Buried-object soundness assessment method | |
DK171925B1 (en) | Method for determining the rate of corrosion in reinforced concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |