JPH0334822B2 - - Google Patents

Info

Publication number
JPH0334822B2
JPH0334822B2 JP58220242A JP22024283A JPH0334822B2 JP H0334822 B2 JPH0334822 B2 JP H0334822B2 JP 58220242 A JP58220242 A JP 58220242A JP 22024283 A JP22024283 A JP 22024283A JP H0334822 B2 JPH0334822 B2 JP H0334822B2
Authority
JP
Japan
Prior art keywords
buried pipe
defect
test piece
defective part
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58220242A
Other languages
Japanese (ja)
Other versions
JPS60111949A (en
Inventor
Minoru Imamura
Mitsuo Kanai
Daihachi Sayama
Takeshi Myashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Nippon Corrosion Engineering Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Nippon Corrosion Engineering Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP22024283A priority Critical patent/JPS60111949A/en
Publication of JPS60111949A publication Critical patent/JPS60111949A/en
Publication of JPH0334822B2 publication Critical patent/JPH0334822B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Description

【発明の詳細な説明】 本発明は、塗覆装埋設管の被覆欠陥測定方法に
関するもので、さらに詳言すれば、塗覆装埋設管
の保守・管理を良好にかつ安全に達成することを
目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring coating defects in coated buried pipes, and more specifically, to achieve good and safe maintenance and management of coated buried pipes. This is the purpose.

埋設配管については、塗覆装による防食を行つ
ているのが一般である。
For buried pipes, corrosion protection is generally performed by coating them.

この塗覆装埋設配管の塗覆装に欠陥部があるよ
うな場合、この欠陥部から腐食を生じ、この埋設
配管による流体輸送に障害を生じることになる。
If there is a defective part in the coating of the coated buried pipe, corrosion will occur from the defective part, which will impede fluid transport through the buried pipe.

そこで、塗覆装埋設配管の塗覆装の欠陥部を探
知し、この欠陥部の面積ならびに腐食電流量から
管体寿命を知ることが可能ならば、塗覆装埋設配
管の維持・管理上、非常に有用であり、さらに入
取替とか管体修理等についても、その費用を大幅
に低減出来る。
Therefore, if it is possible to detect defects in the coating of coated underground pipes and determine the lifespan of the pipe from the area of the defective parts and the amount of corrosion current, it would be possible to improve the maintenance and management of coated buried pipes. It is very useful and can also significantly reduce the cost of replacement and pipe repair.

従来の欠陥部探知法には、欠陥部の大きさや腐
食電流を地上測定によつて知る方法がないため、
腐食による貫通孔生成により深刻な事態の予想さ
る箇所では、掘削による直接調査が行われること
になり、多大な時間と労力そして機材とを必要と
していた。
With conventional defect detection methods, there is no way to know the size of the defect or corrosion current through ground measurements.
In areas where a serious situation is expected due to the formation of through holes due to corrosion, direct investigation by excavation is required, which requires a great deal of time, labor, and equipment.

このため、塗覆装埋設管の塗覆装の欠陥部を地
上から検出が出来ると共に、この欠陥部の大き
さ、ならびに腐食の進行程度をも知ることが出来
る手段の出現が強く望まれていた。
For this reason, there was a strong desire for a method that would be able to detect defects in the coating of coated buried pipes from the ground, as well as determine the size of these defects and the degree of corrosion. .

本発明は、上記した従来例の欠点を解消すると
共に従来からの要望を満たすべく創案されたもの
で、塗覆装埋設配管の塗覆装欠陥部と全く同じ腐
食条件下に置かれたテストピースの対地電位およ
び腐食電流を知ることによつて、塗覆装埋設配管
の塗覆装の欠陥部の有無およびその大きさ、さら
には腐食の進行程度の予測を知るようにしたもの
である。
The present invention was devised to solve the above-mentioned drawbacks of the conventional example and to satisfy the conventional demands. By knowing the potential to the ground and the corrosion current, it is possible to predict the presence or absence of defects in the coating of coated buried pipes, their size, and the extent to which corrosion will progress.

以下、本発明を図面を参照しながら説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

塗覆装埋設配管の塗覆の欠陥の有無を探知する
方法としては、ピアソンサーベイに代表される如
く、大地から管体へ通電し、管上に現れる電位勾
配を探知する方法が一般的であり、現在の各種の
探知方法の殆どは、この原理に基づいている。
A common method for detecting defects in the coating of coated buried pipes is to pass electricity from the ground to the pipe body and detect the potential gradient that appears on the pipe, as typified by the Pearson survey. Most of the current detection methods are based on this principle.

本発明方法は、上記した方法の内の針電極によ
る地表面電位勾配測定を利用している。
The method of the present invention utilizes ground surface potential gradient measurement using a needle electrode among the methods described above.

第1図は、この測定方法の概念図であり、第2
図は、計測結果の一例である。
Figure 1 is a conceptual diagram of this measurement method, and the second
The figure shows an example of the measurement results.

第1図において、1は塗覆装を施した埋設配管
で、この埋設配管1の適当な箇所に欠陥部1aが
形成されている。
In FIG. 1, reference numeral 1 denotes a coated buried pipe, and defective portions 1a are formed at appropriate locations on the buried pipe 1.

この埋設配管1に、電流2を介して電気的に接
続された接地電極5を通して通電を行う。
This buried pipe 1 is energized through a ground electrode 5 electrically connected via a current 2.

この接地電極5を通して埋設配管1に断続して
通電を行つた状態のまま、埋設配管1に沿つて大
地電位勾配測定用電圧計4の検出電極7を地表上
で移動させて、通電断続時の地表面電位差を、配
管上の地表を順次切れ目なく測定すると、この埋
設配管1の地表上の大地電位勾配は、第2図のよ
うになる。
While the buried pipe 1 is intermittently energized through the ground electrode 5, the detection electrode 7 of the earth potential gradient measurement voltmeter 4 is moved on the ground surface along the buried pipe 1, and the If the ground surface potential difference is measured continuously on the ground surface above the pipe, the ground potential gradient on the ground surface of this buried pipe 1 will be as shown in FIG.

なお、第1図において、3は電圧計、6は照合
電極である。
In addition, in FIG. 1, 3 is a voltmeter, and 6 is a reference electrode.

この第2図に示す如く、埋設配管1に欠陥部1
aが生じていると、埋設配管1の地表上の大地電
位勾配は、この欠陥部1aに対抗する箇所で急激
な変化を示す。
As shown in FIG. 2, there is a defect 1 in the buried pipe 1.
When a occurs, the ground potential gradient on the ground surface of the buried pipe 1 shows a sudden change at a location opposing this defective portion 1a.

この時の電位変化VHは、次式で近似出来るこ
とが知られている。
It is known that the potential change VH at this time can be approximated by the following equation.

VH=IH・ρ/2πD ……(1) ここで、IHは欠陥部1aに流れる電流、ρは
土壌抵抗率、Dは埋設配管1の埋設深さである。
VH=IH・ρ/2πD (1) Here, IH is the current flowing through the defective portion 1a, ρ is the soil resistivity, and D is the burial depth of the buried pipe 1.

ところで、VSを埋設配管1と地表面との間の
電位差とし、rHを欠陥部1aの等価半径とする
と、 IH=VS・2πrH/ρ ……(2) であるので、 rH=DVH/VS ……(3) となるが、この方法では、電位差VSを正確に求
めることが出来ないので、算出された等価半径
rHの値はあまり正確であるとは言えない。
By the way, if VS is the potential difference between the buried pipe 1 and the ground surface, and rH is the equivalent radius of the defective part 1a, then IH=VS・2πrH/ρ...(2), so rH=DVH/VS... ...(3) However, since it is not possible to accurately determine the potential difference VS with this method, the calculated equivalent radius
The value of rH cannot be said to be very accurate.

そこで、本発明は、第3図に示す如く、さらに
欠陥部1aの形成する大地電位勾配と互いに作用
し合わない至近距離の埋設配管1の近傍に、疑似
欠陥部としてのテストピース9(裸の鋼片)を、
埋設位置させ、このテストピース9を絶縁リード
線によつて電流計8を介して埋設配管1に接続す
ることによつて、このテストピース9における大
地電位変化に従つて、等価半径rHを正確に算出
するのである。
Therefore, as shown in FIG. 3, the present invention further provides a test piece 9 (a bare piece) as a pseudo defective part in the vicinity of the buried pipe 1 at a close distance that does not interact with the ground potential gradient formed by the defective part 1a. steel pieces),
By placing the test piece 9 in a buried position and connecting it to the buried pipe 1 via an insulated lead wire and an ammeter 8, the equivalent radius rH can be accurately determined according to the change in ground potential at the test piece 9. It is calculated.

すなわち、本発明による塗覆装埋設管の被覆欠
陥測定方法は、塗覆装埋設管1に、別に設置した
接地極5から大地を通して通電している状態で、
針電極法により前記埋設管1の被覆欠陥部1aを
測定探知すると共に、この欠陥部1aの形成する
大地電位勾配と互いに作用し合わない前記欠陥部
1aの近傍に、通電表面面積の既知なテストピー
ス9を設置し、このテストピース9を前記埋設管
1に電気的に接続して、このテストピース9を疑
似欠陥部として前記欠陥部1aと同様の測定を行
つて前記した実在の欠陥部1aとの測定値比較を
することによつて、実在する欠陥部1aの面積を
検知するのである。
That is, the method for measuring coating defects in coated buried pipes according to the present invention involves applying electricity to the coated buried pipe 1 through the earth from a separately installed ground electrode 5.
In addition to measuring and detecting the coating defect 1a of the buried pipe 1 using the needle electrode method, a known current-carrying surface area test was carried out in the vicinity of the defect 1a that does not interact with the ground potential gradient formed by the defect 1a. A piece 9 is installed, this test piece 9 is electrically connected to the buried pipe 1, and the test piece 9 is used as a pseudo-defect part and the same measurement as the defect part 1a is performed to determine the actual defect part 1a. By comparing the measured values with the actual defective portion 1a, the area of the existing defective portion 1a is detected.

第3図の如くテストピース9を設置すると、欠
陥部1aと同様に地表面上から測定した電位に第
4図に示したような変化が発生する。
When the test piece 9 is installed as shown in FIG. 3, a change as shown in FIG. 4 occurs in the potential measured from above the ground surface, similar to the defective portion 1a.

この電位変化のうちテストピース9に対応して
発生した電位変化分をVTとすると VT=IT・ρ/2πD ……(4) となる。ここで、ITはテストピース9に流れる
電流である。
If the potential change generated corresponding to the test piece 9 out of this potential change is VT, then VT=IT・ρ/2πD (4). Here, IT is the current flowing through the test piece 9.

それゆえ、(1)式と(4)式とから、 IH=IT・VH/VT ……(5) が得られ、欠陥部1aに流れる電流を確定するこ
とが出来、またテストピース9の等価有効半径を
rTとすれば、 IT=VS・2πrT/ρ ……(6) であるので、(2)式と(6)式とより、 rH=rT・IH/IT ……(7) が得られるので、欠陥部1aの等価半径を確定す
ることが出来る。
Therefore, from equations (1) and (4), IH=IT・VH/VT...(5) can be obtained, the current flowing through the defective part 1a can be determined, and the equivalent value of the test piece 9 can be determined. effective radius
If rT, then IT=VS・2πrT/ρ...(6), so from equations (2) and (6), we get rH=rT・IH/IT...(7), so, The equivalent radius of the defective portion 1a can be determined.

また、テストピース9を流れる腐食電流の大き
さと、テストピース9である鋼片の単位腐食量と
から前記欠陥部1aにおける腐食程度および腐食
の進行程度を予測することが出来る。
Further, the degree of corrosion and the degree of progress of corrosion in the defective portion 1a can be predicted from the magnitude of the corrosion current flowing through the test piece 9 and the unit corrosion amount of the steel piece that is the test piece 9.

すなわち、埋設管1に、別に設置した接地電極
5から大地を通して通電している状態で、針電極
法により前記埋設管1の被覆欠陥部1aを測定探
知すると共に、この欠陥部1aの形成する大地電
位勾配と互いに作用し合わない前記欠陥部1a近
傍に、通電表面面積の既知なテストピース9を設
置し、このテストピース9を前記埋設管1に電気
的に接続して、このテストピース9を疑似欠陥部
として、前記欠陥部1aと同様の測定を行つて前
記した実在の欠陥部1aとの測定値比較をするこ
とによつて、実在する欠陥部1aの面積を検知
し、さらに前記テストピース9に電流計8を接続
すると共に前記接地局5かの通電を停止した状態
で、前記テストピース9からの腐食電流ITを前
記電流計8により計測して前記欠陥部1aに流れ
る腐食電流IHを求めるのである。
That is, while electricity is being applied to the buried pipe 1 through the earth from a separately installed ground electrode 5, the coating defect 1a of the buried pipe 1 is measured and detected by the needle electrode method, and the ground formed by this defect 1a is detected. A test piece 9 with a known current-carrying surface area is installed near the defective portion 1a that does not interact with the potential gradient, and this test piece 9 is electrically connected to the buried pipe 1. As a pseudo defective part, the area of the actual defective part 1a is detected by performing the same measurements as the defective part 1a and comparing the measured values with the actual defective part 1a, and then 9 and with the earthing station 5 de-energized, the corrosion current IT from the test piece 9 is measured by the ammeter 8, and the corrosion current IH flowing to the defective part 1a is determined. I ask for it.

これを具体的に説明するならば、前記した手法
によつて欠陥部1aの等価半径rHを確定するこ
とが出来たならば、電源2の電流を切つて埋設配
管1を原状態に復帰させてから、テストピース9
を流れる腐食電流ITcを計測すれば、 ITc=VN・2πrT/ρ ……(8) 但し、VNは原状態における欠陥部1aと大地
間の電位差である。
To explain this concretely, once the equivalent radius rH of the defective part 1a has been determined by the method described above, the current of the power supply 2 is cut off and the buried pipe 1 is returned to its original state. From, test piece 9
If the corrosion current ITc flowing through is measured, ITc=VN・2πrT/ρ...(8) However, VN is the potential difference between the defective part 1a and the ground in the original state.

なる関係があり、欠陥部1aを流れる腐食電流
IHcもまた、 IHc=VN・2πrH/ρ ……(9) なる関係があるから、 IHc=ITc・rH/rH ……(10) となつて、欠陥部1aの腐食電流IHcを確定する
ことが出来る。
There is a relationship such that the corrosion current flowing through the defective part 1a
IHc also has the following relationship: IHc=VN・2πrH/ρ...(9), so IHc=ITc・rH/rH...(10), and the corrosion current IHc of the defective part 1a can be determined. I can do it.

以上の手段によつて、埋設配管1の欠陥部1a
の有無、位置、大きさそして腐食電流IHcを地表
面上での計測によつて知ることが出来る。
By the above means, the defective part 1a of the buried pipe 1
The presence, location, size, and corrosion current IHc of corrosion can be determined by measuring them on the ground surface.

鋼の腐食量Wは、9.1g/mA・Yrで表され、
また鋼の比重は7.86であるので欠陥部1aの腐食
浸食深さをdとし、浸食係数その他をKとすれ
ば、腐食浸食深さdは、 d=KW/πrH・rH =9.1KIHcYr/7.86πrH・rH ……(11) となる。
The corrosion amount W of steel is expressed as 9.1g/mA・Yr,
Also, since the specific gravity of steel is 7.86, if the corrosion depth of the defective part 1a is d, and the erosion coefficient and other values are K, then the corrosion depth d is: d=KW/πrH・rH=9.1KIHcYr/7.86πrH・rH...(11)

従つて、上記した欠陥部1aの等価半径rHお
よび欠陥部1aを流れる腐食電流IHcの測定結果
の数値を(11)式に適用すれば、埋設配管1の使
用年数Yrが判つていさえすれば、測定時点にお
ける腐食浸食深さを推定することが出来る。
Therefore, by applying the values of the measurement results of the equivalent radius rH of the defective part 1a and the corrosion current IHc flowing through the defective part 1a to equation (11), as long as the service life Yr of the buried pipe 1 is known, , it is possible to estimate the corrosion depth at the time of measurement.

また、埋設配管1の管厚さwが判つていれば、
埋設配管1の管壁に腐食により、貫通孔が生成さ
れるまでの年数YRは、 YR=7.86(w−d)πrH・rH/9.1KIHc から正確に算出することが出来、これによつて貫
通孔生成までの期間をほぼ正確に予測することが
出来ることになる。
Also, if the pipe thickness w of the buried pipe 1 is known,
The number of years YR until a through hole is formed due to corrosion in the pipe wall of buried pipe 1 can be accurately calculated from YR = 7.86 (w - d) πrH・rH / 9.1KIHc. This means that the period until pore formation can be predicted almost accurately.

第5図に示すように、接地電極5を電源2およ
び電流計を介して埋設配管1に接続すると共に、
テストピース9を電流計8およびスイツチSを介
して埋設配管1に接続し、接地電極5を通して埋
設配管1に断続して通電を行つた状態のまま、埋
設配管1に沿つて大地電位勾配測定用電圧計4の
検出電極7を地表上で移動させて、通電断続時の
地表面電位差を、埋設配管1上の地表を順次切れ
目なく測定し、第6図に示す埋設配管1の地表上
の大地電位勾配結果を得た。
As shown in FIG. 5, the ground electrode 5 is connected to the buried pipe 1 via the power source 2 and the ammeter, and
The test piece 9 is connected to the buried pipe 1 via the ammeter 8 and the switch S, and while the buried pipe 1 is intermittently energized through the ground electrode 5, the test piece 9 is connected to the buried pipe 1 via the ammeter 8 and the switch S, and the ground potential gradient is measured along the buried pipe 1. The detection electrode 7 of the voltmeter 4 is moved on the ground surface, and the ground surface potential difference during energization and intermittent periods is sequentially and seamlessly measured on the ground surface above the buried pipe 1. Potential gradient results were obtained.

第1の実測では、深さ1.5mに埋設された埋設
配管1に対して、通電表面面積が5cm2(2rT
2.52cm)のテストピース9を用い、スイツチSを
オンさせた時のテストピース9への流入電流IT
12mAであり、テストピース9での大地電位勾配
の変化量VTは120mV、埋設配管1に対向した一
部で55mVの変化量VHが測定され、埋設配管1
に被覆欠陥部1aが生じている可能性が認められ
た。
In the first actual measurement, the current-carrying surface area of the buried pipe 1 buried at a depth of 1.5 m was 5 cm 2 (2r T =
Using the test piece 9 (2.52 cm), the inflow current I T into the test piece 9 when switch S is turned on is
12 mA, the amount of change V T in the ground potential gradient at test piece 9 is 120 mV, and the amount of change V H of 55 mV is measured in the part facing buried pipe 1.
It was recognized that the coating defect 1a may have occurred.

そこで、これらの計測結果を(5)式に代入する
と、欠陥部1aに流れる電流IHは、 IH=IT・VH/VT =12mA・55mV/120mV=5.5mA さらに、(7)式から欠陥部1aの等価半径rHを求
めると、 rH=rT・IH/IT =1.26cm・5.5mA/12mA=0.58cm となり、欠陥部1aの直径2rHは1.16cmと算出さ
れた。
Therefore, by substituting these measurement results into equation (5), the current I H flowing through the defective part 1a is: I H = I T · V H /V T = 12 mA · 55 mV / 120 mV = 5.5 mA Furthermore, (7) Determining the equivalent radius r H of the defective part 1a from the formula, r H = r T・ I H / I T = 1.26 cm 5.5 mA / 12 mA = 0.58 cm, and the diameter 2r H of the defective part 1a is calculated as 1.16 cm. It was done.

掘削して埋設配管1を調査した結果、大地電位
勾配が変化した近傍で直径1.3cmの欠陥部1aが
見つかり、算出値とかなり良く合致した。
As a result of excavating and investigating the buried pipe 1, a defect 1a with a diameter of 1.3 cm was found in the vicinity of the change in the ground potential gradient, which agreed fairly well with the calculated value.

第2の実測では、深さ0.75mに埋設された埋設
配管1に対して、通電表面面積が1cm2(2rT
1.13cm)のテストピース9を用い、スイツチSを
オンさせた時のテストピース9への流入電流IT
2.56mAであり、テストピース9での大地電位勾
配の変化量VTは52mV、埋設配管1に対向した
一部で12mVの変化量VHが測定され、埋設配置
1に被覆欠陥部1aが生じている可能性が求めら
れた。
In the second actual measurement, the current-carrying surface area of buried pipe 1 buried at a depth of 0.75 m was 1 cm 2 (2r T =
Using the test piece 9 (1.13 cm), the inflow current I T into the test piece 9 when switch S is turned on is
2.56 mA, the amount of change V T in the ground potential gradient at test piece 9 was 52 mV, and the amount of change V H of 12 mV was measured in the part facing buried pipe 1, and a coating defect 1a occurred in buried arrangement 1. The possibility of

そこで、これらの計測結果を(5)式に代入する
と、欠陥部1aに流れる電流IHは、 IH=IT・VH/VT =2.56mA・12mV/52mV=0.59mA さらに、(7)式から欠陥部1aの等価半径rHを求
めると、 rH=rT・IH/IT =0.565cm・0.59mA/2.56mA=0.13cm となり、欠陥部1aの直径2rHは0.26cmと算出さ
れた。
Therefore, by substituting these measurement results into equation (5), the current I H flowing through the defective part 1a is: I H = I T · V H /V T = 2.56 mA · 12 mV / 52 mV = 0.59 mA Furthermore, (7 ) Calculating the equivalent radius r H of the defective part 1a, r H = r T・I H /I T =0.565cm・0.59mA/2.56mA=0.13cm, and the diameter 2rH of the defective part 1a is 0.26cm. It was calculated that

掘削して埋設配管1を調査した結果、大地電位
勾配が変化した近傍で直径0.3cmの欠陥部1aが
見つかり、算出値とかなり良く合致した。
As a result of excavating and investigating the buried pipe 1, a defective part 1a with a diameter of 0.3 cm was found in the vicinity where the ground potential gradient had changed, which agreed fairly well with the calculated value.

このように、本発明方法は、地表面上から埋設
配管1の欠陥部1aの有無、位置、大きさ、そし
てその程度を知ることが出来るので、これを基に
して埋設配管1の寿命を掘削を行うことなく知る
ことが出来る。
In this way, the method of the present invention makes it possible to know the existence, position, size, and extent of the defective part 1a of the buried pipe 1 from above the ground surface, so based on this, the lifespan of the buried pipe 1 can be estimated by excavation. You can know without doing it.

それゆえ、埋設配管1の管入取替、管体修理等
が無駄なく、効率的に施工することが出来る。
Therefore, replacement of the buried pipe 1, repair of the pipe body, etc. can be carried out efficiently and without waste.

以上の説明から明らかなように、本発明による
塗覆装埋設管の被覆欠陥測定方法は、掘削作業を
要することなく、地表上から埋設配管の欠陥部の
有無、位置、大きさ、そしてその程度を知ること
が出来るので、埋設配管の維持、管理上極めて有
用であり、また掘削作業を必要としないので、埋
設配管の管入取替、管体修理等を要する費用を大
幅に低減することが出来、さらに埋設配管の寿命
を正確に予測することが出来るので、埋設配管の
長期にわたる管理を良好に行うことが出来る等多
くの優れた効果を有するものである。
As is clear from the above description, the method for measuring coating defects in coated buried pipes according to the present invention can detect the presence, location, size, and extent of defects in buried pipes from the ground surface without requiring excavation work. It is extremely useful for the maintenance and management of underground piping, and since no excavation work is required, the cost of replacing underground piping, repairing pipe bodies, etc. Furthermore, since it is possible to accurately predict the life of buried piping, it has many excellent effects, such as being able to properly manage buried piping over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、埋設配管の欠陥部検出のための一般
的な手法をしめす概念図である。第2図は、第1
図に示した手法により測定さた地表面電位勾配線
図である。第3図は、本発明方法の手法を示す概
念図である。第4図は、本発明方法により測定さ
れる地表面電位勾配線図である。第5図は、本発
明方法を実施した大地電位勾配測定設備の一例を
示す電気構成例図である。第6図は、第5図に示
した構成により得られた大地電位勾配測定線図で
ある。 符号の説明、1;埋設配管、1a;欠陥部、
2;電源、3;電圧計、5;接地電極、6;照合
電極、8;電流計、9;テストピース。
FIG. 1 is a conceptual diagram showing a general method for detecting defects in buried piping. Figure 2 shows the first
It is a ground surface potential gradient diagram measured by the method shown in the figure. FIG. 3 is a conceptual diagram showing the method of the present invention. FIG. 4 is a ground surface potential gradient diagram measured by the method of the present invention. FIG. 5 is a diagram illustrating an example of the electrical configuration of an earth potential gradient measurement facility in which the method of the present invention is implemented. FIG. 6 is a ground potential gradient measurement diagram obtained by the configuration shown in FIG. Explanation of symbols, 1; Buried pipe, 1a; Defective part,
2; power supply, 3; voltmeter, 5; grounding electrode, 6; reference electrode, 8; ammeter, 9; test piece.

Claims (1)

【特許請求の範囲】 1 塗覆装埋設管に、別に設置した接地極から大
地を通して通電している状態で、針電極法により
前記埋設管の被覆欠陥部を測定探知すると共に、
該欠陥部の形成する大地電位勾配と互いに作用し
合わない前記欠陥部近傍に、通電表面面積の既知
なテストピースを設置し、該テストピースを前記
埋設管に電気的に接続して該テストピースを疑似
欠陥部として前記欠陥部と同様の測定を行つて前
記した実存の欠陥部との測定値比較をすることに
よつて、実存する欠陥部の面積を検知する塗覆装
埋設管の被覆欠陥測定方法。 2 装覆装埋設管に、別に設置した接地極から大
地を通して通電している状態で、針電極法により
前記埋設管の被覆欠陥部を測定探知すると共に、
該欠陥部の形成する大地電位勾配と互いに作用し
合わない前記欠陥部近傍に、通電表面面積の既知
なテストピースを設置し、該テストピースを前記
埋設管に電気的に接続して該テストピースを疑似
欠陥部として前記欠陥部と同様の測定を行つて前
記した実存の欠陥部との測定値比較をすることに
よつて、実存する欠陥部の面積を検知し、さらに
前記テストピースに電流計を接続すると共に前記
接地極からの通電を停止した状態で、前記テスト
ピースからの腐食電流を前記電流計により計測し
て前記欠陥部に流れる腐食電流を求める塗覆装埋
設管の被覆欠陥測定方法。
[Claims] 1. Measuring and detecting coating defective parts of the coated buried pipe using a needle electrode method while applying electricity through the earth from a separately installed ground electrode,
A test piece with a known current-carrying surface area is installed near the defective part that does not interact with the ground potential gradient formed by the defective part, and the test piece is electrically connected to the buried pipe. The area of the existing defect is detected by performing the same measurements as the defect with the defect as a pseudo defect and comparing the measured values with the existing defect. Measuring method. 2. Measure and detect defects in the coating of the buried pipe using the needle electrode method while energizing the covered buried pipe through the ground from a separately installed ground electrode;
A test piece with a known current-carrying surface area is installed near the defective part that does not interact with the ground potential gradient formed by the defective part, and the test piece is electrically connected to the buried pipe. The area of the existing defect is detected by performing the same measurements as the defect with the pseudo defect and comparing the measured values with the existing defect. A method for measuring a coating defect in a coated buried pipe in which the corrosion current flowing from the test piece is measured by the ammeter with the test piece connected and the power supply from the ground electrode stopped, and the corrosion current flowing to the defective part is determined. .
JP22024283A 1983-11-22 1983-11-22 Method for detecting coating defect of coated embedded pipe Granted JPS60111949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22024283A JPS60111949A (en) 1983-11-22 1983-11-22 Method for detecting coating defect of coated embedded pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22024283A JPS60111949A (en) 1983-11-22 1983-11-22 Method for detecting coating defect of coated embedded pipe

Publications (2)

Publication Number Publication Date
JPS60111949A JPS60111949A (en) 1985-06-18
JPH0334822B2 true JPH0334822B2 (en) 1991-05-24

Family

ID=16748114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22024283A Granted JPS60111949A (en) 1983-11-22 1983-11-22 Method for detecting coating defect of coated embedded pipe

Country Status (1)

Country Link
JP (1) JPS60111949A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120246A (en) * 1986-11-07 1988-05-24 Toda Constr Co Ltd Method for inspecting anticorrosion coating state of ground embedded piping
AT390969B (en) * 1988-07-04 1990-07-25 Flaga Handel METHOD FOR DETERMINING THE CORROSION CONDITION OF A METAL OBJECT Buried In The Soil
CN102954754A (en) * 2011-08-19 2013-03-06 丹阳奥恩能源科技发展有限公司 Detection method for equivalent diameter of anticorrosive coating damaged surface of buried steel pipeline
DK2748576T3 (en) * 2012-02-16 2019-03-11 Electro Scan Inc System and method for collecting, analyzing and archiving pipe defect data
CN110231111B (en) * 2019-06-21 2020-02-28 西南石油大学 Non-contact type stress real-time monitoring method for buried pipeline

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134486A (en) * 1977-04-28 1978-11-24 Sumikin Kokan Koji Kk Inspection method and apparatus for flawed parts of coated film on underground coated steel pipes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134486A (en) * 1977-04-28 1978-11-24 Sumikin Kokan Koji Kk Inspection method and apparatus for flawed parts of coated film on underground coated steel pipes

Also Published As

Publication number Publication date
JPS60111949A (en) 1985-06-18

Similar Documents

Publication Publication Date Title
US8310251B2 (en) System for assessing pipeline condition
US5126654A (en) Non-invasive, high resolution detection of electrical currents and electrochemical impedances at spaced localities along a pipeline
US5828219A (en) Method of detecting faults in the insulation layer of an insulated concealed conductor
US5087873A (en) Non-invasive, high resolution detection of electrical currents and electrochemical impedances at spaced localities along a pipeline
RU2104440C1 (en) Method of checking buried or undersurface pipe lines and other metal structures for condition and for separation of protective coats
US8228078B2 (en) Method and device for monitoring and detecting the coating defects of underground or underwater pipelines
US20150204775A1 (en) Detection of Corrosion Defects in Buried Pipelines Using Vertically Measured Pipe-To-Soil Potential
US4061965A (en) Method and apparatus for monitoring a cathodically protected corrodible hollow member
JP4857136B2 (en) Abnormally low ground contact point detection method and detection system for buried metal pipeline
JPH0334822B2 (en)
JP5146360B2 (en) Method and apparatus for detecting rust in steel structures
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JP2004198410A (en) Method for inspecting defect in coated pipe, and method for diagnosing corrosion
JP2011191288A (en) Method and device for estimating current density of damaged coating portion of underground pipe, and method and device for controlling electric protection
JP2013096958A (en) Method and apparatus for estimating potential of coating defect part of underground pipe, and method and apparatus for electric protection management
Leeds et al. Cathodic protection
JP4522289B2 (en) Corrosion estimation method
JP2791425B2 (en) C / S macrocell corrosion measurement method and apparatus for metal piping
JPH03197858A (en) Inspecting method for corrosion state of body buried underground
SU998584A1 (en) Method for determining degree of protection of pipelines
KR101949768B1 (en) Detecting method of pore area in underground pipes
JPH07128272A (en) Method for monitoring degree of damage of covered steel pipe, and device therefor
Jankowski Monitoring methods of cathodic protection of pipelines
JPH03282268A (en) Apparatus for locating defective part of corrosion-proof layer of power cable
Lindau et al. Impressed Current Cathodic Protection: a useful source for EM exploration?