JPH07208965A - Measuring method for plate thickness of steel plate by radiation - Google Patents

Measuring method for plate thickness of steel plate by radiation

Info

Publication number
JPH07208965A
JPH07208965A JP6002891A JP289194A JPH07208965A JP H07208965 A JPH07208965 A JP H07208965A JP 6002891 A JP6002891 A JP 6002891A JP 289194 A JP289194 A JP 289194A JP H07208965 A JPH07208965 A JP H07208965A
Authority
JP
Japan
Prior art keywords
thickness
plate
radiation
steel plate
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6002891A
Other languages
Japanese (ja)
Other versions
JP3224466B2 (en
Inventor
Yasushi Mizutani
泰 水谷
Yuji Hori
裕二 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP00289194A priority Critical patent/JP3224466B2/en
Publication of JPH07208965A publication Critical patent/JPH07208965A/en
Application granted granted Critical
Publication of JP3224466B2 publication Critical patent/JP3224466B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To provide a measuring method in which the measuring error of a plate thickness is reduced in the measurement of the plate thickness by a radiation. CONSTITUTION:A radiation source 3 which detects the plate thickness of a steel plate 1 and a dose detector 4 are installed in a finishing rolling mill 2. By the operation of a control panel 5, a radiation is radiated to the steel plate by the dose detector 4, a value which has been measured actually by a thermometer 6 detecting a radiation detection amount is sent to a temperature converter 7, and the value is sent to a thickness-measurement control device 8 together with the radiation detection amount. In addition, the thickness-measurement control device 8 is coupled to a display device 9, a recorder 10 and a control panel 11. Before an operation by a radiation thickness gage, the component composition of the steel plate is stored in a computer 14 in advance. Then, the decision means of a crystal structure which is changed so as to be dependent on a temperature, on the component composition and on a working state, of a volume change due to heat, of a volume change due to a solid solution and of a mass change is set in a correction and operation part 13 in the previous stage of a plate-thickness operation part 12. Then, the plate thickness of the steel plate which takes a metallurgical factor into consideration is computed in the plate-thickness operation part 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼板を通過した放射線量
を計数して板厚を測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the thickness of a plate by counting the amount of radiation passing through the plate.

【0002】[0002]

【従来の技術】一般に放射線厚み計は被測厚物の厚み方
向の一方から一定量の放射線を投射し、被測厚物の他方
へ浸透して来た放射線量を測定し、この測定値を、予め
この厚み計に設定された検量線(透過放射線量と厚みと
の関係を示す双曲線状の関数)と比較対象して被測厚物
の厚みを求めて適宜手法により表示させるようにしたも
のであり、非接触型であることから鋼板の熱間圧延ライ
ンにおけるオンラインの厚み計として用いられている。
2. Description of the Related Art In general, a radiation thickness meter projects a fixed amount of radiation from one side of the thickness of the object to be measured, measures the amount of radiation that has penetrated into the other side of the object to be measured, and measures this measured value. , The thickness of the object to be measured is obtained by comparison with a calibration curve (hyperbolic function indicating the relationship between the amount of transmitted radiation and the thickness) set in advance on this thickness gauge, and displayed by an appropriate method. Since it is a non-contact type, it is used as an online thickness gauge in a hot rolling line for steel sheets.

【0003】このような放射線厚み計において、特に鋼
板の板厚測定方法として鋼板の成分に依存して変化する
ため、高精度の板厚測定を実現するには、適切な密度と
質量吸収係数を決定することが不可欠である。従って、
例えば特公平5−15206号公報のように、鋼板の板
厚を演算により算出するに際し、測定対象鋼板毎に鋼成
分構成を分析して,この分析結果に基づいて予め設定し
た演算式により鋼板の密度と質量吸収係数を演算し、こ
の演算結果を用いて鋼板の板厚を測定する鋼板の板厚測
定方法が開示されている。
In such a radiation thickness gauge, since the method of measuring the thickness of a steel sheet changes depending on the components of the steel sheet, appropriate density and mass absorption coefficient are required to realize the highly accurate thickness measurement. It is essential to make a decision. Therefore,
For example, as in Japanese Examined Patent Publication No. 5-15206, when calculating the plate thickness of the steel plate by calculation, the steel composition is analyzed for each steel plate to be measured, and the calculation of the steel plate is performed by a preset calculation formula based on this analysis result. A plate thickness measuring method for a steel plate is disclosed in which the density and the mass absorption coefficient are calculated, and the plate thickness of the steel plate is measured using the calculation result.

【0004】[0004]

【発明が解決しようとする課題】上述した従来技術であ
る特公平5−15206号公報に示される測定対象鋼板
毎に鋼成分構成を分析してこの分析結果に基づいて予め
設定した演算式により鋼板の密度と質量吸収係数を演算
し、この演算結果を用いて鋼板の板厚を測定する方法で
は、温度、成分組成、加工状態により決定される相(結
晶構造)の変化、熱による体積変化、固溶による体積変
化及び質量変化等に対応できず高精度な板厚測定を行う
ことは出来ないという問題がある。すなわち、被測定鋼
板の温度、成分組成、加工状態は、冶金的な因子であ
る、相(結晶構造)、熱による体積変化、固溶による体
積変化及び質量変化等に大きく影響し、さらに、線吸収
係数の決定因子である単位格子内の原子数や単位格子の
体積及び原子番号に影響を及ぼすことから、これらの因
子を考慮した補正を行わないと完全な補正とはならない
という問題がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The steel composition is analyzed for each steel plate to be measured, which is disclosed in Japanese Patent Publication No. 5206/1993, which is the above-mentioned prior art, and the steel plate is calculated by a calculation formula preset based on the analysis result. In the method of calculating the density and mass absorption coefficient of, and measuring the plate thickness of the steel sheet using this calculation result, temperature, component composition, change of phase (crystal structure) determined by processing state, volume change due to heat, There is a problem that it is not possible to measure the plate thickness with high accuracy because it cannot cope with volume change and mass change due to solid solution. That is, the temperature, component composition, and processing state of the steel sheet to be measured have a great influence on the metallurgical factors such as phase (crystal structure), volume change due to heat, volume change due to solid solution, and mass change. Since it affects the number of atoms in the unit cell and the volume and atomic number of the unit cell, which are the determinants of the absorption coefficient, there is a problem that a complete correction cannot be made unless correction is performed in consideration of these factors.

【0005】そこで本発明者らは鋭意研究を重ねた結
果、冶金的な因子である結晶構造や熱による体積変化、
固溶による体積変化及び質量変化に対応した補正を行う
ことにより、高精度な板厚測定方法を提供せんとするも
のである。
Therefore, as a result of intensive studies by the present inventors, the crystal structure which is a metallurgical factor and the volume change due to heat,
It is intended to provide a highly accurate plate thickness measuring method by performing correction corresponding to a change in volume and a change in mass due to solid solution.

【0006】[0006]

【課題を解決するための手段】本発明は上述した問題を
解決するためになされたもので、その発明の要旨とする
ところは、鋼板を通過した放射線量を計数して板厚を測
定する方法において、鋼板の板厚を演算により算出する
に際し、測定対象鋼板の温度、成分組成及び加工状態に
より決定される相(結晶構造)、熱による体積変化等を
推定して、この推定結果に基づいて、予め設定した演算
式に従い放射線の線吸収係数を算出し、この演算結果を
用いて鋼板の板厚を測定することを特徴とする放射線に
よる鋼板の板厚測定方法にある。
The present invention has been made in order to solve the above-mentioned problems, and the gist of the invention is to count the amount of radiation passing through a steel plate and measure the plate thickness. At the time of calculating the plate thickness of the steel plate by calculation, the temperature of the steel plate to be measured, the phase (crystal structure) determined by the composition and working state, the volume change due to heat, etc. are estimated, and based on this estimation result A method of measuring the thickness of a steel sheet by radiation is characterized in that the linear absorption coefficient of radiation is calculated according to a preset arithmetic expression, and the thickness of the steel sheet is measured using the result of this arithmetic operation.

【0007】以下本発明について図面に従って詳細に説
明する。図1は本発明を実施するためのブロック図であ
る。図1に示すように、被測定用の鋼板1は仕上圧延機
2によって仕上圧延工程中の適当な位置において、その
鋼板1の板厚を検出すべく熱間γ線源となる放射線源3
と、この放射線源3から放射された放射線を受ける放射
線量検出器4を設けている。そして機側操作盤5の操作
によって放射線量検出器4より鋼板に放射線を放射し、
放射線検出量を検出するように構成されている。一方、
鋼板の温度計6により実測された値は温度計変換器7に
送られ、放射線検出量と共に厚み計測制御装置8に送ら
れる。また、厚み計測制御装置8は表示器9、記録計1
0及び操作盤11に連結されている。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram for implementing the present invention. As shown in FIG. 1, a steel plate 1 to be measured is a radiation source 3 serving as a hot γ-ray source for detecting the plate thickness of the steel plate 1 at an appropriate position during a finish rolling process by a finish rolling mill 2.
And a radiation dose detector 4 for receiving the radiation emitted from the radiation source 3. Then, by operating the machine side operation panel 5, the radiation detector 4 emits radiation to the steel plate,
It is configured to detect a radiation detection amount. on the other hand,
The value measured by the thermometer 6 of the steel plate is sent to the thermometer converter 7, and is sent to the thickness measurement controller 8 together with the radiation detection amount. Further, the thickness measurement control device 8 includes a display device 9 and a recorder 1.
0 and operation panel 11.

【0008】また、放射線厚み計による演算に先立ち、
予め鋼板の成分組成を計算機14に記憶させておく。そ
して温度、成分組成及び加工状態に依存して変化する相
(結晶構造)や熱による体積変化、固溶による体積変化
及び質量変化等の決定手段を(具体的には後述する式に
基づく)板厚演算部12の前段の補正演算部13に設定
する。ここで冶金的因子を考慮した鋼板板厚の算出が板
厚演算部12で行われる.
Prior to the calculation by the radiation thickness meter,
The composition of the steel sheet is stored in the calculator 14 in advance. A plate (specifically based on the formula described later) for determining a phase (crystal structure) that changes depending on temperature, component composition, and processing state, volume change due to heat, volume change due to solid solution, and mass change It is set in the correction calculation unit 13 in the preceding stage of the thickness calculation unit 12. Here, the plate thickness calculation unit 12 calculates the plate thickness of the steel plate considering the metallurgical factors.

【0009】[0009]

【作用】本発明に係るγ線厚み計の測定原理としてのγ
線透過量の減衰は、次の式に従う。 I/I0
=exp(−μ・T) …… (1) ただし、 T:板厚 I0 :透過前強度 I:透過後強度 μ:線吸収係数 従って、γ線厚み計において、鋼板の板厚Tは次の式に
て求められる。 T=1/μ・ln(V0 /V) …… (2) ただし、 V0 :板無し時カウント数 V:板有り時カウント数 これに被測定鋼板の温度・材質(成分組成)が異なる場
合は(2)式における線吸収係数が異なるため、温度、
成分組成及び加工状態に応じた補正が必要となる。
[Operation] γ as the measurement principle of the γ-ray thickness gauge according to the present invention
The attenuation of the amount of linear transmission follows the following formula. I / I 0
= Exp (−μ · T) (1) where T: plate thickness I 0 : strength before transmission I: strength after transmission μ: linear absorption coefficient Therefore, in the γ-ray thickness gauge, the plate thickness T of the steel plate is It is calculated by the formula. T = 1 / μ · ln (V 0 / V) (2) However, V 0 : Count number without plate V: Count number with plate The temperature and material (component composition) of the steel plate to be measured are different from this. In this case, since the linear absorption coefficient in equation (2) is different,
It is necessary to make a correction according to the component composition and the processing state.

【0010】γ線の線吸収としては、弾性散乱(Tho
mson散乱)と非弾性散乱(Compton散乱)及
び光電効果(入射光は完全に消失)の3種が挙げられ
る。放射線の波長(エネルギー)に応じて、3種類の吸
収のどの効果が支配的になるかが決定される。γ線にお
いては、Compton散乱及び光電効果について考慮
すれば良い。従って、Compton散乱による吸収断
面積は、 αS =αT ・3/4×[(1+α)/α{(2+2α)/(1+2α)−ln (1+2α)/α}+ln(1+2α)/Zα−(1+3α)/(1+2α)2 …… (3) ただし、 αT 及びαは、 αT =6.7×10-25 (cm2 ) α=hν/(mc2 )=(γ線のエネルギー)/(電子
の質量エネルギー) により求められる。 αS =2.5785×10-25 (cm2 )(γ線のエネルギー=662kev) …… (4)
Elastic absorption (Tho
There are three types: mson scattering), inelastic scattering (Compton scattering), and photoelectric effect (incident light completely disappears). Depending on the wavelength (energy) of radiation, which of the three types of absorption dominates is determined. For γ rays, Compton scattering and photoelectric effect may be taken into consideration. Therefore, the absorption cross section by Compton scattering is α S = α T 3/4 × [(1 + α) / α {(2 + 2α) / (1 + 2α) -ln (1 + 2α) / α} + ln (1 + 2α) / Zα- ( 1 + 3α) / (1 + 2α) 2 (3) where α T and α are α T = 6.7 × 10 −25 (cm 2 ) α = hν / (mc 2 ) = (γ-ray energy) / (Mass energy of electron) α S = 2.5785 × 10 -25 (cm 2 ) (γ-ray energy = 662 kev) (4)

【0011】また、光電効果による吸収断面積は、K殻
電子の影響のみを考えるとすれば、γ線の入射エネルギ
ーがK殻電子の結合エネルギーより十分に大きいことか
ら、 αP =αT ・4√2・α4 ・Z5 ・(mc2 /hν)7/2 …… (5) ただし、αT =6.7×10-25 (cm2 ) Z=原
子番号 α=1/137(微細構造定数) mc2 /hν=(電子の質量エネルギー)/(γ線のエ
ネルギー) により求められる。 αP =Z5 ×4.3475×10-33 (cm2 ) …… (6)
Also, regarding the absorption cross section due to the photoelectric effect, if only the effect of K-shell electrons is considered, since the incident energy of γ-rays is sufficiently larger than the binding energy of K-shell electrons, α P = α T 4√2 · α 4 · Z 5 · (mc 2 / hν) 7/2 (5) where α T = 6.7 × 10 −25 (cm 2 ) Z = atomic number α = 1/137 ( Fine structure constant) mc 2 / hν = (electron mass energy) / (γ-ray energy). α P = Z 5 × 4.3475 × 10 −33 (cm 2 ) ... (6)

【0012】以上より、γ線の線吸収係数μは次式によ
り求められる。 μ=ΣZμa /V=ΣZ(αP +ZαS )/V …… (7) ここで、μa =αP +ZαS ただし、z:単位格子内の原子数 V:単位格子の体積 μa :原子吸収係数 Z:原子番号 αS :散乱断面積(=2.5785×10-25 (c
2 )) αP :光電吸収断面積(=Z5 ×4.3475×10
-33 (cm2 )) 従って、γ線の線吸収係数は、z(単位格子内の原子
数)、V(単位格子の体積)及びZ(原子番号)により
決定されることが判る。特に、光電効果を無視できる
(原子番号が小さい)場合には、 ρ≒2ΣzZ/V であることを考慮すると、 μ=αS ・ΣzZ/V≒αS ×ρ/2 …… (8) ただし、ρ:密度 となる。
From the above, the linear absorption coefficient μ of γ rays can be obtained by the following equation. μ = ΣZ μ a / V = ΣZ (α P + Zα S ) / V (7) where μ a = α P + Zα S where z: number of atoms in unit lattice V: volume of unit lattice μ a : Atomic absorption coefficient Z: Atomic number α S : Scattering cross section (= 2.5785 × 10 -25 (c
m 2 )) α P : photoelectric absorption cross section (= Z 5 × 4.3475 × 10
-33 (cm 2 )) Therefore, it can be seen that the linear absorption coefficient of γ rays is determined by z (the number of atoms in the unit lattice), V (volume of the unit lattice) and Z (atomic number). In particular, when the photoelectric effect can be ignored (the atomic number is small), considering that ρ≈2ΣzZ / V, μ = α S · ΣzZ / V≈α S × ρ / 2 (8) However, , Ρ: density.

【0013】次に材質による補正率として、被測定鋼板
の板厚、線吸収係数、カウント数をそれぞれ、T1 、T
2 、μ1 、μ2 、V1 、V2 とすると、 μ1 1 =ln(V0 /V1 ) μ2 2 =ln(V0 /V2 ) …… (9) カウント数が等しい場合(V1 =V2 ) μ1 1 =μ2 2 …… (10) であるから、材質による補正率αは、 α=T2 /T1 −1=μ1 /μ2 −1 …… (11) となる。
Next, as the correction factors depending on the material, the plate thickness of the steel plate to be measured, the linear absorption coefficient, and the count number are T 1 and T, respectively.
2 , μ 1 , μ 2 , V 1 , V 2 , μ 1 T 1 = ln (V 0 / V 1 ) μ 2 T 2 = ln (V 0 / V 2 ) ... (9) When they are equal (V 1 = V 2 ) μ 1 T 1 = μ 2 T 2 (10), the correction factor α depending on the material is α = T 2 / T 1 −1 = μ 1 / μ 2 − 1 (11)

【0014】更に、線吸収係数は冶金的な因子によって
影響を受けるものである。前述したようにγ線の線吸収
係数は、z(単位格子内の原子数)、V(単位格子の体
積)及びZ(原子番号)により決定される(第7式)。
従って、線吸収係数に影響を及ぼす冶金的な因子につい
ては、z、V及びZに影響を及ぼす因子を対象に行えば
良い。そこで先ず、鋼の組織に影響を与える外的な因子
として、温度、成分組成及び加工が挙げられる。これら
の外的因子により決定されるミクロ組織の構成因子とし
て、z、V及びZに影響を及ぼす因子としての相(結晶
構造)、熱(温度)による体積変化、固溶(侵入、置
換)による体積変化・質量変化等がある。
Further, the linear absorption coefficient is influenced by metallurgical factors. As described above, the linear absorption coefficient of γ rays is determined by z (the number of atoms in the unit cell), V (the volume of the unit cell) and Z (the atomic number) (equation 7).
Therefore, as for the metallurgical factors affecting the linear absorption coefficient, the factors affecting z, V and Z may be targeted. Therefore, first, the external factors that affect the structure of steel include temperature, component composition, and processing. As the constituent factors of the microstructure determined by these external factors, phase (crystal structure) as a factor affecting z, V, and Z, volume change due to heat (temperature), and solid solution (penetration, substitution) Volume change, mass change, etc.

【0015】先ず、相(結晶構造)によるz/Vの相違
について、表1に示す。また、熱(温度)による体積変
化について、αFeの熱膨張率(線膨張率)を表2に示
す。表2に従い、算出したz/Vを表3に示す。更に固
溶による体積変化及び質量変化については、例えば置換
型固溶をする元素としては、Be,Al,Si,P,T
i,V,Cr,Mn,Ni,Cu,Zn,Nb,Mo,
Sn,Wを挙げることが出来る。αFeへの置換型固溶
に伴う格子定数の変化はFeと溶質の原子半径差にある
程度相関がある。また、格子膨張は最大でも0.361
×10-12 m/wt%(Ti)であるから、任意の元素
が0.1wt%固溶した場合の格子定数の変化量は±
0.04×10-12 m程度である。
First, Table 1 shows the difference in z / V depending on the phase (crystal structure). Table 2 shows the coefficient of thermal expansion (coefficient of linear expansion) of αFe with respect to volume change due to heat (temperature). Table 3 shows the calculated z / V according to Table 2. Further, regarding the volume change and the mass change due to solid solution, for example, as elements that perform substitutional solid solution, Be, Al, Si, P, T
i, V, Cr, Mn, Ni, Cu, Zn, Nb, Mo,
Sn and W can be mentioned. The change in the lattice constant associated with the substitutional solid solution into αFe has a certain degree of correlation with the atomic radius difference between Fe and the solute. The lattice expansion is 0.361 at the maximum.
Since it is × 10 -12 m / wt% (Ti), the amount of change in the lattice constant when an arbitrary element is dissolved in 0.1 wt% is ±
It is about 0.04 × 10 -12 m.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】そこで、一般的に、原子量の大きな元素は
原子半径が大きいことから、固溶(置換)の際には格子
が膨張しz/Zは減少するか原子の質量Zは増加する。
格子膨張と質量増加の効果によって生ずる差はαFeへ
の置換型固溶によりzZ/Vの変化は高々±5.0×1
-2%程度であるし、またγFeへの置換型固溶につい
てもαFeへの置換型固溶と同程度である。更に、侵入
型固溶する元素としてはH,B,C,Nが挙げられる
が、この内Fe中への侵入型固溶はCのみを考慮すれば
十分である。それによるzZ/Vの変化はαFe、γF
eそれぞれ高々5.0×10-2%〜10.0×10-2
である。これら冶金的因子のZ、z/Vへの影響につい
て、まとめて表4に示す。これにより、相が完全に変態
した場合或いは温度が全域に渡り変化した場合には相及
び熱膨張による体積変化の影響が大きいことがわかる。
Therefore, in general, an element having a large atomic weight has a large atomic radius, so that upon solid solution (substitution), the lattice expands and z / Z decreases or the atomic mass Z increases.
The difference caused by the effect of lattice expansion and mass increase is that the change of zZ / V is ± 5.0 × 1 at most due to substitutional solid solution in αFe.
It is about 0 -2 %, and the substitutional solid solution with γFe is about the same as the substitutional solid solution with αFe. Further, H, B, C, and N are listed as the elements that form an interstitial solid solution, and it is sufficient to consider only C for the interstitial solid solution in Fe. The change of zZ / V by that is αFe, γF
e At most 5.0 x 10 -2 % to 10.0 x 10 -2 %
Is. The effects of these metallurgical factors on Z and z / V are summarized in Table 4. From this, it is understood that when the phase is completely transformed or when the temperature changes over the entire area, the influence of the volume change due to the phase and thermal expansion is large.

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【実施例】以下本発明に係る一実施例を図2に基づき説
明する。図2は本発明に係る実施のためのフローチャー
トを示す図である。図2に示すように、先ずスタートに
おいて、被測定対象鋼板の成分組成値の読込が開始さ
れ、引続き各圧延パスにおいて鋼板の温度及び板厚を推
定計算により算出し、さらに、温度、成分組成、加工状
態から鋼板内部温度分布、変態率(結晶構造)、熱によ
る体積変化等を推定し、単位格子内の原子数、原子番
号、単位格子の体積を決定する。その結果、線吸収係数
が(7)式によって算出され、γ線による実測された放
射線の透過量と線吸収係数とのもとに(11)式によっ
て完全な板厚補正が行われ鋼板板厚の算出が行われるも
のである。
Embodiment An embodiment according to the present invention will be described below with reference to FIG. FIG. 2 is a diagram showing a flowchart for implementation according to the present invention. As shown in FIG. 2, first, at the start, the reading of the component composition values of the steel plate to be measured is started, and subsequently, the temperature and the plate thickness of the steel plate are calculated by the estimation calculation in each rolling pass. The temperature distribution inside the steel sheet, the transformation rate (crystal structure), the volume change due to heat, etc. are estimated from the working state, and the number of atoms in the unit cell, the atomic number, and the volume of the unit cell are determined. As a result, the linear absorption coefficient is calculated by the equation (7), and the plate thickness is completely corrected by the equation (11) based on the measured radiation transmission amount by the γ-ray and the linear absorption coefficient. Is calculated.

【0022】図3は本発明方と従来法との板厚測定誤差
とスラブ本数比率との関係を示す図である。図3に示す
ように、板厚測定誤差として(放射線厚み計測定値−オ
フライン板厚測定値)/(オフライン板厚測定値)×1
00とした値で示したもので、本発明法は従来法に比較
して板厚測定誤差が極めて少なくなったことを示してい
る。
FIG. 3 is a diagram showing the relationship between the plate thickness measurement error and the slab number ratio between the method of the present invention and the conventional method. As shown in FIG. 3, as the thickness measurement error, (radiation thickness meter measurement value-offline thickness measurement value) / (offline thickness measurement value) x 1
The value of 00 indicates that the method of the present invention has an extremely small plate thickness measurement error as compared with the conventional method.

【0023】[0023]

【発明の効果】以上述べたように本発明は鋼板を通過し
た放射線量を計数して板厚を測定する方法において、鋼
板の板厚を演算により算出するに際し、測定対象鋼板の
温度成分組成及び加工状態により決定される相(結晶構
造)、熱による体積変化等を推定して、この推定結果に
基づいて、予め設定した演算式に従い放射線の線吸収係
数を算出し、この演算結果を用いて鋼板の板厚を測定す
ることから、鋼板の品質向上に寄与することが出来る極
めて優れた効果を奏するものである。
As described above, the present invention is a method for counting the amount of radiation that has passed through a steel plate and measuring the plate thickness. In calculating the plate thickness of the steel plate by calculation, the temperature component composition and Estimate the phase (crystal structure) determined by the processing state, volume change due to heat, etc., and based on this estimation result, calculate the linear absorption coefficient of radiation according to the preset calculation formula, and use this calculation result. Since the thickness of the steel sheet is measured, it has an extremely excellent effect that can contribute to the improvement of the quality of the steel sheet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するためのブロック図、FIG. 1 is a block diagram for implementing the present invention,

【図2】本発明に係る実施のためのフローチャートを示
す図、
FIG. 2 shows a flow chart for implementation according to the invention,

【図3】本発明方と従来法との板厚測定誤差とスラブ本
数比率との関係を示す図である
FIG. 3 is a diagram showing a relationship between a plate thickness measurement error and a slab number ratio between the method of the present invention and the conventional method.

【符号の説明】[Explanation of symbols]

1 鋼板 2 仕上圧延機 3 放射線源 4 放射線量検出器 5 機側操作盤 6 温度計 7 温度計変換器 8 厚み計測制御装置 9 表示器 10 記録計 11 操作盤 12 板厚演算部 13 補正演算部 14 計算機 1 Steel Plate 2 Finishing Rolling Machine 3 Radiation Source 4 Radiation Dose Detector 5 Machine Side Operation Panel 6 Thermometer 7 Thermometer Converter 8 Thickness Measurement Control Device 9 Display 10 Recorder 11 Operation Panel 12 Plate Thickness Calculation Unit 13 Correction Calculation Unit 14 calculator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼板を通過した放射線量を計数して板厚
を測定する方法において、鋼板の板厚を演算により算出
するに際し、測定対象鋼板の温度、成分組成及び加工状
態により決定される相(結晶構造)、熱による体積変化
等を推定して、この推定結果に基づいて、予め設定した
演算式に従い放射線の線吸収係数を算出し、この演算結
果を用いて鋼板の板厚を測定することを特徴とする放射
線による鋼板の板厚測定方法。
1. A method for measuring the plate thickness by counting the amount of radiation that has passed through the steel plate, the phase being determined by the temperature, composition and working state of the steel plate to be measured when calculating the plate thickness of the steel plate by calculation. (Crystal structure), volume change due to heat, etc. are estimated, and based on this estimation result, the linear absorption coefficient of radiation is calculated according to a preset calculation formula, and the plate thickness of the steel plate is measured using this calculation result. A method for measuring the thickness of a steel sheet by radiation, which comprises:
JP00289194A 1994-01-17 1994-01-17 Method of measuring steel sheet thickness by radiation Expired - Lifetime JP3224466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00289194A JP3224466B2 (en) 1994-01-17 1994-01-17 Method of measuring steel sheet thickness by radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00289194A JP3224466B2 (en) 1994-01-17 1994-01-17 Method of measuring steel sheet thickness by radiation

Publications (2)

Publication Number Publication Date
JPH07208965A true JPH07208965A (en) 1995-08-11
JP3224466B2 JP3224466B2 (en) 2001-10-29

Family

ID=11541990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00289194A Expired - Lifetime JP3224466B2 (en) 1994-01-17 1994-01-17 Method of measuring steel sheet thickness by radiation

Country Status (1)

Country Link
JP (1) JP3224466B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507571B1 (en) * 2000-11-07 2005-08-17 주식회사 포스코 A method for measuring thickness of steel sheet using radiation
JP2012093314A (en) * 2010-10-28 2012-05-17 Nippon Steel Corp Method for measuring thickness of steel plate, thickness calculation device and program
KR101450518B1 (en) * 2013-10-08 2014-10-14 (재)한국나노기술원 Electron beam lithography and method for adjusting focus thereof
CN105080981A (en) * 2015-09-07 2015-11-25 苏州莱测检测科技有限公司 Steel plate thickness measurement device provided with cleaning device
JP2017090083A (en) * 2015-11-04 2017-05-25 新日鐵住金株式会社 Radiation thickness measuring device, and its calibration method
CN116984393A (en) * 2023-09-25 2023-11-03 太原理工大学 Rolling force and thickness prediction method, device, equipment and medium for each layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582892B2 (en) * 2015-11-04 2019-10-02 日本製鉄株式会社 Hot rolling method for steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507571B1 (en) * 2000-11-07 2005-08-17 주식회사 포스코 A method for measuring thickness of steel sheet using radiation
JP2012093314A (en) * 2010-10-28 2012-05-17 Nippon Steel Corp Method for measuring thickness of steel plate, thickness calculation device and program
KR101450518B1 (en) * 2013-10-08 2014-10-14 (재)한국나노기술원 Electron beam lithography and method for adjusting focus thereof
CN105080981A (en) * 2015-09-07 2015-11-25 苏州莱测检测科技有限公司 Steel plate thickness measurement device provided with cleaning device
JP2017090083A (en) * 2015-11-04 2017-05-25 新日鐵住金株式会社 Radiation thickness measuring device, and its calibration method
CN116984393A (en) * 2023-09-25 2023-11-03 太原理工大学 Rolling force and thickness prediction method, device, equipment and medium for each layer
CN116984393B (en) * 2023-09-25 2024-01-02 太原理工大学 Rolling force and thickness prediction method, device, equipment and medium for each layer

Also Published As

Publication number Publication date
JP3224466B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
US4047029A (en) Self-compensating X-ray or γ-ray thickness gauge
JPH07208965A (en) Measuring method for plate thickness of steel plate by radiation
Dabah et al. Time-resolved Bragg-edge neutron radiography for observing martensitic phase transformation from austenitized super martensitic steel
JPS5949524B2 (en) measurement system
JPS635683B2 (en)
JPS62159019A (en) Determination device for weight of tire
PG et al. Establishment and optimization of angle dispersive neutron diffraction bulk texture measurement environments
JPS6079207A (en) Thickness measurement of plate by radiation
JPH0288952A (en) Method and device for analyzing tissue
JP5459175B2 (en) Steel sheet thickness measuring method, sheet thickness calculating device and program
JP2007196261A (en) Method and apparatus for detecting/controlling edge drop in cold rolling
JPS62194410A (en) Measurement of thickness of steel plate
JPS6259256B2 (en)
EP3035082B1 (en) Method for measuring x-ray energy of an accelerator in an inspection system
JP4686924B2 (en) Thickness measuring method, thickness measuring device and thickness control method for hot rolled steel sheet
JPS5965709A (en) Method for measuring thickness profile of strip edge part
JP7249666B2 (en) X-ray fluorescence analyzer
JP2002328016A (en) Thickness gauge for multi-point measurement
JP2706330B2 (en) Correction method of radiation thickness gauge in cold rolling
JPS5847243A (en) Method of and apparatus for monitoring phase modification of steel
JPS6085341A (en) Average-temperature measuring method in thickness direction of material
JPH0763709A (en) Method and apparatus for measuring depth-wise assembly organization
JP3284948B2 (en) Strip meandering control method
JP3399861B2 (en) X-ray analyzer
JPH02145948A (en) Measurement of texture by energy scattering

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term