JP2017090083A - Radiation thickness measuring device, and its calibration method - Google Patents
Radiation thickness measuring device, and its calibration method Download PDFInfo
- Publication number
- JP2017090083A JP2017090083A JP2015216575A JP2015216575A JP2017090083A JP 2017090083 A JP2017090083 A JP 2017090083A JP 2015216575 A JP2015216575 A JP 2015216575A JP 2015216575 A JP2015216575 A JP 2015216575A JP 2017090083 A JP2017090083 A JP 2017090083A
- Authority
- JP
- Japan
- Prior art keywords
- hot
- thickness
- radiation
- thickness measurement
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims description 28
- 238000005259 measurement Methods 0.000 claims abstract description 59
- 238000012937 correction Methods 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims abstract description 22
- 238000004364 calculation method Methods 0.000 claims abstract description 12
- 238000009529 body temperature measurement Methods 0.000 claims abstract description 7
- 238000010521 absorption reaction Methods 0.000 claims abstract description 4
- 230000008569 process Effects 0.000 claims description 15
- 230000009467 reduction Effects 0.000 claims description 15
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims 1
- 230000008520 organization Effects 0.000 abstract 1
- 230000009466 transformation Effects 0.000 description 39
- 230000035882 stress Effects 0.000 description 35
- 238000005096 rolling process Methods 0.000 description 34
- 229910000831 Steel Inorganic materials 0.000 description 18
- 239000010959 steel Substances 0.000 description 18
- 230000000694 effects Effects 0.000 description 12
- 238000005266 casting Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000005204 segregation Methods 0.000 description 8
- 238000007711 solidification Methods 0.000 description 8
- 230000008023 solidification Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000012669 compression test Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000002436 steel type Substances 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 230000005251 gamma ray Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Abstract
Description
本発明は、熱間放射線厚み測定装置とその校正方法に関し、特に、造船、建築、自動車、産業用機械などに使用する鋼板の板厚測定装置とその校正方法に関するものである。 The present invention relates to a hot radiation thickness measuring device and a calibration method thereof, and more particularly to a steel plate thickness measuring device and its calibration method for use in shipbuilding, construction, automobiles, industrial machines and the like.
熱間圧延ラインでは、板厚を測定する装置として、出力した放射線量と板厚を通過して受信した放射線量から線吸収率を計算し、この線吸収率から密度補正や相互干渉補正、直線性補正などを介して板厚を算出する方法が取られている。 In the hot rolling line, as a device for measuring the plate thickness, the linear absorptance is calculated from the output radiation dose and the radiation dose received through the plate thickness, and from this linear absorptivity, density correction, mutual interference correction, linear A method of calculating the plate thickness through the correction of the property is taken.
鋼板の密度は温度や鋼種、相変化などによって大きく変化するため、これらの情報をテーブルまたは補正式の形で放射線厚み測定装置に有し、測定毎にこれらのデータを用いて補正を行うことが一般的である。 Since the density of steel sheets varies greatly depending on temperature, steel type, phase change, etc., this information is stored in the radiation thickness measurement device in the form of a table or correction formula, and correction can be performed using these data for each measurement. It is common.
例えば、特許文献1には、事前に作成しておいた鋼種・温度によって層別された補正テーブルを用いてガンマ線板厚計の測定値を補正する方法が示されている。 For example, Patent Document 1 discloses a method of correcting a measurement value of a gamma ray plate thickness meter using a correction table stratified by a steel type and temperature prepared in advance.
また、この補正テーブルを校正する方法として、特許文献2〜4には、冷間におけるレーザ板厚計の結果を用いて,放射線板厚計の密度式補正データを修正する方法が示されている。板厚の冷間値から熱間値への換算、または熱間値から冷間値への換算には、温度変化に伴う熱ひずみと相変態に伴う変態ひずみを考慮する必要がある。 As a method for calibrating this correction table, Patent Documents 2 to 4 show a method for correcting density type correction data of a radiation plate thickness meter using the result of a laser plate thickness meter in the cold state. . In order to convert a plate thickness from a cold value to a hot value, or from a hot value to a cold value, it is necessary to take into account thermal strain associated with temperature change and transformation strain associated with phase transformation.
しかしながら、これら従来の方法では、熱間状態の板厚から冷間状態の板厚を換算する際の、変態ひずみや熱ひずみに与える背応力の影響およびバンド組織の影響を考慮できておらず、板厚測定バラツキの原因となっていた。 However, in these conventional methods, when converting the plate thickness in the hot state from the plate thickness in the cold state, the influence of the back stress on the transformation strain and the thermal strain and the influence of the band structure cannot be considered. It was the cause of variation in the plate thickness measurement.
ここで、背応力とは、材料を塑性変形させた際に導入される仮想的な応力であり、移動硬化現象を考えた際の降伏曲面の中心部の移動を表す2階のテンソルである。すなわち、背応力が導入されていると、ある方向には塑性変形しやすいが、ある方向には塑性変形しにくいといった異方性を表現できるようになる。この背応力を模式的に示したものが図1である。 Here, the back stress is a virtual stress introduced when the material is plastically deformed, and is a second-order tensor that represents the movement of the center portion of the yield surface when considering the kinematic hardening phenomenon. That is, when a back stress is introduced, it is possible to express anisotropy such that plastic deformation tends to occur in a certain direction but plastic deformation hardly occurs in a certain direction. FIG. 1 schematically shows the back stress.
また、バンド組織とは、鋳造時に発生する合金成分の偏析を起因とする層状の不均質組織であって、鋳造・圧延を経た材料に特徴的に表れる。この組織は高温(1300℃以上)で長時間(3日程度)保持することによって回避することが可能であるが、通常はコスト増などの影響を考慮し、バンド組織が維持されたまま圧延ラインに送られる。 The band structure is a layered heterogeneous structure caused by segregation of alloy components generated during casting, and is characteristically expressed in a material that has undergone casting and rolling. This structure can be avoided by holding it at a high temperature (1300 ° C or higher) for a long time (about 3 days). Usually, the rolling line is maintained while keeping the band structure in consideration of the effects of cost increase. Sent to.
本発明は、上記実情に鑑み、背応力とバンド組織が変態ひずみや熱ひずみに与える影響を考慮した校正機能を有する熱間放射線厚み測定装置に関する。 In view of the above circumstances, the present invention relates to a hot radiation thickness measuring apparatus having a calibration function in consideration of the influence of back stress and band structure on transformation strain and thermal strain.
本発明者らは、高精度な熱間厚み測定装置の開発に当たり、測定時までの凝固プロセスや圧延・加工プロセスが変態ひずみや熱ひずみに与える影響を検討した。
その過程で、圧延プロセスによって導入される背応力と凝固プロセスおよび圧延プロセスで形成されるバンド組織に着目した。
その結果、背応力の影響で変態ひずみと熱ひずみが大きく変化し、また、バンド組織によっても変態ひずみが大きく変化する現象を見出した。
In developing a high-precision hot thickness measuring apparatus, the present inventors examined the influence of solidification processes and rolling / working processes up to the measurement on transformation strain and thermal strain.
In the process, we focused on the back stress introduced by the rolling process, the solidification process, and the band structure formed by the rolling process.
As a result, we found a phenomenon in which transformation strain and thermal strain change greatly due to the influence of back stress, and transformation strain changes greatly depending on the band structure.
本発明は、以上のような検討結果を踏まえて、熱間放射線厚み測定値を校正する際に、熱間値と冷間値との換算に、背応力とバンド組織の影響を考慮した密度モデルを用いることによって、厚み測定バラツキを大幅に低減することを可能にしたもので、その要旨とするところは以下の通りである。 The present invention is a density model that takes into account the effects of back stress and band structure in converting between hot and cold values when calibrating hot radiation thickness measurement values based on the above examination results. By using, the thickness measurement variation can be greatly reduced, and the gist thereof is as follows.
(1)放射線を利用した熱間厚み測定装置において、当該装置を用いた熱間における厚み測定結果と、熱間における厚み測定時の表面温度測定結果と、熱間厚み測定時におけるバンド組織予測結果と、熱間厚み測定時における材料の背応力予測結果と、冷間で同一の材料を測定した厚みデータに基づいて線吸収率演算に用いる補正式を校正する機能を有することを特徴とする熱間放射線厚み測定装置。 (1) In a hot thickness measurement device using radiation, the hot thickness measurement result using the device, the surface temperature measurement result during hot thickness measurement, and the band structure prediction result during hot thickness measurement And a function of calibrating a correction formula used for linear absorptance calculation based on a back stress prediction result of the material at the time of hot thickness measurement and thickness data obtained by measuring the same material in the cold. Radiation thickness measuring device.
(2)(1)に記載の熱間放射線厚み測定装置において、放射線としてガンマ線を用いた厚み測定装置。
(3)(1)に記載の熱間放射線厚み測定装置において、放射線としてエックス線を用いた厚み測定装置。
(4)(1)〜(3)のいずれかに記載の熱間放射線厚み測定装置において、背応力の代わりに残留ひずみ量、累積圧下率、転位密度の少なくとも1つに基づいて線吸収率演算に用いる補正式を校正する機能を有することを特徴とする熱間放射線厚み測定装置。
(5)(1)〜(4)のいずれかに記載の熱間放射線厚み測定装置において、密度補正式または密度補正テーブルをレベル2のプロセスコンピュータ上で記憶し、厚み測定装置から送られた放射線吸収率をプロセスコンピュータ上で板厚に換算する機能を有することを特徴とする熱間放射線厚み測定装置。
(6)(1)〜(5)のいずれかに記載の熱間放射線厚み測定装置において、厚み測定時の表面温度測定結果の代わりに計算厚み平均温度を用いて温度補正式または他の補正式を校正する機能を有することを特徴とする熱間放射線厚み測定装置。
(2) The hot radiation thickness measurement apparatus according to (1), wherein the thickness measurement apparatus uses gamma rays as radiation.
(3) In the hot radiation thickness measuring apparatus according to (1), a thickness measuring apparatus using X-rays as radiation.
(4) In the hot radiation thickness measurement apparatus according to any one of (1) to (3), a linear absorptance calculation is performed based on at least one of residual strain, cumulative rolling reduction, and dislocation density instead of back stress. A hot radiation thickness measuring apparatus having a function of calibrating a correction formula used in the invention.
(5) In the hot radiation thickness measurement apparatus according to any one of (1) to (4), a density correction expression or a density correction table is stored on a level 2 process computer, and the radiation sent from the thickness measurement apparatus A hot radiation thickness measuring apparatus having a function of converting an absorptance into a plate thickness on a process computer.
(6) In the hot radiation thickness measurement apparatus according to any one of (1) to (5), a temperature correction formula or other correction formula using a calculated thickness average temperature instead of a surface temperature measurement result during thickness measurement. A hot radiation thickness measuring apparatus having a function of calibrating
(7)放射線を利用した熱間厚み測定装置の校正方法において、厚み測定を行った材料の測定時における温度、及び厚み測定時の材料の背応力予測結果、及び厚み測定時のバンド組織予測結果、及び冷間で同一の材料を測定した厚みデータのうちの1種以上を基に補正式を校正することを特徴とする熱間放射線板厚測定装置の校正方法。 (7) In the calibration method of the hot thickness measuring device using radiation, the temperature at the time of measurement of the material for which thickness measurement was performed, the back stress prediction result of the material at the time of thickness measurement, and the band structure prediction result at the time of thickness measurement And a calibration method for a hot radiation plate thickness measuring apparatus, wherein the correction equation is calibrated based on one or more kinds of thickness data obtained by measuring the same material in the cold.
本発明によれば、測定バラツキの少ない高精度な熱間放射線厚み測定装置を供することが出来る。 According to the present invention, it is possible to provide a high-accuracy hot radiation thickness measuring apparatus with little measurement variation.
最初に、本発明の熱間放射線厚み測定装置の基本的な構成について説明する。
本発明者らは、変態ひずみや熱ひずみが、測定中の材料の鋳造条件や圧延条件によって大きく変化することを見出した。
First, the basic configuration of the hot radiation thickness measuring apparatus of the present invention will be described.
The present inventors have found that transformation strain and thermal strain vary greatly depending on the casting conditions and rolling conditions of the material being measured.
従来から予加工によって変態開始温度が変化したり、転位密度による自由エネルギー状態が変化したり、変態モードが変化したりする現象については多くの研究がなされてきたが、これが背応力と結び付けられ、さらに圧延という加工モードによっても変態ひずみや熱応力にも大きな差が生じる現象については知られてこなかった。 Many studies have been conducted on the phenomenon that the transformation start temperature changes due to pre-processing, the free energy state due to the dislocation density, and the transformation mode changes, but this has been linked to the back stress, Furthermore, it has not been known about a phenomenon in which a large difference in transformation strain or thermal stress occurs depending on the processing mode of rolling.
また、バンド組織と異方性の変態膨張に関する研究はあるものの(非特許文献1および非特許文献2)、それが鋳造や圧延条件によってどのように変化し、最終的に変態ひずみに影響を与えるか否かの研究はなされてこなかった。
そこで、発明者らは種々の鋳造条件や圧延条件および冷却条件で実験を行い、これらの影響を考察した。
Although there are studies on the band structure and anisotropic transformation expansion (Non-Patent Document 1 and Non-Patent Document 2), how it changes depending on the casting and rolling conditions, and finally affects the transformation strain. There has been no research on whether or not.
Therefore, the inventors conducted experiments under various casting conditions, rolling conditions, and cooling conditions, and considered these effects.
まず、鋳造条件および圧延条件によってバンド組織がどのような影響を受けるかを調査する。 First, it will be investigated how the band structure is affected by casting conditions and rolling conditions.
一般に、バンド組織は鋳造時に生じる凝固偏析が圧延後にバンド状に残存する現象であるが、この凝固偏析は鋳造時の冷却速度との関連性が深い。また、この凝固偏析は圧延によって変形するため、鋳造条件(特に冷却速度)と圧延条件(特に圧下率)によって整理する。 In general, the band structure is a phenomenon in which solidification segregation that occurs during casting remains in a band shape after rolling, and this solidification segregation is closely related to the cooling rate during casting. Further, since this solidification segregation is deformed by rolling, the solidification segregation is arranged according to casting conditions (especially cooling rate) and rolling conditions (especially rolling reduction).
ここで、凝固偏析はソーキングと呼ばれる高温での熱処理によって均一拡散させることが可能である。そこで、圧延によって得られた材料を950℃に加熱し、900℃で圧下を加えた場合と、1300℃に加熱し(ソーキング処理)、900℃に圧下を加えた場合について以下に示す。 Here, solidification segregation can be uniformly diffused by heat treatment at high temperature called soaking. Therefore, the case where the material obtained by rolling is heated to 950 ° C. and the reduction is applied at 900 ° C., the case where the material is heated to 1300 ° C. (soaking treatment), and the reduction is applied to 900 ° C. will be described below.
図2は引張り強度が400MPaである厚鋼板を950℃まで加熱し、900℃で圧延した場合(a)と、1300℃まで加熱し900℃で圧延した場合(b)の、板幅方向に垂直な面におけるミクロ組織を示している。組織撮影には、ナイタール腐食液を用いて腐食させ、50倍の光学顕微鏡を利用した。本結果から明らかなように、950℃加熱の場合にはバンド組織が残存しているが、1300℃加熱ではバンド組織が消失し、均一な組織となっていることが分かる。これは、高温下における拡散で合金元素が均一化したためである。 FIG. 2 shows a case where a thick steel plate having a tensile strength of 400 MPa is heated to 950 ° C. and rolled at 900 ° C. (a), and when heated to 1300 ° C. and rolled at 900 ° C. (b), perpendicular to the plate width direction. It shows the microstructure in various aspects. For tissue imaging, a 50% optical microscope was used after corroding with a nital corrosive solution. As is clear from this result, the band structure remains in the case of heating at 950 ° C., but the band structure disappears in the case of heating at 1300 ° C., and a uniform structure is obtained. This is because the alloy elements are made uniform by diffusion under high temperature.
次に、本鋼板を900℃で圧延した後、冷却時の板厚方向のひずみ変化を測定した。ひずみ変化の測定には、レーザ式変位計を用いた。このひずみ測定結果と温度との関係を図3に示す。ただし、図3は全ひずみ量から熱ひずみを除去し、変態ひずみのみを示している。 Next, after rolling this steel plate at 900 ° C., the strain change in the thickness direction during cooling was measured. A laser displacement meter was used to measure the strain change. The relationship between this strain measurement result and temperature is shown in FIG. However, FIG. 3 shows only the transformation strain by removing the thermal strain from the total strain amount.
図3からは、圧下量に従って変態ひずみが増大していることが分かる。これは、圧下によって材料に背応力が導入されたために、相変態で微視的な塑性変形が生じる際、異方性をもった変形をするために発生する現象である。 FIG. 3 shows that the transformation strain increases according to the amount of reduction. This is a phenomenon that occurs due to deformation having anisotropy when microscopic plastic deformation occurs in the phase transformation because back stress is introduced into the material by reduction.
ここで、圧延によって導入された背応力は、回復や再結晶などの影響で時間とともに減少する。そこで、成分・温度に応じた回復や再結晶などを考慮し、背応力の変化を考慮する。この減少量の演算方法の限定はしないが、成分系や温度履歴などに応じた式を用いることが好ましい。特に、Microalloyと呼ばれる、NbやTiなどの合金成分に受ける影響は大きいので、これらの影響を考慮することがより好ましい。また、累積圧下の効果も背応力として導入することができる。ここで、背応力は通常2階のテンソルで表わされるが、圧延による背応力の導入を近似的に圧縮成分のみを考慮することで、背応力のスカラーとして取り扱っても精度上大きな影響は無い。圧縮の背応力が進展すると、見かけの板厚方向変態ひずみは大きくなる。ここで、本材料の変態はフェライト・パーライト変態であったが、基本的にベイナイトやマルテンサイトなどの相においても背応力が変態ひずみに同様の影響を与えることが分かった。 Here, the back stress introduced by rolling decreases with time due to the effects of recovery and recrystallization. Therefore, considering the recovery and recrystallization depending on the component and temperature, changes in back stress are considered. Although there is no limitation on the calculation method of the decrease amount, it is preferable to use an equation according to the component system, the temperature history, or the like. In particular, the influence of alloy components such as Nb and Ti called microalloy is large, and it is more preferable to consider these influences. The effect of cumulative reduction can also be introduced as back stress. Here, the back stress is usually expressed by a tensor on the second floor. However, the introduction of the back stress by rolling is only considered as a scalar of the back stress by considering only the compression component, so that there is no great influence on accuracy. As the compression back stress develops, the apparent thickness-direction transformation strain increases. Here, the transformation of this material was the ferrite-pearlite transformation, but it was found that the back stress basically has the same effect on the transformation strain in phases such as bainite and martensite.
次に、熱ひずみについて述べる。熱ひずみは温度に関して線形で与えられるとしてよいが、相変態前後で大きく変わる。成分にもよるが、鋼の場合にはオーステナイト相では2.2×10-5[K-1]程度、フェライト・パーライト相では1.5×10-5[K-1]程度の値を取ることが知られている。 Next, thermal strain will be described. The thermal strain may be given linearly with respect to temperature, but varies greatly before and after the phase transformation. Depending on the components, in the case of steel, the austenite phase takes a value of about 2.2 × 10 −5 [K −1 ], and the ferrite-pearlite phase takes a value of about 1.5 × 10 −5 [K −1 ]. It is known.
一方で発明者らは、変形による熱ひずみへの影響を考察した。上記と同様の試験結果から加工後のオーステナイト域、フェライト域それぞれでの線膨張係数を表1に示す。表1の結果からオーステナイト域の線膨張係数は加工の影響を殆ど受けないが、フェライト域の線膨張係数は圧下率と共に上昇する傾向が分かった。この原因は、加工と変態による集合組織形成と関係があると考えられる。 On the other hand, the inventors considered the influence of deformation on thermal strain. Table 1 shows the linear expansion coefficients in the austenite region and ferrite region after processing from the same test results as above. From the results in Table 1, it was found that the linear expansion coefficient in the austenite region is hardly affected by the processing, but the linear expansion coefficient in the ferrite region tends to increase with the rolling reduction. This cause is considered to be related to texture formation by processing and transformation.
本発明者らは、以上のような検討過程を経て本発明に至ったものであり、以下、そのような本発明で規定する要件や好ましい要件について順次説明する。 The inventors of the present invention have reached the present invention through the above examination process, and the requirements and preferable requirements defined in the present invention will be sequentially described below.
まず、熱間放射線厚み測定装置の測定原理を示す。
熱間放射線厚み測定装置は、放射性元素を発生源とする放射線発生装置と、発生装置から放出された放射線を、測定対象の反対側で放射線量を測定するレセプターを有し、厚み測定時の温度を測定またはプロセスコンピュータ内を含むレベル1またはレベル2で計算する手段を持ち、(温度補正を含む)密度補正および相互干渉補正および直線性補正を行う機能を有し、放射線の吸収量とこれらの補正手段から測定対象物の厚みを測定する。
First, the measurement principle of the hot radiation thickness measuring apparatus is shown.
The hot radiation thickness measurement device has a radiation generator that uses a radioactive element as a generation source, and a receptor that measures the radiation emitted from the generator on the opposite side of the measurement target, and the temperature during thickness measurement. Means for calculating at level 1 or level 2 including in a measurement or process computer, and has functions of density correction (including temperature correction) and mutual interference correction and linearity correction, and the amount of radiation absorbed and these The thickness of the measurement object is measured from the correcting means.
ここで、発生させる放射線の種類はいかなるものを用いてもよいが、測定する厚みに応じて強度を変えることが好ましい。例えば、板厚6mmを超える厚みの厚鋼板では、ガンマ線を用いた板厚測定を行うのが通常である。 Here, any kind of radiation may be used, but it is preferable to change the intensity according to the thickness to be measured. For example, in the case of a thick steel plate having a thickness exceeding 6 mm, it is usual to perform plate thickness measurement using gamma rays.
次に、密度補正のための密度式について述べる。ここで、温度補正と密度補正を分けて表記する場合があるが、温度変化によって生じる密度変化を考慮していれば、密度補正として統一的に扱うことができるため、以下では単に密度補正と表記する。 Next, a density formula for density correction will be described. Here, there are cases where temperature correction and density correction are described separately. However, if density changes caused by temperature changes are taken into account, they can be treated uniformly as density correction. To do.
測定対象となる熱間材料の密度は、対象材料の温度と結晶構造などによって変化する。例えば、鋼材の場合は、熱間ではオーステナイト相であり、冷間ではフェライト・パーライトなどの相となり、結晶構造によって、また温度や合金成分によって密度が変化する。これらの影響を考慮した密度式が提案されており(非特許文献3および非特許文献4)、鉄鋼材料についてはこれらの値を用いることが出来るが、好ましくは事前に各温度域で鋼種毎に密度を測定しておく。 The density of the hot material to be measured varies depending on the temperature and crystal structure of the target material. For example, in the case of a steel material, it is an austenite phase in the hot state, and becomes a phase such as ferrite and pearlite in the cold state, and the density changes depending on the crystal structure, temperature, and alloy components. Density formulas that take these effects into account have been proposed (Non-patent Document 3 and Non-Patent Document 4), and these values can be used for steel materials, but preferably for each steel type in each temperature range in advance. Measure the density.
一方で、本発明によれば、バンド組織(偏析組織)や背応力によって変態ひずみや熱ひずみが異方性を持つため、上記の密度式または密度データでは不十分である。すなわち、ベースとなる密度式または密度データに加えて、鋳造条件や圧延条件に代表されるプロセス条件に応じた異方性の影響による補正を行う。 On the other hand, according to the present invention, since the transformation strain and thermal strain have anisotropy due to the band structure (segregation structure) and back stress, the above density formula or density data is insufficient. That is, in addition to the density formula or density data as a base, correction is performed by the influence of anisotropy according to process conditions represented by casting conditions and rolling conditions.
本補正には、鋼種毎に圧延による背応力の影響や、鋳造・圧延によるバンド組織の影響を事前に実験や数値計算手法を通じて求めておく。好ましくは合金成分の影響を考慮した統一的な補正式を作成する。 For this correction, the influence of the back stress due to rolling and the influence of the band structure due to casting / rolling are obtained in advance through experiments and numerical calculation methods for each steel type. Preferably, a unified correction formula is created in consideration of the influence of alloy components.
本密度式を用いて冷間における厚み測定データを用いて熱間値を校正することが可能となる。 It is possible to calibrate the hot value using the thickness measurement data in the cold using this density formula.
次に、実際の測定時に厚みを算出する方法について、厚鋼板の熱間圧延ラインを例に述べる。 Next, a method for calculating the thickness at the time of actual measurement will be described taking a hot rolling line for thick steel plates as an example.
熱間での厚み測定には、厚み測定時の温度データが必要になるが、当該データは板厚測定器に近接された放射温度計やレーザ超音波などを用いた温度測定データを使用することができる。また、レベル2であるプロセスコンピュータから受信した測定データまたは計算温度を用いることもできる。 For hot thickness measurement, temperature data at the time of thickness measurement is required, but this data should use temperature measurement data using a radiation thermometer or laser ultrasonic wave close to the plate thickness measuring instrument. Can do. Also, measured data or calculated temperature received from a process computer at level 2 can be used.
さらに、厚み測定装置(レベル1)で測定された値を、プロセスコンピュータ(レベル2)に伝送し、プロセスコンピュータ上で複雑な補正を行うことも可能であり、この場合は当該伝送システムおよびプロセスコンピュータを含めた統合システムを厚み測定装置と呼ぶことができる。 Furthermore, it is possible to transmit the value measured by the thickness measuring device (level 1) to the process computer (level 2), and to perform complicated correction on the process computer. In this case, the transmission system and the process computer An integrated system including the above can be called a thickness measuring device.
厚み測定時の背応力およびバンド組織予測について述べる。厚み測定時の背応力は、加熱炉出側の状態を0とし、その後の圧延による背応力進展、回復や再結晶による背応力減少を逐次演算する。また、バンド組織予測は連続鋳造時の冷却条件と成分系および加工履歴から計算する。ここで、背応力およびバンド組織予測方法について限定はしないが、例えば背応力の発展式として以下の式を用いることができる。 The back stress and band structure prediction during thickness measurement are described. The back stress at the time of thickness measurement is set to 0 on the exit side of the heating furnace, and the back stress progress due to the subsequent rolling, and the back stress reduction due to recovery and recrystallization are sequentially calculated. The band structure prediction is calculated from the cooling conditions, the component system and the machining history during continuous casting. Here, although the back stress and the band structure prediction method are not limited, for example, the following formula can be used as a development formula of the back stress.
ところで、測定時の背応力やバンド組織は以上の方法で求めることが可能であるが、製品の板厚を求める際には、測定後の圧延による影響を考慮する必要がある。この影響はセットアップ計算と呼ばれる圧延開始前段階の圧下スケジュール計算の結果を用いることができる。 By the way, the back stress and the band structure at the time of measurement can be obtained by the above method. However, when obtaining the plate thickness of the product, it is necessary to consider the influence of rolling after the measurement. For this influence, the result of the rolling reduction calculation at the stage before the start of rolling called the setup calculation can be used.
しかし、セットアップ計算の結果と実績圧下率とが異なる場合もあるので、厚み測定時には逐次実績結果によって圧延履歴を更新することが好ましい。 However, since the result of the setup calculation may differ from the actual rolling reduction rate, it is preferable to update the rolling history sequentially with the actual result when measuring the thickness.
次に変態開始温度について述べる。
変態開始温度は背応力の方向によらず、加工ひずみの導入に応じて高温側に推移する。これは、加工による転位密度の上昇が自由エネルギーの上昇をもたらし、変態を促進させるためである。
Next, the transformation start temperature will be described.
The transformation start temperature does not depend on the direction of the back stress and changes to the high temperature side according to the introduction of processing strain. This is because an increase in dislocation density due to processing brings about an increase in free energy and promotes transformation.
加工による変態開始温度の上昇も、図3に示す実験結果から判断することが可能である。ここで、変態開始温度の上昇は転位密度の上昇が起因となっているため、回復や再結晶の影響で転位密度が低下する影響を考慮することが好ましい。 The rise in transformation start temperature due to processing can also be determined from the experimental results shown in FIG. Here, since the increase in the transformation start temperature is caused by the increase in the dislocation density, it is preferable to consider the influence of the decrease in the dislocation density due to the effects of recovery and recrystallization.
次に熱ひずみについて述べる。
加工履歴によって熱ひずみも影響を受けるため、熱ひずみへの影響も事前に把握しておく必要がある。前掲の表1に熱ひずみの値(先膨張係数)の変化を圧下率毎に整理したものを示す。表1からは、加工(圧下)によってフェライト域の線膨張係数が大きくなっていることが分かる。
Next, thermal strain will be described.
Since the thermal strain is also affected by the machining history, it is necessary to grasp the influence on the thermal strain in advance. Table 1 above shows the changes in thermal strain values (pre-expansion coefficients) arranged for each rolling reduction. From Table 1, it can be seen that the linear expansion coefficient in the ferrite region is increased by processing (rolling down).
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
(実施例1)
質量%で、C:0.1%、Mn:1.0%、Si:1.0%、Al:0.03%、N:0.004%、P:0.001%、S:0.001%、Ti:0.0%、Nb:0.0%、Cr:0.0%、Cu:0.1%、Ni:0.0%、B:0.0%、Mo:0.0%、W:0.0%、及び、V:0.0%を含有する連続鋳造機で鋳造した厚み250mmの鋼片を複数枚用意した。
Example 1
In mass%, C: 0.1%, Mn: 1.0%, Si: 1.0%, Al: 0.03%, N: 0.004%, P: 0.001%, S: 0.00. 001%, Ti: 0.0%, Nb: 0.0%, Cr: 0.0%, Cu: 0.1%, Ni: 0.0%, B: 0.0%, Mo: 0.0 A plurality of steel pieces having a thickness of 250 mm casted by a continuous casting machine containing%, W: 0.0%, and V: 0.0% were prepared.
この鋼片からミクロ組織撮影用のサンプルを切り出し、3%ナイタール液で腐食させ、50倍の光学顕微鏡撮影を行い、バンド組織を観察した(図2)。この結果から、バンド幅は約40〜50μm程度であり、ほぼ式(3)を満たすことが分かる。 A sample for microstructural imaging was cut out from the steel piece, corroded with 3% nital solution, and 50-fold optical microscopic imaging was performed to observe the band structure (FIG. 2). From this result, it can be seen that the bandwidth is about 40 to 50 μm and substantially satisfies the expression (3).
次にこの鋼片から、圧縮試験片サンプルを切り出した。この圧縮試験片を誘導加熱装置を用いて950℃まで10℃/sで加熱し、5分保持した。温度保持後、空冷を行って、長さ測定結果から変態開始温度を測定する。このとき、変態開始温度は約780℃であった。 Next, a compression test piece sample was cut out from the steel piece. This compression test piece was heated to 950 ° C. at 10 ° C./s using an induction heating apparatus and held for 5 minutes. After holding the temperature, air cooling is performed, and the transformation start temperature is measured from the length measurement result. At this time, the transformation start temperature was about 780 ° C.
同様に切り出した圧縮試験片を、950℃まで10℃/sで加熱し、5分保持後、780℃となる5s前に10%、20%および30%の圧縮ひずみを0.2sで加え、その後0.2sで除荷し、無負荷状態での変態ひずみ量を測定した(図3(a))。 Similarly, the cut compression test piece was heated to 950 ° C. at 10 ° C./s, held for 5 minutes, and then 10%, 20% and 30% compression strains were added at 0.2 s before 5 s to 780 ° C., Thereafter, the load was unloaded at 0.2 s, and the amount of transformation strain in an unloaded state was measured (FIG. 3 (a)).
次にこの鋼片から、上記同様圧縮試験片サンプルを切り出した。この圧縮試験片を誘導加熱装置を用いて1300℃まで10℃/sで加熱し、5分保持後、空冷を行って、長さ測定結果から変態開始温度を測定する。このとき、変態開始温度は950℃加熱時と同様に約780℃であった。 Next, a sample of a compression test piece was cut out from the steel piece as described above. The compression test piece is heated to 1300 ° C. at 10 ° C./s using an induction heating device, held for 5 minutes, air-cooled, and the transformation start temperature is measured from the length measurement result. At this time, the transformation start temperature was about 780 ° C. as in the case of heating at 950 ° C.
同様に切り出した圧縮試験片を、1300℃まで10℃/sで加熱し、5分保持後、780℃となる5s前に10%、20%および30%の圧縮ひずみを0.2sで加え、その後0.2sで除荷し、無負荷状態での変態ひずみ量を測定した(図3(b))。 Similarly, the cut compression test piece was heated to 1300 ° C. at 10 ° C./s, held for 5 minutes, and then 10%, 20% and 30% compression strains were added in 0.2 s before 5 s to be 780 ° C., Thereafter, the load was unloaded at 0.2 s, and the transformation strain amount in an unloaded state was measured (FIG. 3B).
以上の結果から、圧下による変態開始温度への影響は以下のように得られる。 From the above results, the influence on the transformation start temperature due to the reduction is obtained as follows.
次に、これらの鋼片を加熱炉で1200℃に加熱後、熱間圧延機において20mmとなるまで圧延し、冷却床で900℃から常温まで冷却した。このとき、圧延完了時に圧延機出側に設置されているガンマ線板厚計を用いて放射線吸収率を測定し、プロセスコンピュータで計算された板の断面平均温度と共に保存した。ガンマ線板厚計としてはTOSHIBA製のTOSGAGE141Aを用いた。 Next, these steel pieces were heated to 1200 ° C. in a heating furnace, then rolled to 20 mm in a hot rolling mill, and cooled from 900 ° C. to room temperature in a cooling bed. At this time, when the rolling was completed, the radiation absorption rate was measured using a gamma ray plate thickness meter installed on the delivery side of the rolling mill, and stored together with the average cross-sectional temperature of the plate calculated by the process computer. As a gamma ray thickness gauge, TOSHIGE 141A manufactured by TOSHIBA was used.
常温まで冷却された板は、検査ラインに設置されているレーザ板厚計を用いて冷間での板厚を測定した。レーザ板厚計はTOSHIBA製のTOSGAGE−LDを用いた。 The plate cooled to room temperature was measured for cold plate thickness using a laser plate thickness meter installed in the inspection line. The laser thickness gauge used was TOSHIBA-TOSAGE-LD.
レーザ板厚計のデータからガンマ線板厚計の校正を行う際に、背応力の影響およびバンド組織の影響を考慮して校正を行った場合、および、これらの影響を無視し従来の方法で校正を行った場合の密度補正データを図5に示す。 When calibrating the gamma ray thickness gauge from the laser thickness gauge data, taking into account the effects of back stress and band structure, and ignoring these effects, calibrating by the conventional method FIG. 5 shows the density correction data when the above is performed.
以上で得られた密度補正データを使用し、同鋼種を40本圧延し、板厚の作り込み精度比較を行った。この結果を図6に示す。本結果より、板厚の誤差平均値が−0.09mmから0.006mmに改善、板厚の誤差率の標準偏差が0.006から0.0018に改善した。 Using the density correction data obtained above, 40 steel grades were rolled, and the thickness accuracy was compared. The result is shown in FIG. From this result, the plate thickness error average value was improved from -0.09 mm to 0.006 mm, and the plate thickness error rate standard deviation was improved from 0.006 to 0.0018.
本発明によれば、高精度に熱間の厚みを測定する放射線厚み測定器を提供し、製品の品質の最も重要な一つである厚みの精度が向上する。よって、本発明は、産業上の利用可能性が高いものである。 ADVANTAGE OF THE INVENTION According to this invention, the radiation thickness measuring device which measures hot thickness with high precision is provided, and the precision of the thickness which is the most important one of the quality of a product improves. Therefore, the present invention has high industrial applicability.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015216575A JP6641898B2 (en) | 2015-11-04 | 2015-11-04 | Radiation thickness measuring device and its calibration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015216575A JP6641898B2 (en) | 2015-11-04 | 2015-11-04 | Radiation thickness measuring device and its calibration method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017090083A true JP2017090083A (en) | 2017-05-25 |
JP6641898B2 JP6641898B2 (en) | 2020-02-05 |
Family
ID=58770233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015216575A Active JP6641898B2 (en) | 2015-11-04 | 2015-11-04 | Radiation thickness measuring device and its calibration method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6641898B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110132188A (en) * | 2019-06-19 | 2019-08-16 | 中国人民解放军空军工程大学 | A kind of painting alloying layer thickness calculation method based on multielement X-ray characteristic spectrum comprehensive analysis |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60228911A (en) * | 1984-04-27 | 1985-11-14 | Hitachi Ltd | Automatic hardness corrector for thickness gauge |
JPH07208965A (en) * | 1994-01-17 | 1995-08-11 | Nippon Steel Corp | Measuring method for plate thickness of steel plate by radiation |
JPH0815186A (en) * | 1994-06-29 | 1996-01-19 | Nippon Steel Corp | Quantifying method for local internal strain of processed crystalline material |
JP2003035530A (en) * | 2001-07-25 | 2003-02-07 | Nkk Corp | Board thickness measuring method, board thickness measuring device, and board thickness controlling method of hot-rolled steel sheet |
JP2006233250A (en) * | 2005-02-23 | 2006-09-07 | Nippon Kinzoku Co Ltd | Ferritic stainless steel sheet for formed spring and manufacturing method therefor |
CN102059257A (en) * | 2010-11-04 | 2011-05-18 | 天津市核人仪器设备有限公司 | Device for online measuring wall thickness of hot-rolled metal pipe by using gamma rays |
JP2012093314A (en) * | 2010-10-28 | 2012-05-17 | Nippon Steel Corp | Method for measuring thickness of steel plate, thickness calculation device and program |
-
2015
- 2015-11-04 JP JP2015216575A patent/JP6641898B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60228911A (en) * | 1984-04-27 | 1985-11-14 | Hitachi Ltd | Automatic hardness corrector for thickness gauge |
JPH07208965A (en) * | 1994-01-17 | 1995-08-11 | Nippon Steel Corp | Measuring method for plate thickness of steel plate by radiation |
JPH0815186A (en) * | 1994-06-29 | 1996-01-19 | Nippon Steel Corp | Quantifying method for local internal strain of processed crystalline material |
JP2003035530A (en) * | 2001-07-25 | 2003-02-07 | Nkk Corp | Board thickness measuring method, board thickness measuring device, and board thickness controlling method of hot-rolled steel sheet |
JP2006233250A (en) * | 2005-02-23 | 2006-09-07 | Nippon Kinzoku Co Ltd | Ferritic stainless steel sheet for formed spring and manufacturing method therefor |
JP2012093314A (en) * | 2010-10-28 | 2012-05-17 | Nippon Steel Corp | Method for measuring thickness of steel plate, thickness calculation device and program |
CN102059257A (en) * | 2010-11-04 | 2011-05-18 | 天津市核人仪器设备有限公司 | Device for online measuring wall thickness of hot-rolled metal pipe by using gamma rays |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110132188A (en) * | 2019-06-19 | 2019-08-16 | 中国人民解放军空军工程大学 | A kind of painting alloying layer thickness calculation method based on multielement X-ray characteristic spectrum comprehensive analysis |
Also Published As
Publication number | Publication date |
---|---|
JP6641898B2 (en) | 2020-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Naderi et al. | Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures | |
Kim et al. | On the tensile behavior of high-manganese twinning-induced plasticity steel | |
Bandyopadhyay et al. | Modeling and experiment on microstructure evolutions and mechanical properties in grade 600 MPa reinforcing steel rebar subjected to TempCore process | |
Min et al. | Effect of thermo-mechanical process on the microstructure and secondary-deformation behavior of 22MnB5 steels | |
Wu et al. | Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel | |
Andrade‐Campos et al. | Effect of strain rate, adiabatic heating and phase transformation phenomena on the mechanical behaviour of stainless steel | |
Zijlstra et al. | On the role of the residual stress state in product manufacturing | |
Zhang et al. | Transformation plasticity of AF1410 steel and its influences on the welding residual stress and distortion: experimental and numerical study | |
Xu et al. | In situ proton irradiation creep of ferritic–martensitic steel T91 | |
Hosemann et al. | Micro-structural characterization of laboratory heats of the Ferric/Martensitic steels HT-9 and T91 | |
Čapek et al. | Influence of laser powder bed fusion scanning pattern on residual stress and microstructure of alloy 718 | |
Xu et al. | Numerical modeling and anvil design of high-speed forging process for railway axles | |
Boudiaf et al. | Experimental analysis of the correlation between martensitic transformation plasticity and the austenitic grain size in steels | |
Mevec et al. | Combining hardness measurements of a heat-treated crankshaft bearing with cross-sectional residual stress and retained austenite distributions measured by HEXRD | |
Hong et al. | Residual stress analysis in deep drawn twinning induced plasticity (TWIP) steels using neutron diffraction method | |
JP6641898B2 (en) | Radiation thickness measuring device and its calibration method | |
Diehl et al. | Experimental analysis of residual stresses in pre-straightened SAE 1045 Steel | |
Dutta et al. | In-Situ Synchrotron Diffraction Studies on Transformation Strain Development in a High Strength Quenched and Tempered Structural Steel—Part I. Bainitic Transformation | |
Groen et al. | Product shape change by internal stresses | |
JP6582892B2 (en) | Hot rolling method for steel | |
Feng et al. | Experimental study on additive manufactured 304L stainless steel tubular sections: Material properties and cross-sectional behavior | |
Durgaprasad et al. | Microstructural engineering in eutectoid steel: a technological possibility? | |
Sinha et al. | Residual stress measurement in worked and heat treated steel by X-ray diffractometry | |
Sim et al. | Development and improvement of phenomenological constitutive models for thermo-mechanical processing of 300M ultra-high strength steel | |
Klobčar et al. | Aging of maraging steel welds during aluminium alloy die casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180704 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191216 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6641898 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |