JP2006233250A - Ferritic stainless steel sheet for formed spring and manufacturing method therefor - Google Patents
Ferritic stainless steel sheet for formed spring and manufacturing method therefor Download PDFInfo
- Publication number
- JP2006233250A JP2006233250A JP2005047357A JP2005047357A JP2006233250A JP 2006233250 A JP2006233250 A JP 2006233250A JP 2005047357 A JP2005047357 A JP 2005047357A JP 2005047357 A JP2005047357 A JP 2005047357A JP 2006233250 A JP2006233250 A JP 2006233250A
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- ferritic stainless
- mass
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 30
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 23
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 21
- 238000005097 cold rolling Methods 0.000 claims abstract description 17
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims abstract description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 23
- 239000010959 steel Substances 0.000 claims description 23
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 abstract description 6
- 229910000963 austenitic stainless steel Inorganic materials 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 2
- 239000010935 stainless steel Substances 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 24
- 238000005096 rolling process Methods 0.000 description 24
- 238000012545 processing Methods 0.000 description 16
- 230000007797 corrosion Effects 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 230000032683 aging Effects 0.000 description 8
- 238000000137 annealing Methods 0.000 description 8
- 238000004881 precipitation hardening Methods 0.000 description 8
- 230000035882 stress Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は各種の成型ばね等に使用される加工性に優れた成型ばね用フェライト系ステンレス鋼板及びその製造方法に関する。 The present invention relates to a ferritic stainless steel sheet for molded springs, which is excellent in workability and used for various molded springs, and a method for producing the same.
各種の成型バネに使用されるオーステナイト系ステンレス鋼板は加工硬化係数が高く、例えば代表的な組成のSUS304では10%圧延加工を行いHv300程度の硬さを示してもなお30%程度の引張伸びを有することができるが、添加元素のNiはそれ自体が高価であり、また価格安定性が低い。このため、代替可能な特性を発現できる、Ni添加量の少ないフェライト系ステンレス鋼板の利用が望まれている。 The austenitic stainless steel plate used for various shaped springs has a high work hardening coefficient. For example, SUS304 having a typical composition has a tensile elongation of about 30% even if it is rolled by 10% and exhibits a hardness of about Hv300. However, the additive element Ni itself is expensive and has low price stability. For this reason, utilization of the ferritic stainless steel sheet with the small Ni addition amount which can express the characteristic which can be substituted is desired.
しかし、フェライト系ステンレス鋼板は加工硬化係数が低く、オーステナイト系ステンレス鋼と同等な強度を得ようとすれば、例えば代表的な組成のSUS430では圧延率70%でもHv280程度にとどまり、引張伸びは2%以下と低く、所望の延性を確保することができない。このため、フェライト系ステンレス鋼は、バネ材等の高強度と加工性が要求される分野での利用価値は低いものと一般に認識されていた。 However, the ferritic stainless steel sheet has a low work hardening coefficient. For example, in the case of SUS430 having a typical composition, if it is attempted to obtain the same strength as that of an austenitic stainless steel, the tensile elongation is 2 at a rolling rate of 70%. % Or less, the desired ductility cannot be ensured. For this reason, ferritic stainless steel has been generally recognized as having low utility value in fields where high strength and workability are required, such as spring materials.
これまでにもフェライト系ステンレス鋼の特性を向上させるために種々の提案がなされている。例えば、特許文献1は「異方性が小さく深絞り性の優れた軟質フェライト系ステンレス鋼」を提案している。同文献の第2頁には「C及びNを固定し、鋼に軟質性を与え結晶粒の粗大化や脆化を抑制して鋼の加工性特に本発明の深絞り性を向上せしめるのに有効な元素である」と記載され、Nb添加によるC,N量の低減によって加工性を得ているが、課題は素材の軟質化であり、深絞り用途の素材製造を目的としている。
Various proposals have been made so far to improve the properties of ferritic stainless steel. For example,
また、特許文献2は「加工性に優れたフェライト系ステンレス鋼板及びその製造方法」を提案している。同文献の段落0010には、「Nb系析出物を結晶方位の制御に利用することにより・・・(中略)加工性に優れたフェライト系ステンレス鋼板を提供すること」と記載されているが、その最終焼鈍温度は900℃〜1100℃と高く(段落0029)、鋼板を軟質化した後に強加工することを目的としている。 Patent Document 2 proposes “a ferritic stainless steel plate excellent in workability and a manufacturing method thereof”. In paragraph 0010 of the same document, it is described as “providing a ferritic stainless steel sheet having excellent workability by using Nb-based precipitates for controlling crystal orientation”. The final annealing temperature is as high as 900 ° C. to 1100 ° C. (paragraph 0029), and is intended to be hard-worked after softening the steel plate.
このようにフェライト系ステンレス鋼は、低い加工硬化係数のために、ばね用途としての認識が低い。フェライト系ステンレス鋼をばね用途とする提案として、例えば特許文献3と特許文献4をあげることができる。
Thus, ferritic stainless steel has low recognition as a spring application due to a low work hardening coefficient. For example,
特許文献3は「高強度・高靭性フェライト系ステンレス鋼の製造方法」を提案している。同文献では添加元素にTiを用い、C,N,Tiの添加量、溶体化処理温度、冷間圧延率によって決められる管理値とバネ限界値の関係を述べているが、時効熱処理に用いる最終焼鈍温度範囲は400℃以下であり、同文献の3頁にある「時効温度は400℃を超えると過時効を起こし、固溶C,Nは炭窒化物を形成し転位を固着する効果が小さくなる」としている点で成型ばねに必要な延性を得ようとはしていない。
特許文献4は「ばね用フェライト系ステンレス鋼板とその製造方法」を提案している。同文献の第4頁には「軟化開始温度を高温側へ移動させ、製品ばねを550〜600℃で後熱処理した場合の特性劣化を抑制する効果」を述べているが、Nb,Tiの添加量は0.1質量%以下と小さい範囲に規定され、耐食性の付与のために必要とされる添加量((C+N)質量%8倍以上)を下回る設計とし、その代わりにバネ特性を得ようとしてSiを「高いバネ特性を実現するためには不可欠な元素」として積極的に固溶元素による強化を用いている。
このように、従来用いられているオーステナイト系ステンレス鋼に対し、遜色ないバネ特性(耐食性、強度、延性)を有する発明は未だなされていなかった。
本発明は上記の課題を解決するためになされたものであり、各種成型バネ材に使用されているオーステナイト系ステンレス鋼と比べてみても遜色ないばね特性を有し、Ni等の高価格の成分元素をほとんど用いない低コストの成型ばね用フェライト系ステンレス鋼板及びその製造方法を提供することを目的とする。 The present invention has been made in order to solve the above problems, and has spring characteristics comparable to austenitic stainless steels used for various molded spring materials, and is a high-priced component such as Ni. An object of the present invention is to provide a low-cost ferritic stainless steel sheet for molded springs that uses almost no elements and a method for producing the same.
本発明では炭窒化物として消費される以上の充分なNbを加え、予歪によって過飽和となったC,Nを利用し、過時効域の熱処理で析出硬化を利用し、特別な固溶強化元素を必要とせず、高いバネ特性を得ることができるようにした。以下にその具体的手段を述べる。 In the present invention, a sufficient amount of Nb that is consumed as carbonitride is added, C and N that are supersaturated by pre-strain are used, precipitation hardening is used in heat treatment in an overage region, and a special solid solution strengthening element is used. It was made possible to obtain high spring characteristics without the need for The specific means will be described below.
本発明の成型ばね用フェライト系ステンレス鋼板は、質量%で、C:0.03%以下、N:0.03%以下、Si:1.00%以下、Mn:1.00%以下、Cr:16〜20%、Ni:0.60%以下、Nb:8×(C+N)%以上0.80%以下をそれぞれ含有し、残部がFe及び不可避不純物からなるフェライト系ステンレス鋼であって、15%以上の冷間圧延に相当する加工歪を内部に蓄積させた後に550℃以上750℃以下の温度範囲で最終熱処理されることにより、600MPa以上の0.2%耐力σを有し、かつ、下式をともに満たす伸びε(%)を示すことを特徴とする。 The ferritic stainless steel sheet for molded springs of the present invention is in mass%, C: 0.03% or less, N: 0.03% or less, Si: 1.00% or less, Mn: 1.00% or less, Cr: Ferrite stainless steel containing 16 to 20%, Ni: 0.60% or less, Nb: 8 × (C + N)% or more and 0.80% or less, the balance being Fe and inevitable impurities, 15% By accumulating the processing strain corresponding to the cold rolling described above, and finally heat-treating in a temperature range of 550 ° C. or more and 750 ° C. or less, it has a 0.2% proof stress σ of 600 MPa or more and It is characterized by exhibiting an elongation ε (%) that satisfies both equations.
ε≧−0.02×σ+22 …(1)
ε≧5 …(2)
本発明の成型ばね用フェライト系ステンレス鋼板の製造方法は、質量%で、C:0.03%以下、N:0.03%以下、Si:1.00%以下、Mn:1.00%以下、Cr:16〜20%、Ni:0.60%以下、Nb:8×(C+N)%以上0.80%以下をそれぞれ含有し、残部がFe及び不可避不純物からなるフェライト系ステンレス鋼に対して、15%以上の冷間圧延に相当する加工歪を内部に蓄積させた後に、550〜750℃の温度範囲で最終熱処理し、0.2%耐力σが600MPa以上で、かつ、伸びε(%)が(1)式ε≧−0.02×σ+22および(2)式ε≧5の関係をともに満たす鋼板とすることを特徴とする。
ε ≧ −0.02 × σ + 22 (1)
ε ≧ 5 (2)
The manufacturing method of the ferritic stainless steel sheet for molded springs of the present invention is, in mass%, C: 0.03% or less, N: 0.03% or less, Si: 1.00% or less, Mn: 1.00% or less. , Cr: 16 to 20%, Ni: 0.60% or less, Nb: 8 × (C + N)% or more and 0.80% or less, respectively, with respect to a ferritic stainless steel whose balance is Fe and inevitable impurities , After accumulating processing strain corresponding to 15% or more of cold rolling inside, final heat treatment is performed in a temperature range of 550 to 750 ° C., 0.2% proof stress σ is 600 MPa or more, and elongation ε (% ) Is a steel plate satisfying both the relations of (1) Formula ε ≧ −0.02 × σ + 22 and (2) Formula ε ≧ 5.
圧延鋼材を延性が回復する過時効域で焼鈍すると、通常の場合はそれによって強度が低下しようとするが、本発明では、冷間圧延で所望の予歪(15%以上の冷間圧延に相当する加工歪)を付与したフェライト系ステンレス鋼に対して過時効域(550〜750℃)で最終熱処理を施すことにより、Nb炭化物およびNb炭窒化物の析出時効を積極的に起こさせ、これにより強度の低下を補償している。これにより所望のばね特性として600MPa以上の0.2%耐力σが得られる。このような0.2%耐力σは、図5に示す臨界特性線CL1より右方領域R2に存在する鋼材に与えられる。 When a rolled steel material is annealed in an overaged region where ductility is restored, the strength tends to decrease in a normal case. However, in the present invention, a desired pre-strain (corresponding to a cold rolling of 15% or more) is achieved by cold rolling. By subjecting the ferritic stainless steel to which the processing strain is given) to a final heat treatment in an overaging region (550 to 750 ° C.), the precipitation aging of Nb carbide and Nb carbonitride is actively caused, thereby Compensates for a drop in strength. As a result, 0.2% yield strength σ of 600 MPa or more is obtained as desired spring characteristics. Such a 0.2% yield strength σ is given to the steel material existing in the right region R2 from the critical characteristic line CL1 shown in FIG.
一方、本発明では、諸特性のうちから延性に関して主要成分元素のC,N,Nb,Cr,Si,Mnの成分設計を行い、析出時効に伴う延性低下を最小限に抑え、所望の伸びεを確保して、ばねの成型加工を可能にしている。これにより所望のばね特性として上式(1)と(2)を共に満たす伸びεが得られる。このような伸びεは、図5に示す臨界特性線CL2,CL3より上方領域R2に存在する鋼材に与えられる。 On the other hand, in the present invention, component design of main component elements C, N, Nb, Cr, Si, and Mn is performed with respect to ductility among various characteristics, and the desired elongation ε is minimized by minimizing the decrease in ductility associated with precipitation aging. This makes it possible to mold the spring. As a result, an elongation ε satisfying both the above equations (1) and (2) is obtained as a desired spring characteristic. Such an elongation ε is given to the steel material existing in the region R2 above the critical characteristic lines CL2 and CL3 shown in FIG.
本発明では、さらに、質量%で、Cu:0.80%以下およびMo:2.50%以下のうちの1種又は2種を含有させることができる。加工性を損なわない範囲でCu,Moを添加すると、強度および耐食性がさらに向上する。 In the present invention, one or two of Cu: 0.80% or less and Mo: 2.50% or less can be further contained by mass%. When Cu and Mo are added within a range that does not impair the workability, the strength and corrosion resistance are further improved.
以下に、本発明における各成分元素の作用、圧延条件および熱処理条件の限定理由についてそれぞれ説明する。 Below, the effect | action of each component element in this invention, rolling conditions, and the reason for limitation of heat processing conditions are each demonstrated.
1)C:0.03質量%以下
一般的にはC含有量が多くなると耐食性、耐酸化性、加工性、靭性が低下する。本発明では、冷間圧延による予歪を利用して固溶Cを過飽和とし、その安定化元素であるNbを過時効域でCと反応させることにより析出硬化を生じさせる。過時効域でNb炭化物やNb炭窒化物を安定に析出させて時効析出硬化を起こさせるためには、不必要にC含有量を多くするとNb添加量を多くしなければならなくなるので、C含有量の上限値を通常操業で制御可能な低炭素レベルの0.03質量%に設定した。
1) C: 0.03 mass% or less
In general, as the C content increases, the corrosion resistance, oxidation resistance, workability, and toughness decrease. In the present invention, precipitation hardening is caused by making solid solution C supersaturated by utilizing pre-strain by cold rolling and reacting Nb which is a stabilizing element with C in the overaging region. In order to stably precipitate Nb carbide and Nb carbonitride in the overaging region and cause aging precipitation hardening, if the C content is unnecessarily increased, the Nb addition amount must be increased. The upper limit of the amount was set to 0.03% by mass of the low carbon level that can be controlled by normal operation.
2)N:0.03質量%以下
NはCと同様の侵入型元素であり、圧延予歪によって過飽和となったNがNbと炭窒化物を形成して析出硬化に寄与する。よって、本発明の所望の効果を得るためには、不必要にN含有量を多くするとNb添加量を多くしなければならなくなるので、N含有量の上限値を通常操業で制御可能な低Nレベルの0.03質量%に設定した。
2) N: 0.03 mass% or less
N is an interstitial element similar to C, and N that is supersaturated by rolling pre-strain forms Nb and carbonitride and contributes to precipitation hardening. Therefore, in order to obtain the desired effect of the present invention, if the N content is increased unnecessarily, the Nb addition amount must be increased, so that the upper limit of the N content can be controlled by normal operation. It was set to 0.03% by mass of the level.
3)Si:1.00質量%以下
Siは素材強度の向上に寄与するとともに高温酸化特性の改善に有効な元素である。しかし、1.00質量%を超えてSiを過剰に添加すると加工性及び靱性が劣化する。よって、Si含有量の上限値を1.00質量%に設定した。
ちなみに、特許文献4の鋼では、ばねに必要とされる特性としてビッカース硬さHv310以上を得るために、Siを高いバネ特性を実現するために不可欠な元素として積極的に添加している。
3) Si: 1.00 mass% or less
Si is an element that contributes to the improvement of the material strength and is effective in improving the high-temperature oxidation characteristics. However, workability and toughness deteriorate when Si is added in excess of 1.00% by mass. Therefore, the upper limit of Si content was set to 1.00% by mass.
Incidentally, in the steel of
4)Mn:1.00質量%以下
Mnは、高温酸化特性のなかでも特にスケール剥離性の改善に有効な元素であるが、Mn量を多くしても本発明の析出硬化には寄与しないので、通常フェライト系ステンレス鋼に含有される程度のレベルとして1.00質量%を上限とした。
4) Mn: 1.00% by mass or less
Mn is an element that is particularly effective for improving the scale peelability among the high-temperature oxidation characteristics, but since it does not contribute to the precipitation hardening of the present invention even if the amount of Mn is increased, it is usually contained in ferritic stainless steel. The upper limit was about 1.00% by mass.
5)Cr:16〜20質量%
Crは、フェライト相を安定させ、耐食性および耐熱性を向上させる元素である。所望の耐食性を得るためにはCr量を少なくとも16質量%添加する必要がある。しかし、Crを多量に含有すると原料コストの増大を招くばかりでなく、20質量%を超えて過剰に添加するとかえって加工性が阻害されるため20質量%を上限とした。
5) Cr: 16 to 20% by mass
Cr is an element that stabilizes the ferrite phase and improves the corrosion resistance and heat resistance. In order to obtain the desired corrosion resistance, it is necessary to add at least 16% by mass of Cr. However, if Cr is contained in a large amount, not only the raw material cost is increased, but if it is added in excess of 20% by mass, the workability is rather disturbed, so 20% by mass was made the upper limit.
6)Ni:0.6質量%以下
Niは素材強度の向上や耐食性に寄与する元素であるが、高価であり、価格安定性が低いのでできるだけ添加しないほうが望ましい。本発明ではNiの添加効果を期待していないので、通常フェライト系ステンレス鋼に含有を許容されるNi量として日本工業規格(JIS)に規定されている0.6質量%を上限とした。
6) Ni: 0.6 mass% or less
Ni is an element that contributes to improvement in material strength and corrosion resistance, but it is expensive and has low price stability. In the present invention, since the effect of addition of Ni is not expected, the upper limit is set to 0.6% by mass as stipulated in Japanese Industrial Standard (JIS) as the amount of Ni allowed to be normally contained in ferritic stainless steel.
7)Nb:8×(C+N)質量%以上0.8質量%以下
Nbは、炭窒化物等の形成元素として炭素および窒素を固定させ、Cr欠乏層の発生による耐食性劣化を防止するため、生成した炭窒化物によって粒界移動を抑制し、耐熱向上性を狙うために添加される。Nbは、C,Nを固定し、Cr欠乏層の発生による耐食性劣化を防止するためには最低でも、C,N量により(C+N)質量%の8倍のNbを添加する必要があり、固溶Nbの効果(軟化温度上昇、析出硬化)を狙うにはそれ以上のNbを含有する必要があることから、その下限は8×(C+N)質量%より多いものとし、その上限は経済的理由と延性低下の抑制から0.80%とした。
7) Nb: 8 × (C + N) mass% or more and 0.8 mass% or less
Nb fixes carbon and nitrogen as forming elements such as carbonitrides, and prevents deterioration of corrosion resistance due to the generation of Cr-deficient layers, thereby suppressing grain boundary migration by the generated carbonitrides and aiming to improve heat resistance To be added. Nb needs to be added at least 8 times as much as (C + N) mass% by the amount of C and N in order to fix C and N and prevent deterioration of corrosion resistance due to generation of a Cr-deficient layer. Since it is necessary to contain more Nb in order to aim at the effect (softening temperature rise, precipitation hardening) of molten Nb, the lower limit is more than 8 × (C + N) mass%, and the upper limit is an economic reason. And from the suppression of ductility reduction, it was made 0.80%.
本発明鋼では炭窒化物として消費される以上の充分なNb量を添加し、予歪によって過飽和となったC,Nを利用し、過時効域の熱処理にて析出硬化にて高いバネ特性を得るようにしている。C,Nを析出物として固定しているNbは、熱間圧延後から最終焼鈍までの間においてNb(C,N)の形態で存在し、その量および析出状態がほとんど変化しない。 In the steel of the present invention, a sufficient amount of Nb more than that consumed as carbonitride is added, and C and N which are supersaturated by pre-strain are used, and high spring characteristics are obtained by precipitation hardening by heat treatment in the overaging region. Trying to get. Nb fixing C and N as precipitates exists in the form of Nb (C, N) from hot rolling to final annealing, and the amount and precipitation state hardly change.
ちなみに特許文献1の第2頁には「Nbは、C及びNを固定し、鋼に軟質性を与え結晶粒の粗大化や脆化を抑制して鋼の加工性特に本発明の深絞り性を向上せしめるのに有効な元素である」と記載され、Nb添加によるC,N量の低減によって加工性を得ているが、課題は素材の軟質化であり、深絞り用途の素材製造を目的としている。
Incidentally, the second page of
また、ちなみに特許文献4の第4頁には「軟化開始温度を高温側へ移動させ、製品ばねを550〜600℃で後熱処理した場合の特性劣化を抑制する効果」と記載されているが、Nb添加量が0.1質量%以下と小さい範囲に規定されている。さらに、特許文献4の第4頁に示された成分範囲によれば、(C+N)質量%は0.04〜0.24%となっており、耐食性の付与のために必要とされるNbの添加量は(C+N)質量%8〜16倍以上必要とすれば0.32〜3.84%となるが、Nbの添加範囲はそれを下回る設計となっている。
Incidentally, on
8)Cu:0.80質量%以下
Cuは耐食性と強度の向上に有効な元素であり、抗菌性付与にも有効であることから、使用環境に応じて添加する。しかし、0.80質量%を超えてCuを過剰に添加すると熱間加工性を低下させ、加工性を劣化させるため、0.80質量%を上限とした。
8) Cu: 0.80 mass% or less
Cu is an element effective for improving corrosion resistance and strength, and also effective for imparting antibacterial properties, so it is added depending on the use environment. However, when Cu is added excessively exceeding 0.80 mass%, the hot workability is lowered and the workability is deteriorated, so 0.80 mass% was made the upper limit.
9)Mo:2.50質量%以下
Moは耐食性と強度の向上に有効な元素であり、使用環境に応じて添加する。しかし、2.50質量%を超えてMoを過剰に添加すると熱間加工性を低下させ、加工性を劣化させるため、2.50質量%を上限とした。
9) Mo: 2.50 mass% or less
Mo is an element effective for improving corrosion resistance and strength, and is added depending on the use environment. However, when Mo is added in excess of 2.50% by mass, the hot workability is lowered and the workability is deteriorated, so 2.50% by mass was made the upper limit.
10)その他の添加成分および不可避不純物
本発明が対象とするフェライト系ステンレス鋼では、上記以外の他の合金元素に関しては特段規定されるものではなく、必要に応じて適宜添加される。この種の添加成分として、熱間加工性および靭性の改善に有効な元素としてCa,Mg,Bを0.05質量%以下の微量レベルで添加することができる。
10) Other additives and inevitable impurities
In the ferritic stainless steel targeted by the present invention, other alloy elements other than those described above are not particularly specified, and are appropriately added as necessary. As an additive component of this type, Ca, Mg, and B can be added at a trace level of 0.05% by mass or less as elements effective for improving hot workability and toughness.
P,S,Oは、強度や加工性を劣化させるため汎用の成分分析機の検出限界に近い程度まで可能な限り低く抑えるほうが望ましい。しかし、製鋼工程において不可避的に不純物として混入する場合は、Pを0.04質量%以下、Sを0.03質量%以下、Oを0.02質量%以下にそれぞれ規制して加工性の劣化を防ぐようにする。 P, S, and O are desirably kept as low as possible to a level close to the detection limit of a general-purpose component analyzer in order to deteriorate strength and workability. However, when it is inevitably mixed as an impurity in the steelmaking process, P is controlled to 0.04% by mass or less, S is controlled to 0.03% by mass or less, and O is controlled to 0.02% by mass or less to deteriorate workability. To prevent.
11)圧延率:15%以上の冷間圧延に相当する加工歪
Nb炭化物及びNb炭窒化物の析出硬化によるばね特性の向上効果を狙う場合には、最低限15%以上の冷間圧延に相当する加工歪を鋼板の内部に蓄積させる必要がある。加工歪が15%を下回るとNb炭化物、Nb炭窒化物の析出量が不十分になり、ばね特性(引張強度、0.2%耐力、伸び、硬さ)が所望レベルまで向上しないからである。
11) Rolling rate: Work strain equivalent to 15% or more cold rolling
When aiming at an improvement effect of spring characteristics by precipitation hardening of Nb carbide and Nb carbonitride, it is necessary to accumulate a working strain corresponding to cold rolling of at least 15% or more in the steel sheet. If the processing strain is less than 15%, the amount of precipitation of Nb carbide and Nb carbonitride becomes insufficient, and the spring properties (tensile strength, 0.2% proof stress, elongation, hardness) do not improve to the desired level. .
ここで「15%以上の冷間圧延に相当する加工歪」とは、再結晶温度より低い温度領域にて、固溶CをNbと結合可能な過飽和Cとする格子歪を加える加工歪のことをいう。冷間圧延にて15%未満の圧延率ではその格子歪を与えることができないからである。成型ばね材として使用する場合、曲げ加工等の成型工程が付加されることが多々あり、加工部分は形状的に応力が集中し、その部位でばね特性を補償することになる。仮に15%未満の圧延率で作製した鋼板であっても、最終的に曲げ加工を行うことでさらに歪を与え、その後に過時効域で熱処理を行うことで同等な特性を得ることも可能であるので、本発明では「…に相当する」という表現としている。なお、圧延率の上限は、成分毎の加工限界と製造コストの上昇によるため本発明では特定しない。 Here, “working strain corresponding to cold rolling of 15% or more” refers to processing strain that adds lattice strain in which the solid solution C is supersaturated C that can be combined with Nb in a temperature region lower than the recrystallization temperature. Say. This is because the lattice strain cannot be applied at a rolling rate of less than 15% in cold rolling. When used as a molded spring material, a molding process such as bending is often added, and stress is concentrated in the shape of the processed part, and the spring characteristics are compensated at that part. Even steel sheets produced with a rolling rate of less than 15% can be further distorted by bending, and equivalent characteristics can be obtained by heat treatment in the overaging region. Therefore, in the present invention, the expression “corresponds to...” Is used. Note that the upper limit of the rolling rate is not specified in the present invention because of the processing limit for each component and the increase in manufacturing cost.
12)最終熱処理温度:550℃以上750℃以下
過時効温度域を利用し、成型ばね材として必要な加工性を保有させるため、550〜750℃(さらに好ましくは600〜700℃)の温度域で最終焼鈍を行う。550〜750℃の温度範囲は、歪時効温度よりも高く、加工歪を完全に除去し得る再結晶温度よりも低い温度範囲である。
12) Final heat treatment temperature: 550 ° C or higher and 750 ° C or lower
In order to retain the workability required as a molded spring material using the overaging temperature range, final annealing is performed in a temperature range of 550 to 750 ° C. (more preferably 600 to 700 ° C.). The temperature range of 550 to 750 ° C. is a temperature range that is higher than the strain aging temperature and lower than the recrystallization temperature at which processing strain can be completely removed.
ちなみに特許文献2の段落0010には、「Nb系析出物を結晶方位の制御に利用することにより・・・(中略)加工性に優れたフェライト系ステンレス鋼板を提供すること」と記載されているが、その最終焼鈍温度は900℃〜1100℃と高く(段落0029)、鋼板を軟質化した後に強加工することを目的としている。 Incidentally, paragraph 0010 of Patent Document 2 describes that "by using Nb-based precipitates for controlling crystal orientation ... (Omitted) to provide a ferritic stainless steel sheet having excellent workability". However, the final annealing temperature is as high as 900 ° C. to 1100 ° C. (paragraph 0029), and is intended to be hard-worked after softening the steel plate.
また、ちなみに特許文献3では時効熱処理に用いる最終焼鈍温度範囲は400℃以下であり、同文献の3頁にある「時効温度は400℃を超えると過時効を起こし、固溶C、Nは炭窒化物を形成し転位を固着する効果が小さくなる」としている点で本発明鋼とは異なる。
Incidentally, in
本発明鋼によれば、特定の予歪を与えたNb含有フェライト系ステンレス鋼に対して特定の過時効域の温度で最終熱処理を行うことにより、成型バネ材として充分な強度と加工性を有するフェライト系ステンレス鋼が提供される。また、本発明によれば、安定生産可能なフェライト系ステンレス鋼の製造方法が提供される。 According to the steel of the present invention, the Nb-containing ferritic stainless steel subjected to a specific pre-strain has sufficient strength and workability as a molded spring material by performing a final heat treatment at a specific over-aging temperature. Ferritic stainless steel is provided. Moreover, according to this invention, the manufacturing method of the ferritic stainless steel which can be stably produced is provided.
以下、本発明を実施するための最良の形態について添付の図面を参照して説明する。 The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
表1に示す組成の各種フェライト系ステンレス鋼を真空溶解炉でそれぞれ溶製し、厚みが約50mmのスラブに切り出し、1200℃に加熱した後、板厚3mmまで熱間圧延した。さらに、750〜920℃の軟化焼鈍と冷間圧延を繰り返し、1mm厚の冷間圧延焼鈍材を製作した。
(実施例1)
表1の実施例1に示す化学組成の鋼板を用いて、30〜70%圧延率の冷間圧延を行い、各温度にて熱処理を行った後、素材硬さ測定及び引張試験にて0.2%耐力σと伸びεをそれぞれ評価した(図1、図2)。
Example 1
Using a steel sheet having the chemical composition shown in Example 1 of Table 1, cold rolling at a rolling rate of 30 to 70% was performed, and heat treatment was performed at each temperature. 2% yield strength σ and elongation ε were evaluated (FIGS. 1 and 2).
図1は、横軸に最終熱処理の加熱温度(℃)をとり、縦軸に各種サンプルのビッカース硬さHv(荷重1kg)をとって両者の相関について調べた結果を示す特性線図である。図中にて特性線A1(白丸)は圧延率30%、特性線A2(白三角)は圧延率50%、特性線A3(白四角)は圧延率70%の結果をそれぞれ示す。図から明らかなように、素材硬度は圧延率によって変化し、50%以上の圧延率では600℃中心の温度領域にて炭窒化物析出により圧延後の硬さを上回るほど時効熱処理の効果が顕著に表れ、最大でHv320の硬さを得た。圧延率によって軟化開始温度は若干変化するものの、750℃まで圧延ままの硬度を保持した。 FIG. 1 is a characteristic diagram showing the results of investigating the correlation between the various samples with the heating temperature (° C.) of the final heat treatment on the horizontal axis and the Vickers hardness Hv (load 1 kg) of various samples on the vertical axis. In the figure, the characteristic line A1 (white circle) indicates the rolling rate of 30%, the characteristic line A2 (white triangle) indicates the rolling rate of 50%, and the characteristic line A3 (white square) indicates the rolling rate of 70%. As is apparent from the figure, the material hardness varies depending on the rolling rate, and the effect of the aging heat treatment becomes more remarkable when the rolling rate is 50% or more, exceeding the hardness after rolling by precipitation of carbonitride in a temperature region around 600 ° C. The hardness of Hv320 was obtained at the maximum. Although the softening start temperature slightly changed depending on the rolling rate, the hardness as-rolled was maintained up to 750 ° C.
図2は、横軸に最終熱処理の加熱温度(℃)をとり、縦軸に各種サンプルの引張強度(MPa)、0.2%耐力σ(MPa)、伸びε(%)およびビッカース硬さHv(荷重1kg)をとって、それぞれの相関について調べた結果を示す特性線図である。圧延率70%の条件とした。図中にて特性線Bは引張強度、特性線Cは0.2%耐力σ、特性線Dはビッカース硬さHv、特性線Eは伸びεの結果をそれぞれ示す。図から明らかなように、70%圧延材にて延性は加熱温度とともに回復し、550℃にて6%を上回り、延性、硬度とも安定する温度範囲が550〜700℃であることを確認し、素材硬度Hv290〜320、伸び6〜8%の材料を得た。550℃より低い温度では素材硬度の減少は無いが延性の回復が充分ではなく、750℃より高い温度では延性の回復を示すが、軟化速度が著しく、安定品質を得る量産条件として適さなくなる。 In FIG. 2, the horizontal axis indicates the heating temperature (° C.) of the final heat treatment, and the vertical axis indicates the tensile strength (MPa), 0.2% proof stress σ (MPa), elongation ε (%), and Vickers hardness Hv of various samples. It is a characteristic diagram which shows the result of having investigated (each load 1kg) about each correlation. The rolling rate was 70%. In the figure, the characteristic line B indicates the tensile strength, the characteristic line C indicates the 0.2% yield strength σ, the characteristic line D indicates the Vickers hardness Hv, and the characteristic line E indicates the elongation ε. As is clear from the figure, it was confirmed that the ductility recovered with the heating temperature at 70% rolled material, exceeded 6% at 550 ° C., and the temperature range where both the ductility and hardness were stable was 550 to 700 ° C., A material having a material hardness Hv of 290 to 320 and an elongation of 6 to 8% was obtained. At a temperature lower than 550 ° C., there is no decrease in the material hardness, but the ductility is not sufficiently recovered. At a temperature higher than 750 ° C., the ductility is recovered.
実施例2及び3の鋼種においても実施例1と同様の確認を行ったところ、安定した品質を得られる最終熱処理の加熱条件が550〜750℃の温度範囲にあり、そのときの機械的特性値(0.2%耐力、伸び)を図5中に黒丸プロットで示した。これに対して、組成が本発明の範囲に入っているものであっても製造条件(最終熱処理温度400〜550℃)が本発明の範囲から外れているものを比較例として図5中に白丸プロットで示した。また、圧延のままの機械的特性は従来例として図5中に白四角プロットで示した。
Also in the steel types of Examples 2 and 3, when the same confirmation as in Example 1 was performed, the heating conditions of the final heat treatment for obtaining stable quality were in the temperature range of 550 to 750 ° C., and the mechanical characteristic values at that time (0.2% proof stress, elongation) is shown by a black circle plot in FIG. On the other hand, even if the composition is in the range of the present invention, a white circle in FIG. 5 is used as a comparative example in which the manufacturing conditions (final
図5は、横軸に0.2%耐力σ(MPa)をとり、縦軸に伸びε(%)をとって、各種鋼板の0.2%耐力σと伸びεを調べた結果を示す特性図である。図中の黒丸は実施例(組成が本発明範囲内、最終熱処理温度が550〜750℃)、白丸は比較例(組成が本発明範囲内、最終熱処理温度が400〜550℃)、白四角は従来例(組成が本発明範囲内、圧延まま)の結果をそれぞれ示した。図中に引いた3本の線CL1,CL2,CL3は本発明鋼を従来鋼から区別するための区画線である。第1の臨界区画線CL1は0.2%耐力σが600MPaに対応している。第2の臨界区画線CL2は上記の式(1)に対応している。第3の臨界区画線CL3は上記の式(2)に対応している。図中の領域R1が従来例を含む比較例に、領域R2が本発明の実施例にそれぞれ該当する。 FIG. 5 shows the results of examining the 0.2% yield strength σ and the elongation ε of various steel sheets, with the horizontal axis representing 0.2% yield strength σ (MPa) and the vertical axis representing elongation ε (%). FIG. Black circles in the figure are examples (composition is within the range of the present invention, final heat treatment temperature is 550 to 750 ° C.), white circles are comparative examples (composition is within the range of the present invention, final heat treatment temperature is 400 to 550 ° C.), white squares are The results of conventional examples (composition within the scope of the present invention, as-rolled) are shown. Three lines CL1, CL2, CL3 drawn in the figure are partition lines for distinguishing the steel of the present invention from the conventional steel. The first critical marking line CL1 corresponds to a 0.2% yield strength σ of 600 MPa. The second critical marking line CL2 corresponds to the above formula (1). The third critical marking line CL3 corresponds to the above formula (2). A region R1 in the figure corresponds to a comparative example including a conventional example, and a region R2 corresponds to an example of the present invention.
(比較例)
表1の比較例1に示す化学組成の熱延鋼板を用い、30〜70%圧延率の冷間圧延を行い、各温度にて熱処理を行った後、素材硬さ測定及び引張試験にて0.2%耐力σと伸びεをそれぞれ評価した(図3、図4)。
(Comparative example)
Using a hot-rolled steel sheet having the chemical composition shown in Comparative Example 1 of Table 1 and performing cold rolling at a rolling rate of 30 to 70% and performing heat treatment at each temperature, the material hardness measurement and tensile test were 0. .2% yield strength σ and elongation ε were evaluated (FIGS. 3 and 4).
図3は、横軸に最終熱処理の加熱温度(℃)をとり、縦軸に各種サンプルのビッカース硬さHv(荷重1kg)をとって両者の相関について調べた結果を示す特性線図である。図中にて特性線F1(白丸)は圧延率30%、特性線F2(白三角)は圧延率50%、特性線F3(白四角)は圧延率70%の結果をそれぞれ示す。図から明らかなように、素材硬度は600℃付近から素材硬度が急激に変化し、圧延率によって軟化開始温度は若干変化するものの、全ての圧延率で700℃にてほぼ完全に軟化が終了した。 FIG. 3 is a characteristic diagram showing the results of investigating the correlation between the various samples with the heating temperature (° C.) of the final heat treatment on the horizontal axis and the Vickers hardness Hv (load 1 kg) of various samples on the vertical axis. In the figure, the characteristic line F1 (white circle) indicates the rolling rate of 30%, the characteristic line F2 (white triangle) indicates the rolling rate of 50%, and the characteristic line F3 (white square) indicates the rolling rate of 70%. As is apparent from the figure, the material hardness changes abruptly from around 600 ° C., and the softening start temperature slightly changes depending on the rolling rate, but softening is almost completely completed at 700 ° C. at all rolling rates. .
図4は、横軸に最終熱処理の加熱温度(℃)をとり、縦軸に各種サンプルの引張強度(MPa)、0.2%耐力σ(MPa)、伸びε(%)およびビッカース硬さHv(荷重1kg)をとって、それぞれの相関について調べた結果を示す特性線図である。圧延率70%の条件とした。図中にて特性線Mは引張強度、特性線Nは0.2%耐力σ、特性線Pはビッカース硬さHv、特性線Qは伸びεの結果をそれぞれ示す。図から明らかなように、70%圧延材にて延性は加熱温度とともに回復していくが軟化温度も顕著であり、500〜650℃の150℃の温度差で0.2%耐力は100MPa以上減少してしまい、Nb添加した実施例鋼を用いた実施例1に比べて品質安定性を得る加熱条件は400〜600℃までの温度範囲であった。 In FIG. 4, the horizontal axis indicates the heating temperature (° C.) of the final heat treatment, and the vertical axis indicates the tensile strength (MPa), 0.2% proof stress σ (MPa), elongation ε (%), and Vickers hardness Hv of various samples. It is a characteristic diagram which shows the result of having investigated (each load 1kg) about each correlation. The rolling rate was 70%. In the figure, the characteristic line M represents the tensile strength, the characteristic line N represents the 0.2% yield strength σ, the characteristic line P represents the Vickers hardness Hv, and the characteristic line Q represents the elongation ε. As is apparent from the figure, the ductility recovers with the heating temperature in the 70% rolled material, but the softening temperature is also remarkable, and the 0.2% proof stress decreases by 100 MPa or more at a temperature difference of 500 to 650 ° C. at 150 ° C. Therefore, the heating conditions for obtaining the quality stability as compared with Example 1 using the example steel to which Nb was added were in the temperature range of 400 to 600 ° C.
比較例2の鋼種において比較例1と同様の確認を行い、安定した品質を得られる加熱条件は600℃までであり、その時の機械的特性値(0.2%耐力σ、伸びε)及び圧延のままの機械的特性を図5中に白四角プロットで示した。 In the steel type of Comparative Example 2, the same confirmation as in Comparative Example 1 was performed, and the heating conditions for obtaining stable quality were up to 600 ° C., and the mechanical property values (0.2% yield strength σ, elongation ε) and rolling at that time The mechanical properties as they are are shown as white square plots in FIG.
本発明の成型ばね用フェライト系ステンレス鋼板は、各種の成型ばね等に使用される。 The ferritic stainless steel sheet for molded springs of the present invention is used for various molded springs.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005047357A JP4401307B2 (en) | 2005-02-23 | 2005-02-23 | Ferritic stainless steel sheet for molded spring and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005047357A JP4401307B2 (en) | 2005-02-23 | 2005-02-23 | Ferritic stainless steel sheet for molded spring and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006233250A true JP2006233250A (en) | 2006-09-07 |
JP4401307B2 JP4401307B2 (en) | 2010-01-20 |
Family
ID=37041241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005047357A Active JP4401307B2 (en) | 2005-02-23 | 2005-02-23 | Ferritic stainless steel sheet for molded spring and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4401307B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017090083A (en) * | 2015-11-04 | 2017-05-25 | 新日鐵住金株式会社 | Radiation thickness measuring device, and its calibration method |
-
2005
- 2005-02-23 JP JP2005047357A patent/JP4401307B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017090083A (en) * | 2015-11-04 | 2017-05-25 | 新日鐵住金株式会社 | Radiation thickness measuring device, and its calibration method |
Also Published As
Publication number | Publication date |
---|---|
JP4401307B2 (en) | 2010-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5709875B2 (en) | Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance | |
JP5376927B2 (en) | Manufacturing method of high proportional limit steel plate with excellent bending workability | |
CN111433382B (en) | Ferritic stainless steel having excellent high-temperature oxidation resistance and method for producing same | |
JP5720347B2 (en) | Cold rolled stainless steel sheet excellent in high temperature sag resistance and method for producing the same | |
JP4589747B2 (en) | Non-oriented electrical steel sheet with excellent magnetic properties, its manufacturing method and strain relief annealing method | |
JP2009068057A (en) | Steel sheet for nitrocarburizing treatment and manufacturing method therefor | |
CN104726789A (en) | Low-nickel containing stainless steels | |
JP5100144B2 (en) | Steel plate for spring, spring material using the same, and manufacturing method thereof | |
JP5206056B2 (en) | Manufacturing method of non-tempered steel | |
CN114040990A (en) | Austenitic stainless steel having improved strength and method for manufacturing the same | |
EP2527481B1 (en) | Quenched steel sheet having excellent hot press formability, and method for manufacturing same | |
JP6361402B2 (en) | Duplex stainless steel for spring and method for producing the same | |
JP4946617B2 (en) | Steel sheet for soft nitriding treatment and method for producing the same | |
JPH11241145A (en) | Austenitic stainless steel excellent in high temperature setting resistance and its production | |
JP4401307B2 (en) | Ferritic stainless steel sheet for molded spring and method for producing the same | |
KR101279051B1 (en) | Ferritic stainless steel and method for manufacturing the same | |
JP2002030346A (en) | METHOD FOR PRODUCING Cr-CONTAINING HEAT AND CORROSION RESISTANT STEEL SHEET EXCELLENT IN FORMABILITY | |
JP5534112B2 (en) | Hot-rolled steel sheet for cold rolling material and manufacturing method thereof | |
JP2019501286A (en) | Lean duplex stainless steel with improved corrosion resistance and workability and method for producing the same | |
JP6111109B2 (en) | Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same | |
JP2007302972A (en) | High-strength nonmagnetic stainless steel sheet superior in age hardening characteristics, and manufacturing method therefor | |
KR101035767B1 (en) | Hot-rolled steel sheet with good formability, and method for producing the same | |
KR102523533B1 (en) | Ferritic stainless steel with improved grain boundary erosion and its manufacturing method | |
US20230287549A1 (en) | Austenitic stainless steel with improved deep drawing | |
KR101166971B1 (en) | High hardness and high carbon steel with excellent burring workability and method of manufacturing the high carbon steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091020 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091027 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4401307 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |