JP5459175B2 - Steel sheet thickness measuring method, sheet thickness calculating device and program - Google Patents
Steel sheet thickness measuring method, sheet thickness calculating device and program Download PDFInfo
- Publication number
- JP5459175B2 JP5459175B2 JP2010242695A JP2010242695A JP5459175B2 JP 5459175 B2 JP5459175 B2 JP 5459175B2 JP 2010242695 A JP2010242695 A JP 2010242695A JP 2010242695 A JP2010242695 A JP 2010242695A JP 5459175 B2 JP5459175 B2 JP 5459175B2
- Authority
- JP
- Japan
- Prior art keywords
- thickness
- steel
- plate
- plate thickness
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Description
本発明は、鋼板の板厚方向に放射線を透過させて板厚を測定する鋼板の板厚測定方法、板厚演算装置及びプログラムに関する。 The present invention relates to a steel plate thickness measuring method, a plate thickness calculating apparatus, and a program for measuring a plate thickness by transmitting radiation in the thickness direction of the steel plate.
鋼板の熱間圧延ラインにおけるオンラインの厚み計として、放射線厚み計が用いられている。放射線厚み計は、被測厚物の厚み方向の一方から一定量の放射線を投射し、被測厚物の他方へ浸透した放射線量を測定して、その結果に応じて被測厚物の厚みを求めるものである。 A radiation thickness gauge is used as an online thickness gauge in a hot rolling line for steel sheets. The radiation thickness meter projects a certain amount of radiation from one side of the thickness of the measured object, measures the amount of radiation that has penetrated into the other of the measured object, and determines the thickness of the measured object according to the result. Is what you want.
この種の技術として、例えば特許文献1に開示されているものがある。ここで、まず放射線による板厚測定の測定原理について説明する。特許文献1にも記載されているように、鋼板に強度I0のγ線を照射し、その検出強度がIであるとすると(図10を参照)、鋼板の板厚Hは、下式(101)により求めることができる。
H=(1/μ)×(ln I0/I)・・・(101)
I0:放射線の透過前強度
I:放射線の透過後強度
μ:線吸収係数
As this type of technology, for example, there is one disclosed in
H = (1 / μ) × (ln I 0 / I) (101)
I 0 : Intensity before transmission of radiation I: Intensity after transmission of radiation μ: Linear absorption coefficient
また、線吸収係数μは、下式(102)により求めることができる。
μ=Σ(zμa/V)・・・(102)
μa:原子固有の線吸収係数
z:単位格子内の原子数
V:単位格子体積
Further, the linear absorption coefficient μ can be obtained by the following equation (102).
μ = Σ (zμ a / V) (102)
μ a : Intrinsic linear absorption coefficient z: Number of atoms in the unit cell V: Unit cell volume
特許文献1では、鋼板を透過した放射線量を計数して板厚を測定する方法において、鋼板の板厚を演算により算出するに際し、温度、成分組成、加工状態から鋼板内部温度分布、変態率(結晶構造)、熱による体積変化等を推定し、単位格子内の原子数、原子番号、単位格子の体積を決定する。その結果、線吸収係数が(102)式によって算出され、γ線による実測された放射線の透過量と線吸収係数とのもとに鋼板の板厚を測定する。
In
特許文献1では、温度、成分組成、加工状態から鋼板内部温度分布、変態率(結晶構造)、熱による体積変化等を推定する。この場合、各種モデル式を用いて板厚方向の温度分布予測計算や成分元素からの変態点予測計算等を行うことになるが、温度分布や組織形態をどの程度まで正確に予測できるようにモデル式を設定するかという難しい問題がある。厳密なモデル式を用いて演算を行うのが理想的ではあるが、モデル式をあまりに厳密にすることは現場においてオンラインで鋼板の板厚を測定する場合に現実的ではない。
In
本発明は上記のような点に鑑みてなされたものであり、鋼板の板厚を効率的かつ精度良く演算できるようにすることを目的とする。 This invention is made | formed in view of the above points, and it aims at enabling it to calculate the plate | board thickness of a steel plate efficiently and accurately.
本発明の鋼板の板厚測定方法は、熱延鋼板の仕上げ圧延工程後の板厚を対象として、鋼板の板厚方向に透過した放射線の検出結果に基づいて、所定の演算式を用いて該鋼板の板厚を演算する鋼板の板厚測定方法であって、
前記所定の演算式に用いられる所定の係数を、鋼種、板厚及び鋼板表面温度の層別に記憶する記憶手段を用いて、
測定対象の鋼板の鋼種、目標板厚及び鋼板表面温度に応じて前記記憶手段から所定の係数を選択し、前記所定の演算式を用いて板厚を演算し、
前記所定の演算式として、板厚をH、放射線の透過前強度をI0、放射線の透過後強度をI、線吸収係数をμ、補正値をCtとして、
H={(1/μ)×(ln I0/I)}×Ct
を用いて、測定対象の鋼板の板厚を演算し、
前記記憶手段には、検査工程の冷間状態にある鋼板の板厚を実測し、その板厚と前記所定の演算式を用いて演算した板厚とから補正値C t を再計算して、鋼種、板厚及び鋼板表面温度の層別に記憶されることを特徴とする。なお、鋼板表面温度は、計算値でも実測値でもよい。
本発明の鋼板の板厚演算装置は、熱延鋼板の仕上げ圧延工程後の板厚を対象として、鋼板の板厚方向に透過した放射線の検出結果に基づいて、所定の演算式を用いて該鋼板の板厚を演算する鋼板の板厚演算装置であって、
測定対象の鋼板の鋼種、目標板厚及び鋼板表面温度を入力する入力手段と、
前記所定の演算式に用いられる所定の係数を、鋼種、板厚及び鋼板表面温度の層別に記憶する記憶手段と、
前記入力手段により入力された前記測定対象の鋼板の鋼種、目標板厚及び鋼板表面温度に応じて前記記憶手段から所定の係数を選択し、前記所定の演算式を用いて板厚を演算する板厚演算手段とを備え、
前記所定の演算式として、板厚をH、放射線の透過前強度をI0、放射線の透過後強度をI、線吸収係数をμ、補正値をCtとして、
H={(1/μ)×(ln I0/I)}×Ct
を用いて、測定対象の鋼板の板厚を演算し、
前記記憶手段には、検査工程の冷間状態にある鋼板の板厚を実測し、その板厚と前記所定の演算式を用いて演算した板厚とから補正値C t を再計算して、鋼種、板厚及び鋼板表面温度の層別に記憶されることを特徴とする。
本発明のプログラムは、熱延鋼板の仕上げ圧延工程後の板厚を対象として、鋼板の板厚方向に透過した放射線の検出結果に基づいて、所定の演算式を用いて該鋼板の板厚を演算する処理をコンピュータに実行させるためのプログラムであって、
測定対象の鋼板の鋼種、目標板厚及び鋼板表面温度を入力する入力手段と、
前記所定の演算式に用いられる所定の係数を、鋼種、板厚及び鋼板表面温度の層別に記憶する記憶手段と、
前記入力手段により入力された前記測定対象の鋼板の鋼種、目標板厚及び鋼板表面温度に応じて前記記憶手段から所定の係数を選択し、前記所定の演算式を用いて板厚を演算する板厚演算手段としてコンピュータを機能させ、
前記所定の演算式として、板厚をH、放射線の透過前強度をI0、放射線の透過後強度をI、線吸収係数をμ、補正値をCtとして、
H={(1/μ)×(ln I0/I)}×Ct
を用いて、測定対象の鋼板の板厚を演算し、
前記記憶手段には、検査工程の冷間状態にある鋼板の板厚を実測し、その板厚と前記所定の演算式を用いて演算した板厚とから補正値C t を再計算して、鋼種、板厚及び鋼板表面温度の層別に記憶されることを特徴とする。
The method for measuring the thickness of a steel sheet according to the present invention is based on the detection result of radiation transmitted in the sheet thickness direction of the steel sheet for the thickness after the finish rolling process of the hot-rolled steel sheet , using a predetermined arithmetic expression. A method for measuring the thickness of a steel sheet to calculate the thickness of the steel sheet,
Using storage means for storing the predetermined coefficient used in the predetermined arithmetic expression for each layer of steel type, sheet thickness, and steel sheet surface temperature,
Select a predetermined coefficient from the storage means according to the steel type of the steel plate to be measured, the target plate thickness and the steel plate surface temperature, calculate the plate thickness using the predetermined calculation formula,
As the predetermined arithmetic expression, the plate thickness is H, the intensity before transmission of radiation is I 0 , the intensity after transmission of radiation is I, the linear absorption coefficient is μ, and the correction value is C t ,
H = {(1 / μ) × (ln I 0 / I)} × C t
To calculate the thickness of the steel plate to be measured ,
In the storage means, the plate thickness of the steel plate in the cold state of the inspection process is measured, and the correction value C t is recalculated from the plate thickness and the plate thickness calculated using the predetermined arithmetic expression , It is memorized according to the grade of steel grade, plate thickness and steel plate surface temperature . The steel sheet surface temperature may be a calculated value or an actually measured value.
The steel sheet thickness calculation device of the present invention is directed to the sheet thickness after the finish rolling step of the hot-rolled steel sheet , based on the detection result of radiation transmitted in the sheet thickness direction of the steel sheet, using a predetermined calculation formula. A steel sheet thickness calculator for calculating the thickness of a steel sheet,
Input means for inputting the steel type, target plate thickness and steel plate surface temperature of the steel plate to be measured;
Storage means for storing a predetermined coefficient used in the predetermined arithmetic expression for each layer of steel type, sheet thickness, and steel sheet surface temperature;
A plate that selects a predetermined coefficient from the storage unit according to the steel type, target plate thickness, and steel plate surface temperature of the steel plate to be measured input by the input unit, and calculates the plate thickness using the predetermined calculation formula A thickness calculating means,
As the predetermined arithmetic expression, the plate thickness is H, the intensity before transmission of radiation is I 0 , the intensity after transmission of radiation is I, the linear absorption coefficient is μ, and the correction value is C t ,
H = {(1 / μ) × (ln I 0 / I)} × C t
To calculate the thickness of the steel plate to be measured ,
In the storage means, the plate thickness of the steel plate in the cold state of the inspection process is measured, and the correction value C t is recalculated from the plate thickness and the plate thickness calculated using the predetermined arithmetic expression , It is memorized according to the grade of steel grade, plate thickness and steel plate surface temperature .
The program of the present invention targets the thickness of the hot-rolled steel sheet after the finish rolling process, and based on the detection result of the radiation transmitted in the thickness direction of the steel sheet, the thickness of the steel sheet is determined using a predetermined arithmetic expression. A program for causing a computer to execute a calculation process,
Input means for inputting the steel type, target plate thickness and steel plate surface temperature of the steel plate to be measured;
Storage means for storing a predetermined coefficient used in the predetermined arithmetic expression for each layer of steel type, sheet thickness, and steel sheet surface temperature;
A plate that selects a predetermined coefficient from the storage unit according to the steel type, target plate thickness, and steel plate surface temperature of the steel plate to be measured input by the input unit, and calculates the plate thickness using the predetermined calculation formula Let the computer function as a thickness calculator,
As the predetermined arithmetic expression, the plate thickness is H, the intensity before transmission of radiation is I 0 , the intensity after transmission of radiation is I, the linear absorption coefficient is μ, and the correction value is C t ,
H = {(1 / μ) × (ln I 0 / I)} × C t
To calculate the thickness of the steel plate to be measured ,
In the storage means, the plate thickness of the steel plate in the cold state of the inspection process is measured, and the correction value C t is recalculated from the plate thickness and the plate thickness calculated using the predetermined arithmetic expression , It is memorized according to the grade of steel grade, plate thickness and steel plate surface temperature .
本発明によれば、鋼板の板厚を演算する演算式に用いられる所定の係数を、鋼種、板厚及び鋼板表面温度の層別に記憶しておき、そこから選択するようにしたので、鋼板の板厚を効率的かつ精度良く演算することができる。 According to the present invention, the predetermined coefficient used in the calculation formula for calculating the plate thickness of the steel sheet is stored for each layer of the steel type, the plate thickness, and the steel sheet surface temperature, and is selected from there. The plate thickness can be calculated efficiently and accurately.
以下、添付図面を参照して、本発明の好適な実施形態について説明する。
図1は、本実施形態に係る鋼板の板厚測定システムの構成を示す図である。図1に示すように、仕上げ圧延機2による仕上げ圧延後の熱延鋼板1(以下、単に鋼板1と称する)の板厚を測定すべく、適宜な位置において鋼板1を挟んで上下に、γ線源となる放射線源3と、放射線源3から放射されて鋼板1を透過したγ線を受ける放射線量検出器4とが配設されている。図示例では、Cフレームにより3組の放射線源3及び放射線量検出器4が保持されている。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a diagram illustrating a configuration of a steel plate thickness measurement system according to the present embodiment. As shown in FIG. 1, in order to measure the thickness of a hot-rolled steel sheet 1 (hereinafter simply referred to as “
また、仕上げ圧延機2による仕上げ圧延後の鋼板1の表面温度を実測する温度計5が配設されている。
In addition, a thermometer 5 for measuring the surface temperature of the
図1に示したように放射線(γ線)により板厚を測定する場合に、その測定精度、ここでは該鋼板1の検査工程(冷間状態)でのレーザによる板厚測定との誤差は、厚み出しの前提となるため歩留、直行率に直結する重要な課題である。本実施形態では、放射線による板厚測定の測定精度を向上させる、すなわち該鋼板1の検査工程でのレーザによる板厚測定との誤差を小さくするために、以下に述べる構成を採用している。
As shown in FIG. 1, when measuring the plate thickness by radiation (γ rays), the measurement accuracy, here, the error from the plate thickness measurement by laser in the inspection process (cold state) of the
板厚演算装置100において、101は入力部であり、放射線源3及び放射線量検出器4による検出結果(放射線の減衰比I0/I)、鋼板1の出鋼グレード、目標板厚及び温度計5による測定表面温度を入力する。出鋼グレードとは、鋼板1の成分(C、Mn、Si、Nb)の組成をパターン分類したもので、鋼種を表す情報である。
In the plate
102は板厚演算部であり、鋼板1の板厚Hを、補正値Ct[%]を用いて、下式(1)により演算する。下式(1)は、基準用マスターピースにて校正された板厚演算基本式を補正値Ctで補正するものである。
H={(1/μ)×(ln I0/I)}×Ct・・・(1)
A plate
H = {(1 / μ) × (ln I 0 / I)} × C t (1)
103は記憶部であり、板厚演算部102での演算に用いられる補正値Ctを、実績に基づいて、出鋼グレード、板厚及び鋼板表面温度の層別にテーブル化して記憶する。テーブルに設定されている各補正値Ctは書き換え可能となっており、後述するように実績に基づいて逐次書き換えられる。板厚演算部102は、鋼板1の板厚演算に際して、入力部101で入力された測定対象の鋼板1の出鋼グレード、目標板厚及び測定表面温度を記憶部103のテーブルに照らし合わせて補正値Ctを選択する。
103 is a storage unit, a correction value C t employed for the calculation of the plate thickness
104は出力部であり、例えば板厚演算部102で演算された鋼板1の板厚Hを不図示の表示装置に出力して表示させる。
An output unit 104 outputs, for example, the plate thickness H of the
次に、記憶部103に記憶する補正値Ctの詳細を説明する。ある出鋼グレード、目標板厚及び測定表面温度の鋼板1について、記憶部103に現在設定されている補正値Ctを用いて、上式(1)により板厚Hを求めたとする。その後、該鋼板1の検査工程(冷間状態)でレーザによる板厚測定を行い、板厚HRを求める。
Next, details of the correction value C t stored in the
この場合、放射線による板厚測定と、検査工程でのレーザによる板厚測定との誤差をなくすためには、下式(2)で表される補正値Ct´(真の補正値と称する)を用いるのが望ましかったといえる。
Ct´=(HR/H)×Ct・・・(2)
In this case, in order to eliminate an error between the plate thickness measurement by radiation and the plate thickness measurement by laser in the inspection process, a correction value C t ′ (referred to as a true correction value) represented by the following equation (2). It can be said that it was desirable to use.
C t ′ = (H R / H) × C t (2)
この考え方により、実績に基づいて、記憶部103に現在設定されている補正値Ctを真の補正値Ct´を用いて書き換えていく。具体的には、例えば一定期間、検査工程を終えた各鋼板1について、出鋼グレード、板厚、放射線による板厚測定時の測定表面温度、及び、上式(2)により求めた真の補正値Ct´を保存しておく。図2は、ある出鋼グレード及びある板厚範囲に属する鋼板について、圧延温度(放射線による板厚測定時の測定表面温度)と補正値との関係の例を示す特性図である。このように一定期間で得られた真の補正値Ct´(図中の■)を、出鋼グレード、板厚及び測定表面温度の層別に平均化する等して新補正値Ctnew(図中の△)を求めて、記憶部103に現在設定されている補正値Ctを書き換える。
Based on this idea, the correction value C t currently set in the
ここで、補正値Ctを出鋼グレードの層別に分けるのは、主に成分変化による変態点影響を考慮するためである。図3には、同一厚みの2種類の出鋼グレードの鋼板にて補正値をシミュレーション実施した結果(鋼板表面温度と計算補正値との特性図)を示す。図3からも、成分変化による変態点変化の影響は大きいことがわかる。補正値Ctを出鋼グレードに層別することで、成分変化による変態点変化の影響を表現することができる。なお、出鋼グレードの層別数は、数が多ければ成分変化による変態点変化の影響をより細やかに表現することができるが、限定されるものではない。 Here, the reason why the correction value C t is divided into the steelmaking grade layers is mainly to consider the influence of the transformation point due to the component change. FIG. 3 shows the result of the simulation of the correction value (characteristic diagram of the steel plate surface temperature and the calculated correction value) for two types of steelmaking grade steel plates having the same thickness. FIG. 3 also shows that the influence of the transformation point change due to the component change is great. The correction value C t By stratifying the tapping grade, it is possible to express the influence of the transformation point changes due to component change. It should be noted that the number of steelmaking grades by layer can be expressed more precisely by the transformation point change due to the component change if the number is large, but is not limited.
また、補正値Ctを板厚の層別に分けるのは、主に相変態による密度変化の影響、換言すれば板厚による内部温度差を考慮するためである。図4には、合金成分影響、相変態影響、熱膨張影響による厚み変化量を試算した結果(鋼板表面温度と厚み変化量との特性図)を示す。図4に示すように、合金成分による線吸収変化影響は小さいが、熱膨張による影響や相変態による影響は大きいことがわかる。 Also, separate the correction value C t by the thickness of the layer, the influence of density variations due primarily to phase transformation, in order to consider the internal temperature difference due to the thickness in other words. FIG. 4 shows the results of trial calculation of thickness variation due to alloy component influence, phase transformation influence, and thermal expansion effect (characteristic diagram of steel plate surface temperature and thickness variation). As shown in FIG. 4, it can be seen that the effect of linear absorption change due to the alloy component is small, but the effect due to thermal expansion and the effect due to phase transformation are large.
鋼板では、変態点(変態温度)以上ではγ(ガンマ)鉄とよばれる面心立方格子構造(FCC)となり、変態点を下回るとα鉄とよばれる体心立方格子構造(BCC)となる。図5に示すように、放射線による板厚測定時の測定温度は表面温度であるが、実際には板厚によって内部温度が異なり、γ相とα相の混相状態になっていると考えられる。 A steel sheet has a face-centered cubic lattice structure (FCC) called γ (gamma) iron above the transformation point (transformation temperature), and a body-centered cubic lattice structure (BCC) called α-iron below the transformation point. As shown in FIG. 5, the measurement temperature at the time of measuring the plate thickness by radiation is the surface temperature, but the internal temperature actually varies depending on the plate thickness, and it is considered that the γ phase and α phase are mixed.
図6は、板厚12mmの鋼板における鋼板表面温度と厚み変化量及びα分率との特性図である。図6に示すように、相変態(γ鉄→α鉄)が進行するにつれて密度が減少し、板厚が厚くなる傾向となる。このようにα相とγ相の体積分率により板厚方向の密度は変化するので、設定すべき補正値Ctも異なるはずである。 FIG. 6 is a characteristic diagram of the steel sheet surface temperature, thickness variation, and α fraction in a steel sheet having a thickness of 12 mm. As shown in FIG. 6, as the phase transformation (γ iron → α iron) proceeds, the density decreases and the plate thickness tends to increase. As described above, since the density in the thickness direction varies depending on the volume fraction of the α phase and the γ phase, the correction value C t to be set should be different.
図7(a)は各種板厚における鋼板表面温度とα分率との特性図、(b)は鋼板表面温度と計算補正値との特性図である。板厚が厚いほど、表面と中心部との温度差は大きくなるため、図7(a)に示すように、相変態(γ鉄→α鉄)の進行速度が遅くなる。したがって、図7(b)に示すように、板厚が厚いほど、鋼板表面温度に対する補正値Ctの勾配ΔCtを小さくする必要がある。 FIG. 7A is a characteristic diagram of the steel sheet surface temperature and α fraction at various plate thicknesses, and FIG. 7B is a characteristic diagram of the steel sheet surface temperature and the calculation correction value. As the plate thickness increases, the temperature difference between the surface and the central portion increases, so that the progress rate of the phase transformation (γ iron → α iron) becomes slower as shown in FIG. Therefore, as shown in FIG. 7B, it is necessary to decrease the gradient ΔC t of the correction value C t with respect to the steel sheet surface temperature as the plate thickness increases.
以上のように補正値Ctを板厚に層別することで、厚手と薄手による補正値の差を表現することができ、相変態による密度変化の影響を表現することができる。なお、板厚の層別数は、数が多ければ相変態による密度変化の影響をより細やかに表現することができるが、限定されるものではない。 By stratifying the correction value C t in the plate thickness as described above, it is possible to express the difference between the correction value by thick and thin, it is possible to express the influence of density change due to phase transformation. It should be noted that the number of plate thicknesses by layer can be expressed more finely by the density change due to phase transformation if the number is large, but is not limited.
また、補正値Ctを表面温度の層別に分ける場合に細分化することにより、特に薄手における変態後の密度変化を考慮することができる。図8には、ある出鋼グレードに属する3種類の板厚(8mm、12mm、20mm)の鋼板について、補正値Ctを鋼種2層別及び鋼板表面温度11層別で層別した補正値を用いて、放射線により板厚を測定した後、上式(2)で表される真の補正値を求めた特性図である。同図に示すように、薄手の低温領域において真の補正値が増加する傾向が確認される。これは変態後の密度変化の影響によるものと考えられ、鋼板表面温度の層別を細分化することにより薄手における変態後の密度変化を考慮することができる。 Further, by subdividing the correction value Ct for each layer of the surface temperature, it is possible to take into account the density change after transformation particularly in thin. FIG. 8 shows correction values obtained by classifying correction values C t by two steel types and by steel plate surface temperature by 11 layers for steel plates of three types (8 mm, 12 mm, and 20 mm) belonging to a certain steel output grade. FIG. 5 is a characteristic diagram in which a true correction value represented by the above equation (2) is obtained after measuring the plate thickness by radiation. As shown in the figure, the tendency that the true correction value increases in the thin low temperature region is confirmed. This is considered to be due to the influence of the density change after the transformation, and the density change after the transformation in the thin state can be taken into consideration by subdividing the stratification of the steel sheet surface temperature.
図9(a)、(b)には、ある出鋼グレード及びある板厚範囲に属する鋼板について、補正値Ctを鋼種2層別及び鋼板表面温度11層別で層別した実績例(比較例)と、補正値Ctを出鋼グレード10層別、鋼板表面温度20層別及び板厚9層別で層別してシミュレーションした例(本発明例)とにおける放射線測定とレーザ測定との公差余裕を示す。同図に示すように、鋼種及び鋼板表面温度の層別を細分化するとともに板厚でも層別した本発明例の方が、放射線により板厚を測定する場合に、検査工程でのレーザによる板厚測定との誤差を小さくなっていることがわかる。 FIG. 9 (a), the (b), the steel sheet belonging to a tapping grades and some thickness range, actual examples (comparison stratified correction value C t in grades two layers by and the steel sheet surface temperature 11 layers by and example), the correction value C t the tapped grade 10 layers by, tolerance allowance of radiation measurement and the laser measurement in the example of simulation stratified at the steel sheet surface temperature of 20 layers by and thickness nine layers by (invention example) Indicates. As shown in the figure, when the plate thickness is measured by radiation in the case of the present invention in which the steel grade and the steel plate surface temperature are subdivided and the plate thickness is also stratified, the laser plate in the inspection process is used. It can be seen that the error from the thickness measurement is reduced.
なお、上記実施形態では、式(1)の補正値Ctを出鋼グレード、板厚及び鋼板表面温度の層別にテーブル化する例を説明したが、補正値Ctを用いずに、式(101)の線吸収係数μを出鋼グレード、板厚及び鋼板表面温度の層別にテーブル化するようにしてもよい。 Note that in the above embodiment, tapping grade correction value C t of formula (1) has been described an example of a table by a layer of thickness and the steel sheet surface temperature, without using the correction value C t, the formula ( 101) may be tabulated for each layer of steel output grade, plate thickness, and steel plate surface temperature.
本発明を適用した板厚演算装置100は、具体的にはCPU、メモリ(ROM、RAM等)を備えたコンピュータシステムにより構成することができる。この場合、CPUがROM等に記憶された板厚演算プログラムを実行することによって、上述した板厚演算装置100における処理が実現される。
The plate
1:鋼板
2:仕上げ圧延機
3:放射線源
4:放射線量検出器
5:温度計
100:板厚演算装置
101:入力部
102:板厚演算部
103:記憶部
104:出力部
1: Steel plate 2: Finish rolling mill 3: Radiation source 4: Radiation dose detector 5: Thermometer 100: Plate thickness calculator 101: Input unit 102: Plate thickness calculator 103: Storage unit 104: Output unit
Claims (3)
前記所定の演算式に用いられる所定の係数を、鋼種、板厚及び鋼板表面温度の層別に記憶する記憶手段を用いて、
測定対象の鋼板の鋼種、目標板厚及び鋼板表面温度に応じて前記記憶手段から所定の係数を選択し、前記所定の演算式を用いて板厚を演算し、
前記所定の演算式として、板厚をH、放射線の透過前強度をI0、放射線の透過後強度をI、線吸収係数をμ、補正値をCtとして、
H={(1/μ)×(ln I0/I)}×Ct
を用いて、測定対象の鋼板の板厚を演算し、
前記記憶手段には、検査工程の冷間状態にある鋼板の板厚を実測し、その板厚と前記所定の演算式を用いて演算した板厚とから補正値C t を再計算して、鋼種、板厚及び鋼板表面温度の層別に記憶されることを特徴とする鋼板の板厚測定方法。 The thickness of the steel sheet for calculating the thickness of the steel sheet using a predetermined calculation formula based on the detection result of the radiation transmitted in the thickness direction of the steel sheet for the thickness after the finish rolling process of the hot rolled steel sheet. A measuring method,
Using storage means for storing the predetermined coefficient used in the predetermined arithmetic expression for each layer of steel type, sheet thickness, and steel sheet surface temperature,
Select a predetermined coefficient from the storage means according to the steel type of the steel plate to be measured, the target plate thickness and the steel plate surface temperature, calculate the plate thickness using the predetermined calculation formula,
As the predetermined arithmetic expression, the plate thickness is H, the intensity before transmission of radiation is I 0 , the intensity after transmission of radiation is I, the linear absorption coefficient is μ, and the correction value is C t ,
H = {(1 / μ) × (ln I 0 / I)} × C t
To calculate the thickness of the steel plate to be measured ,
In the storage means, the plate thickness of the steel plate in the cold state of the inspection process is measured, and the correction value C t is recalculated from the plate thickness and the plate thickness calculated using the predetermined arithmetic expression , A method for measuring the thickness of a steel sheet, wherein the steel grade, the thickness, and the surface temperature of the steel sheet are stored for each layer .
測定対象の鋼板の鋼種、目標板厚及び鋼板表面温度を入力する入力手段と、
前記所定の演算式に用いられる所定の係数を、鋼種、板厚及び鋼板表面温度の層別に記憶する記憶手段と、
前記入力手段により入力された前記測定対象の鋼板の鋼種、目標板厚及び鋼板表面温度に応じて前記記憶手段から所定の係数を選択し、前記所定の演算式を用いて板厚を演算する板厚演算手段とを備え、
前記所定の演算式として、板厚をH、放射線の透過前強度をI0、放射線の透過後強度をI、線吸収係数をμ、補正値をCtとして、
H={(1/μ)×(ln I0/I)}×Ct
を用いて、測定対象の鋼板の板厚を演算し、
前記記憶手段には、検査工程の冷間状態にある鋼板の板厚を実測し、その板厚と前記所定の演算式を用いて演算した板厚とから補正値C t を再計算して、鋼種、板厚及び鋼板表面温度の層別に記憶されることを特徴とする鋼板の板厚演算装置。 The thickness of the steel sheet for calculating the thickness of the steel sheet using a predetermined calculation formula based on the detection result of the radiation transmitted in the thickness direction of the steel sheet for the thickness after the finish rolling process of the hot rolled steel sheet. An arithmetic unit,
Input means for inputting the steel type, target plate thickness and steel plate surface temperature of the steel plate to be measured;
Storage means for storing a predetermined coefficient used in the predetermined arithmetic expression for each layer of steel type, sheet thickness, and steel sheet surface temperature;
A plate that selects a predetermined coefficient from the storage unit according to the steel type, target plate thickness, and steel plate surface temperature of the steel plate to be measured input by the input unit, and calculates the plate thickness using the predetermined calculation formula A thickness calculating means,
As the predetermined arithmetic expression, the plate thickness is H, the intensity before transmission of radiation is I 0 , the intensity after transmission of radiation is I, the linear absorption coefficient is μ, and the correction value is C t ,
H = {(1 / μ) × (ln I 0 / I)} × C t
To calculate the thickness of the steel plate to be measured ,
In the storage means, the plate thickness of the steel plate in the cold state of the inspection process is measured, and the correction value C t is recalculated from the plate thickness and the plate thickness calculated using the predetermined arithmetic expression , A steel plate thickness calculation device , wherein the steel grade, the plate thickness, and the steel plate surface temperature are stored for each layer .
測定対象の鋼板の鋼種、目標板厚及び鋼板表面温度を入力する入力手段と、
前記所定の演算式に用いられる所定の係数を、鋼種、板厚及び鋼板表面温度の層別に記憶する記憶手段と、
前記入力手段により入力された前記測定対象の鋼板の鋼種、目標板厚及び鋼板表面温度に応じて前記記憶手段から所定の係数を選択し、前記所定の演算式を用いて板厚を演算する板厚演算手段としてコンピュータを機能させ、
前記所定の演算式として、板厚をH、放射線の透過前強度をI0、放射線の透過後強度をI、線吸収係数をμ、補正値をCtとして、
H={(1/μ)×(ln I0/I)}×Ct
を用いて、測定対象の鋼板の板厚を演算し、
前記記憶手段には、検査工程の冷間状態にある鋼板の板厚を実測し、その板厚と前記所定の演算式を用いて演算した板厚とから補正値C t を再計算して、鋼種、板厚及び鋼板表面温度の層別に記憶されることを特徴とするプログラム。 For the thickness of the hot rolled steel sheet after the finish rolling process , based on the detection result of the radiation transmitted in the thickness direction of the steel sheet, the computer calculates the thickness of the steel sheet using a predetermined arithmetic expression. A program for executing the program,
Input means for inputting the steel type, target plate thickness and steel plate surface temperature of the steel plate to be measured;
Storage means for storing a predetermined coefficient used in the predetermined arithmetic expression for each layer of steel type, sheet thickness, and steel sheet surface temperature;
A plate that selects a predetermined coefficient from the storage unit according to the steel type, target plate thickness, and steel plate surface temperature of the steel plate to be measured input by the input unit, and calculates the plate thickness using the predetermined calculation formula Let the computer function as a thickness calculator,
As the predetermined arithmetic expression, the plate thickness is H, the intensity before transmission of radiation is I 0 , the intensity after transmission of radiation is I, the linear absorption coefficient is μ, and the correction value is C t ,
H = {(1 / μ) × (ln I 0 / I)} × C t
To calculate the thickness of the steel plate to be measured ,
In the storage means, the plate thickness of the steel plate in the cold state of the inspection process is measured, and the correction value C t is recalculated from the plate thickness and the plate thickness calculated using the predetermined arithmetic expression , A program that is stored for each grade of steel type, plate thickness, and steel plate surface temperature .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010242695A JP5459175B2 (en) | 2010-10-28 | 2010-10-28 | Steel sheet thickness measuring method, sheet thickness calculating device and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010242695A JP5459175B2 (en) | 2010-10-28 | 2010-10-28 | Steel sheet thickness measuring method, sheet thickness calculating device and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012093314A JP2012093314A (en) | 2012-05-17 |
JP5459175B2 true JP5459175B2 (en) | 2014-04-02 |
Family
ID=46386788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010242695A Active JP5459175B2 (en) | 2010-10-28 | 2010-10-28 | Steel sheet thickness measuring method, sheet thickness calculating device and program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5459175B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6641898B2 (en) * | 2015-11-04 | 2020-02-05 | 日本製鉄株式会社 | Radiation thickness measuring device and its calibration method |
JP7298577B2 (en) * | 2020-10-01 | 2023-06-27 | Jfeスチール株式会社 | Plate thickness calculation method, plate thickness control method, plate material manufacturing method, plate thickness calculation device, and plate thickness control device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5847243A (en) * | 1981-09-16 | 1983-03-18 | Sumitomo Metal Ind Ltd | Method of and apparatus for monitoring phase modification of steel |
JPH0743138A (en) * | 1993-07-26 | 1995-02-10 | Nippon Steel Corp | Radiographic detector and method therefor |
JP3224466B2 (en) * | 1994-01-17 | 2001-10-29 | 新日本製鐵株式会社 | Method of measuring steel sheet thickness by radiation |
JP2002296022A (en) * | 2001-03-29 | 2002-10-09 | Anritsu Corp | Mass measuring method by x-ray and x-ray mass measuring instrument |
JP4686924B2 (en) * | 2001-07-25 | 2011-05-25 | Jfeスチール株式会社 | Thickness measuring method, thickness measuring device and thickness control method for hot rolled steel sheet |
-
2010
- 2010-10-28 JP JP2010242695A patent/JP5459175B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012093314A (en) | 2012-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis | |
CN103418618B (en) | Performance feed-forward thickness control method for continuous cold rolling mill | |
JP5003483B2 (en) | Material prediction and material control device for rolling line | |
JP2013150990A (en) | Apparatus and method of controlling hot rolling mill for thin plate | |
Hu et al. | Prediction of forming limits for anisotropic materials with nonlinear strain paths by an instability approach | |
CN104001730A (en) | Target board shape setting method | |
CN106540968A (en) | The compensation method of cold rolled sheet shape measured value and device | |
CN104930993B (en) | A kind of X-ray thickness gauge scaling method | |
JP5459175B2 (en) | Steel sheet thickness measuring method, sheet thickness calculating device and program | |
Ševčík et al. | The effect of constraint level on a crack path | |
JP2007245204A (en) | Learning method for rolling-load model and device therefor | |
Li et al. | Prediction of energy-related carbon emission intensity in China, America, India, Russia, and Japan using a novel self-adaptive grey generalized Verhulst model | |
JP2014018844A (en) | Heat transfer coefficient predictor for steel material and cooling control method | |
CN102397886A (en) | System for correcting plate detection error due to transverse temperature difference of cold-rolled strip | |
Han et al. | A mathematical model for longitudinal temperature evolution in strip deformation zone during cold rolling | |
CN110307910A (en) | A kind of walking beam reheating furnace steel billet temperature acquisition methods and device | |
Bambach et al. | Modeling steel rolling processes by fluid-like differential equations | |
CN109522677A (en) | A method of for the temperature controlled strip cross section layered method of hot-strip | |
CN102366760B (en) | Method for online decoupling through adjustment and control efficacy coefficients of cold-rolled steel strip plate-shape control actuator | |
JP7298577B2 (en) | Plate thickness calculation method, plate thickness control method, plate material manufacturing method, plate thickness calculation device, and plate thickness control device | |
JPH07208965A (en) | Measuring method for plate thickness of steel plate by radiation | |
CN104785545A (en) | Comprehensive measurement signal processing method and device for contact type plate-shaped roller | |
KR20130119649A (en) | Apparatus and method of controlling coiling temperature of hot rolled steel plate using in-plate learning | |
JP6627609B2 (en) | Cooling control method and cooling device | |
JPH1068705A (en) | Method and device for measuring transformation ratio of steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130917 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131230 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5459175 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |