JP2014018844A - Heat transfer coefficient predictor for steel material and cooling control method - Google Patents

Heat transfer coefficient predictor for steel material and cooling control method Download PDF

Info

Publication number
JP2014018844A
JP2014018844A JP2012161906A JP2012161906A JP2014018844A JP 2014018844 A JP2014018844 A JP 2014018844A JP 2012161906 A JP2012161906 A JP 2012161906A JP 2012161906 A JP2012161906 A JP 2012161906A JP 2014018844 A JP2014018844 A JP 2014018844A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer coefficient
prediction
cooling
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012161906A
Other languages
Japanese (ja)
Other versions
JP5962290B2 (en
Inventor
Hiroyasu Shigemori
弘靖 茂森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012161906A priority Critical patent/JP5962290B2/en
Publication of JP2014018844A publication Critical patent/JP2014018844A/en
Application granted granted Critical
Publication of JP5962290B2 publication Critical patent/JP5962290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly accurately predict a heat transfer coefficient between steel material and a cooling medium in advance before the steel material reaches a cooling process.SOLUTION: A similarity degree calculation part 10a calculates similarity degree Wbetween a cooling condition x to be predicted and each of multiple cooling conditions xstored in an actual result database 4. A prediction formula creation part 10b creates a prediction model indicating the relation between the cooling condition x and a heat transfer coefficient y, using data of the cooling conditions xstored in the actual result database 4, and determines a model parameter of the prediction model, by solving an optimization problem with an evaluation function for evaluating a prediction error of the prediction model, having, as weights, the similarity degree Wcalculated by the similarity degree calculation part 10a. A heat transfer coefficient prediction part 10c predicts the heat transfer coefficient y when steel material is cooled under the cooling condition x to be predicted, by inputting the cooling condition x to be predicted into the prediction model created by the prediction formula creation part 10b.

Description

本発明は、鋼材と冷却媒体との間の熱伝達係数を予測する鋼材の熱伝達係数予測装置、及びこの熱伝達係数予測装置によって予測された鋼材と冷却媒体との間の熱伝達係数に基づいて鋼材の冷却条件を制御する鋼材の冷却制御方法に関するものである。   The present invention is based on a heat transfer coefficient prediction device for a steel material that predicts a heat transfer coefficient between the steel material and the cooling medium, and a heat transfer coefficient between the steel material and the cooling medium predicted by the heat transfer coefficient prediction device. The present invention relates to a cooling control method for a steel material for controlling the cooling condition of the steel material.

一般に、鋼材の製品品質は、製鋼プロセスにおいて化学成分が調整され、圧延プロセスにおいて加熱工程、圧延工程、及び冷却工程が行われることによって作りこまれる。硬度等の材質特性値は鋼材の製品品質の中で最も重要な品質指標である。鋼材の製品品質を一定にするためには、化学成分や圧延プロセスの加熱工程、圧延工程、及び冷却工程の条件を常に目標値通りに制御すればよい。これらの条件の中でも、特に圧延プロセスの最終段である冷却工程出側の鋼材温度は鋼材の製品品質に大きく影響する。しかしながら、冷却工程出側の鋼材温度は外乱によって目標値通りにならないことが多い。冷却工程出側の鋼材温度に対する最も大きい外乱は、冷却工程における鋼材表面と冷却媒体との間の熱伝達係数の変化である。このため、この熱伝達係数を精度良く予測することは品質管理及び品質制御上非常に重要である。   Generally, the product quality of a steel material is made by adjusting chemical components in a steelmaking process and performing a heating process, a rolling process, and a cooling process in the rolling process. Material characteristic values such as hardness are the most important quality indicators in the product quality of steel materials. In order to make the product quality of the steel material constant, the chemical composition and the conditions of the heating process, rolling process, and cooling process of the rolling process may be controlled according to the target values at all times. Among these conditions, the steel material temperature at the cooling process delivery side, which is the final stage of the rolling process, greatly affects the product quality of the steel material. However, the temperature of the steel material on the exit side of the cooling process often does not become the target value due to disturbance. The largest disturbance with respect to the steel material temperature on the outgoing side of the cooling process is a change in the heat transfer coefficient between the steel surface and the cooling medium in the cooling process. For this reason, accurately predicting the heat transfer coefficient is very important for quality control and quality control.

このような背景から、鋼材表面と冷却媒体との間の熱伝達係数をオンラインで推定する技術が提案されている。具体的には、特許文献1には、実測温度と伝熱計算モデルとを用いて、シミュレーティッドアニーリング法等の探索法による伝熱計算モデルによって計算された冷却工程出側の鋼材温度の計算値と温度計により実測された鋼材温度の実績値とが一致する最適な熱伝達係数を求める方法が記載されている。また、特許文献2には、実測温度と伝熱計算モデルとを用いて、伝熱計算モデルの2つ以上のパラメータ係数の修正を繰り返し、伝熱計算モデルにより計算された冷却工程出側の鋼材温度の計算値と温度計により実測された鋼材温度の実績値とが一致する最適な熱伝達係数を求める方法が記載されている。   From such a background, a technique for online estimation of a heat transfer coefficient between a steel surface and a cooling medium has been proposed. Specifically, Patent Document 1 discloses a calculated value of the steel material temperature on the cooling process outlet side calculated by a heat transfer calculation model by a search method such as a simulated annealing method using an actually measured temperature and a heat transfer calculation model. And a method for obtaining an optimum heat transfer coefficient that matches the actual measured value of the steel temperature measured by a thermometer. Further, Patent Document 2 uses the measured temperature and the heat transfer calculation model to repeatedly correct two or more parameter coefficients of the heat transfer calculation model, and the steel material at the cooling process outlet side calculated by the heat transfer calculation model. A method for obtaining an optimum heat transfer coefficient in which the calculated value of the temperature and the actual value of the steel material temperature actually measured by the thermometer coincide is described.

特開2004−244721号公報JP 2004-244721 A 特開2006−281258号公報JP 2006-281258 A

一般に、冷却工程出側の鋼材温度を適正に制御するためには、鋼材が冷却工程に到達する前に予め鋼材と冷却媒体との間の熱伝達係数を精度良く予測し、予測された熱伝達係数を用いて冷却工程出側における鋼材温度が目標値になるような冷却条件を求める必要がある。しかしながら、特許文献1,2記載の技術は、鋼材が冷却工程を通過した後の鋼材と冷却媒体との間の熱伝達係数を推定するものであり、鋼材が冷却工程に到達する前に予め鋼材と冷却媒体との間の熱伝達係数を予測するものではない。   In general, in order to properly control the steel temperature at the cooling process delivery side, the heat transfer coefficient between the steel and the cooling medium is accurately predicted in advance before the steel reaches the cooling process, and the predicted heat transfer. It is necessary to obtain a cooling condition using a coefficient so that the steel temperature at the delivery side of the cooling process becomes a target value. However, the techniques described in Patent Documents 1 and 2 estimate the heat transfer coefficient between the steel material and the cooling medium after the steel material has passed through the cooling process, and the steel material is preliminarily used before the steel material reaches the cooling process. It does not predict the heat transfer coefficient between the air and the cooling medium.

なお、同じような鋼材が次々に連続して冷却工程を通過するようなプロセスでは、鋼材と冷却媒体との間の熱伝達係数が大きく変化しないと考えられるので、熱伝達係数は鋼材間で全て同じと仮定して冷却制御を行えば鋼材の温度をある程度は適正に制御できる。しかしながら、近年、顧客要求の多様化に対応して、様々な寸法、材質、成分の製品が製造されるようになっている。一般に、寸法、材質、成分が変化すると、それに伴い冷却条件が変わり、鋼材と冷却媒体との間の熱伝達係数が変化する。このため、直前の鋼材の熱伝達係数と同じと仮定する従来の方法では、うまく冷却制御することが困難になってきている。   In a process in which similar steel materials pass through the cooling process one after another, it is considered that the heat transfer coefficient between the steel material and the cooling medium does not change greatly. If the cooling control is performed assuming the same, the temperature of the steel material can be controlled appropriately to some extent. However, in recent years, products with various dimensions, materials, and components have been manufactured in response to diversifying customer requirements. Generally, when dimensions, materials, and components change, the cooling conditions change accordingly, and the heat transfer coefficient between the steel material and the cooling medium changes. For this reason, it has become difficult to control cooling well with the conventional method that assumes the same heat transfer coefficient as that of the immediately preceding steel material.

本発明は、上記課題に鑑みてなされたものであって、その目的は、鋼材が冷却工程に到達する前に予め鋼材と冷却媒体との間の熱伝達係数を精度高く予測可能な鋼材の熱伝達係数予測装置を提供することにある。   The present invention has been made in view of the above-described problems, and the object of the present invention is to heat the steel that can accurately predict the heat transfer coefficient between the steel and the cooling medium in advance before the steel reaches the cooling step. An object is to provide a transfer coefficient prediction apparatus.

また、本発明の他の目的は、冷却工程出側の鋼板温度を目標値に適正に制御可能な鋼材の冷却制御方法を提供することにある。   Another object of the present invention is to provide a steel material cooling control method capable of appropriately controlling the steel sheet temperature on the cooling process delivery side to a target value.

上記課題を解決し、目的を達成するために、本発明に係る鋼材の熱伝達係数予測装置は、過去に実施された冷却工程における、鋼材の冷却条件と鋼材と冷却媒体との間の熱伝達係数とを関連づけして格納する実績データベースと、前記実績データベース内に格納されている複数の冷却条件について、予測対象の冷却条件に対する類似度を算出する類似度算出部と、前記実績データベースに格納されている冷却条件に関する情報を用いて、冷却条件と前記熱伝達係数との関係を表す予測モデルを作成すると共に、前記類似度算出部によって算出された類似度を重みとする評価関数を予測モデルの予測誤差を評価する評価関数として最適化問題を解くことによって、前記予測モデルのパラメータを決定する予測式作成部と、前記予測式作成部によって作成された予測式に前記予測対象の冷却条件を入力することによって、予測対象の冷却条件で冷却工程を実施した場合の鋼材と冷却媒体との間の熱伝達係数を予測する熱伝達係数予測部と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a heat transfer coefficient prediction apparatus for steel according to the present invention is a heat transfer between a steel cooling condition and a steel and a cooling medium in a cooling process performed in the past. A performance database that stores coefficients in association with each other, a similarity calculation unit that calculates a similarity to a cooling condition to be predicted for a plurality of cooling conditions stored in the performance database, and a database that is stored in the performance database. A prediction model representing the relationship between the cooling condition and the heat transfer coefficient is created using the information on the cooling condition, and an evaluation function weighted by the similarity calculated by the similarity calculation unit is By solving an optimization problem as an evaluation function for evaluating a prediction error, a prediction formula creation unit that determines parameters of the prediction model and a prediction formula creation unit The heat transfer coefficient prediction for predicting the heat transfer coefficient between the steel material and the cooling medium when the cooling process is performed under the cooling condition of the prediction target by inputting the cooling condition of the prediction target into the prediction formula created in the above And a section.

本発明に係る鋼材の熱伝達係数予測装置は、上記発明において、前記予測式作成部は、予測対象の鋼材の物理的特性を制約条件として前記最適化問題を解くことを特徴とする。   The heat transfer coefficient prediction apparatus for steel according to the present invention is characterized in that, in the above invention, the prediction formula creation unit solves the optimization problem using physical characteristics of a steel material to be predicted as a constraint.

本発明に係る鋼材の熱伝達係数予測装置は、上記発明において、前記類似度算出部は、予測対象の冷却条件に対する類似度と予測対象との時間的な類似度との積を類似度として算出することを特徴とする。   In the heat transfer coefficient prediction device for steel according to the present invention, in the above invention, the similarity calculation unit calculates a product of a similarity between the prediction target cooling condition and a temporal similarity between the prediction targets as the similarity. It is characterized by doing.

本発明に係る鋼材の熱伝達係数予測装置は、上記発明において、前記実績データベース、前記類似度算出部、前記予測式作成部、及び前記熱伝達係数予測部が処理に用いる冷却条件は、主成分分析により線形変換及び次元圧縮されたものであることを特徴とする。   The steel material heat transfer coefficient prediction apparatus according to the present invention is the above-described invention, wherein the cooling condition used by the performance database, the similarity calculation unit, the prediction formula creation unit, and the heat transfer coefficient prediction unit is a principal component. It is characterized by linear transformation and dimension compression by analysis.

上記課題を解決し、目的を達成するために、本発明に係る鋼材の冷却制御方法は、本発明に係る鋼材の熱伝達係数予測装置によって予測された鋼材と冷却媒体との間の熱伝達係数に基づいて冷却工程の冷却条件を制御するステップを含むことを特徴とする。   In order to solve the above-described problems and achieve the object, the steel material cooling control method according to the present invention includes a heat transfer coefficient between the steel material and the cooling medium predicted by the heat transfer coefficient prediction device for steel material according to the present invention. And a step of controlling the cooling conditions of the cooling process based on the above.

本発明に係る鋼材の熱伝達係数予測装置によれば、鋼材が冷却工程に到達する前に予め鋼材と冷却媒体との間の熱伝達係数を精度高く予測することができる。   According to the heat transfer coefficient predicting apparatus for steel materials according to the present invention, the heat transfer coefficient between the steel materials and the cooling medium can be predicted with high accuracy before the steel materials reach the cooling step.

本発明に係る鋼材の冷却制御方法によれば、冷却工程出側の鋼板温度を目標値に適正に制御することができる。   According to the steel material cooling control method of the present invention, it is possible to appropriately control the steel sheet temperature on the outlet side of the cooling process to the target value.

図1は、本発明の一実施形態である冷却制御システムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a cooling control system according to an embodiment of the present invention. 図2は、図1に示す実績データベースに格納されている実績データの一例を示す図である。FIG. 2 is a diagram illustrating an example of performance data stored in the performance database illustrated in FIG. 1. 図3は、本発明の一実施形態である熱伝達係数予測処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing a flow of heat transfer coefficient prediction processing according to an embodiment of the present invention. 図4は、従来の熱伝達係数予測方法及び本願発明の熱伝達係数予測方法を用いて予測された熱伝達係数の予測誤差を示すヒストグラムと、熱伝達係数の実績値と従来の熱伝達係数予測方法及び本願発明の熱伝達係数予測方法を用いて予測された熱伝達係数の予測値との関係を示す図である。FIG. 4 is a histogram showing a prediction error of the heat transfer coefficient predicted using the conventional heat transfer coefficient prediction method and the heat transfer coefficient prediction method of the present invention, the actual value of the heat transfer coefficient, and the conventional heat transfer coefficient prediction. It is a figure which shows the relationship with the predicted value of the heat transfer coefficient estimated using the method and the heat transfer coefficient prediction method of this invention. 図5は、本願発明の熱伝達係数予測方法において、時間における類似度を考慮しない場合と時間における類似度を考慮した場合とにおける、熱伝達係数の予測誤差のヒストグラムと熱伝達係数の実績値と予測値との散布図である。FIG. 5 shows a heat transfer coefficient prediction error histogram and a heat transfer coefficient actual value in the heat transfer coefficient prediction method of the present invention when the time similarity is not considered and when the time similarity is considered. It is a scatter diagram with a predicted value. 図6は、本願発明の熱伝達係数予測方法において、そのままの冷却条件を用いる場合と主成分分析により線形変換された冷却条件を用いる場合とにおける、熱伝達係数の予測誤差のヒストグラムと熱伝達係数の実績値と予測値との散布図である。FIG. 6 shows a heat transfer coefficient prediction error histogram and a heat transfer coefficient in the heat transfer coefficient prediction method of the present invention when the cooling condition is used as it is and when the cooling condition linearly transformed by the principal component analysis is used. It is a scatter diagram of the actual value and the predicted value.

以下、図面を参照して、本発明の一実施形態である冷却制御システムの構成及びその動作について説明する。   Hereinafter, the configuration and operation of a cooling control system according to an embodiment of the present invention will be described with reference to the drawings.

〔冷却制御システムの構成〕
始めに、図1,図2を参照して、本発明の一実施形態である冷却制御システムの構成について説明する。図1は、本発明の一実施形態である冷却制御システムの構成を示すブロック図である。図2は、図1に示す実績データベースに格納されている実績データの一例を示す図である。
[Configuration of cooling control system]
First, the configuration of a cooling control system according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing a configuration of a cooling control system according to an embodiment of the present invention. FIG. 2 is a diagram illustrating an example of performance data stored in the performance database illustrated in FIG. 1.

図1に示すように、本発明の一実施形態である冷却制御システム1は、入力装置2、出力装置3、実績データベース4、熱伝達係数予測装置5、及び冷却制御装置6を主な構成要素として備えている。入力装置2は、キーボード、マウスポインタ、テンキー等の情報入力装置によって構成され、オペレータが各種情報を熱伝達係数予測装置5に入力する際に操作される。出力装置3は、表示装置や印刷装置等の情報出力装置によって構成され、熱伝達係数予測装置5の各種処理情報を出力する。   As shown in FIG. 1, a cooling control system 1 according to an embodiment of the present invention includes an input device 2, an output device 3, a performance database 4, a heat transfer coefficient prediction device 5, and a cooling control device 6 as main components. As prepared. The input device 2 is configured by an information input device such as a keyboard, a mouse pointer, and a numeric keypad, and is operated when an operator inputs various information to the heat transfer coefficient prediction device 5. The output device 3 is configured by an information output device such as a display device or a printing device, and outputs various processing information of the heat transfer coefficient prediction device 5.

図2に示すように、実績データベース4は、鋼材が冷却工程を通過する度毎に冷却工程の冷却条件のデータと鋼材と冷却水との間の熱伝達係数(以下、単に熱伝達係数と表記することもある)のデータとを関連付けして実績データとして格納する。具体的には、実績データベース4には、出力変数の実績値y(但し、n=1,2,…,N)と入力変数の実績値x(=[x ,x ,…,x )(但し、n=1,2,…,N、Mは入力変数の個数)とを関連付けして記憶する。なお、この場合、出力変数は熱伝達係数であり、入力変数は熱伝達係数と物理的な因果関係がある鋼材の寸法、製鋼プロセスで調整された化学成分、冷却工程の入側及び出側における鋼材の温度、冷却設備の水量密度、及び鋼材の搬送速度(冷却工程を通過する鋼材の速度)である。また、実績データベース4は、最新の実績データに基づいて予測モデルを構築できるように、先入れ先出し法等の方法によって古い実績データが除去されるように構成されている。 As shown in FIG. 2, each time the steel material passes through the cooling process, the performance database 4 has a cooling condition data of the cooling process and a heat transfer coefficient between the steel material and the cooling water (hereinafter simply referred to as a heat transfer coefficient). Data may be associated with each other and stored as performance data. Specifically, the actual value database 4 includes actual values y n (where n = 1, 2,..., N) and actual values x n (= [x 1 n , x 2 n , .., X M n ] T ) (where n = 1, 2,..., N, M are the number of input variables) and are stored in association with each other. In this case, the output variable is the heat transfer coefficient, and the input variable is the size of the steel material that is physically and causally related to the heat transfer coefficient, the chemical composition adjusted in the steelmaking process, and the input and output sides of the cooling process. These are the temperature of the steel material, the water density of the cooling facility, and the conveying speed of the steel material (the speed of the steel material passing through the cooling process). The performance database 4 is configured such that old performance data is removed by a method such as a first-in first-out method so that a prediction model can be constructed based on the latest performance data.

図1に戻る。熱伝達係数予測装置5は、ワークステーションやパーソナルコンピュータ等の情報処理装置によって構成され、CPU10、RAM11、及びROM12を主な構成要素として備えている。CPU10は、熱伝達係数予測装置5全体の動作を制御する。CPU10は、ROM12内に予め格納されている熱伝達係数予測プログラム12aを実行することによって、類似度算出部10a、予測式作成部10b、及び熱伝達係数予測部10cとして機能する。これら各部の機能については後述する。冷却制御装置6は、熱伝達係数予測装置5によって予測された熱伝達係数に基づいて冷却条件を操作することによって冷却工程出側の鋼材温度が目標値になるように冷却条件を操作する。   Returning to FIG. The heat transfer coefficient prediction device 5 is configured by an information processing device such as a workstation or a personal computer, and includes a CPU 10, a RAM 11, and a ROM 12 as main components. The CPU 10 controls the overall operation of the heat transfer coefficient prediction device 5. The CPU 10 functions as a similarity calculation unit 10a, a prediction formula creation unit 10b, and a heat transfer coefficient prediction unit 10c by executing a heat transfer coefficient prediction program 12a stored in advance in the ROM 12. The functions of these units will be described later. The cooling control device 6 operates the cooling condition so that the steel temperature on the cooling process delivery side becomes a target value by operating the cooling condition based on the heat transfer coefficient predicted by the heat transfer coefficient prediction device 5.

〔熱伝達係数予測処理〕
このような構成を有する冷却制御システムでは、熱伝達係数予測装置5が、以下に示す熱伝達係数予測処理を実行することによって、冷却工程における鋼材の熱伝達係数を予測する。以下、図3に示すフローチャートを参照して、熱伝達係数予測処理を実行する際の熱伝達係数予測装置5の動作について説明する。
[Heat transfer coefficient prediction process]
In the cooling control system having such a configuration, the heat transfer coefficient prediction device 5 predicts the heat transfer coefficient of the steel material in the cooling process by executing the heat transfer coefficient prediction process described below. Hereinafter, the operation of the heat transfer coefficient prediction device 5 when the heat transfer coefficient prediction process is executed will be described with reference to the flowchart shown in FIG.

図3は、本発明の一実施形態である熱伝達係数予測処理の流れを示すフローチャートである。図3に示すフローチャートは、外部の計算機が入力装置2に対し次に冷却工程を通過する鋼材の冷却条件を与えることによって冷却条件のデータを入力したタイミングで開始となり、熱伝達係数予測処理はステップS1の処理に進む。   FIG. 3 is a flowchart showing a flow of heat transfer coefficient prediction processing according to an embodiment of the present invention. The flowchart shown in FIG. 3 starts at the timing when the data of the cooling condition is input by giving the cooling condition of the steel material that passes the cooling process to the input device 2 to the input device 2, and the heat transfer coefficient prediction process is a step. The process proceeds to S1.

ステップS1の処理では、類似度算出部10aが、入力装置2から入力された冷却条件のデータと実績データベース4に格納されている冷却条件のデータとの類似度を算出する。具体的には、始めに、類似度算出部10aが、入力装置2から入力された冷却条件に対応する入力変数空間内の点を要求点x(≡[x,x,…,x)として、実績データベース4に格納されている各入力変数の実績値xについて、以下に示す数式(1)を用いて要求点xからの距離Lを算出する。 In the process of step S <b> 1, the similarity calculation unit 10 a calculates the similarity between the cooling condition data input from the input device 2 and the cooling condition data stored in the record database 4. Specifically, first, the similarity calculation unit 10a selects a point in the input variable space corresponding to the cooling condition input from the input device 2 as the requested point x (≡ [x 1 , x 2 ,..., X M as] T), the actual value x n for each input variable that is stored in the result database 4, to calculate the distance L n from the request point x using equation (1) below.

なお、数式(1)中、パラメータλは、化学成分と温度等のように異なる尺度で測定される入力変数をスケーリングするための重み係数である。そして、類似度算出部10aは、実績データベース4に格納されている各入力変数の実績値xについて、以下に示す数式(2)を用いて要求点xから距離Lにある点の類似度Wを算出する。なお、数式(2)中、パラメータσは、実績データに対する数式(1)で表される距離Lの標準偏差、パラメータpは調整パラメータである。 In Equation (1), the parameter λ m is a weighting factor for scaling input variables measured on different scales such as chemical components and temperature. Then, the similarity calculation unit 10a uses the following formula (2) for the actual value x n of each input variable stored in the actual result database 4 to determine the similarity of a point at a distance L n from the request point x to calculate the W n. In Equation (2), parameter σ L is a standard deviation of distance L n represented by Equation (1) with respect to the actual data, and parameter p is an adjustment parameter.

Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844

また、類似度算出部10aは、以下に示す数式(3)のように、予測対象の冷却条件に対する類似度と予測対象との時間的な類似度との積を類似度Wとして算出してもよい。なお、数式(3)中のパラメータλは、忘却要素であり、0より大きく1より小さい値の調整パラメータである。この忘却要素を入れることにより、新しい実績値xの類似度は大きくなり、古い実績値xの類似度は小さくなる。予測対象との時間的な類似度を考慮することによって、熱伝達係数をより精度高く予測できる。これにより、ステップS1の処理は完了し、熱伝達係数予測処理はステップS2の処理に進む。 Also, the similarity calculation unit 10a calculates the product of the similarity with respect to the cooling condition of the prediction target and the temporal similarity with the prediction target as the similarity W n as shown in the following formula (3). Also good. Note that the parameter λ in Equation (3) is a forgetting factor, and is an adjustment parameter having a value greater than 0 and less than 1. By including this forgetting factor, the similarity of the new actual value xn is increased, and the similarity of the old actual value xn is decreased. By considering the temporal similarity with the prediction target, the heat transfer coefficient can be predicted with higher accuracy. Thereby, the process of step S1 is completed and the heat transfer coefficient prediction process proceeds to the process of step S2.

Figure 2014018844
Figure 2014018844

ステップS2の処理では、予測式作成部10bが、実績データベース4に格納されているN個の実績データ(入力変数の実績値x)とその要求点xとの類似度Wとを用いて、要求点xに類似する過去の実績データを重視した熱伝達係数の局所的な予測モデルを作成する。具体的には、予測式作成部10bは、以下に示す数式(4)によって表される熱伝達係数の予測モデルを作成する。数式(4)を構成する以下に示す数式(5)によって表されるモデルパラメータθは、以下に示す数式(6)〜(9)によって表される、類似度Wを重みとする熱伝達係数の実測値と予測値との誤差の二乗和である評価関数Jの値を最も小さくする最適化問題を解くことによって算出できる。 In the processing of step S2, the prediction formula creation unit 10b uses the N pieces of actual data (actual values x n of input variables) stored in the actual database 4 and the similarity W n between the request points x and the results. Then, a local prediction model of the heat transfer coefficient that emphasizes past performance data similar to the request point x is created. Specifically, the prediction formula creation unit 10b creates a heat transfer coefficient prediction model represented by the following formula (4). The model parameter θ represented by the following formula (5) constituting the formula (4) is represented by the following formulas (6) to (9), and the heat transfer coefficient weighted by the similarity W n Can be calculated by solving an optimization problem that minimizes the value of the evaluation function J, which is the sum of squares of errors between the actual measurement value and the predicted value.

ここで、数式(7)中、パラメータy(但し、n=1、2、…、N)は、n番目の実績データに対応する出力変数の値であり、数式(8)中、パラメータdiag(s)は、sの要素を主対角要素とする対角行列を示す。熱伝達係数の予測値と実測値との重み付き二乗和を最小化するモデルパラメータを計算することによって、類似度が高い、すなわち要求点xに近い実績データをより良くフィッティングする局所的な予測モデルを作成することができる。 Here, in the formula (7), the parameter y n (where n = 1, 2,..., N) is the value of the output variable corresponding to the n-th actual data, and in the formula (8), the parameter diag (s) represents a diagonal matrix with the elements of s as main diagonal elements. A local prediction model that better fits actual data with high similarity, i.e., close to the required point x, by calculating a model parameter that minimizes the weighted sum of squares between the predicted value of the heat transfer coefficient and the measured value. Can be created.

Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844

なお、最適化問題を解く際、以下に示すような制約条件を与えて最適化問題を解いてもよい。具体的には、制約条件として、以下に示す数式(10)により表されるモデルパラメータ中の入力変数の偏回帰係数φの範囲に対して以下に示す数式(11)〜(13)により表される制限を設けるようにしてもよい。ここで、数式(12)及び数式(13)により表される下限値及び上限値には、入出力変数間の物理的先見情報を与えるものとする。   When solving the optimization problem, the optimization problem may be solved by giving the following constraint conditions. Specifically, the constraint condition is expressed by the following formulas (11) to (13) with respect to the range of the partial regression coefficient φ of the input variable in the model parameter represented by the following formula (10). Restrictions may be provided. Here, it is assumed that physical foresight information between the input and output variables is given to the lower limit value and the upper limit value represented by Expression (12) and Expression (13).

鋼材の一種である厚鋼板の冷却工程における熱伝達係数の予測を例に具体的に説明すると、入力変数として与えられる冷却工程入側の鋼材温度が上昇すれば熱伝達係数は下がる。従って、冷却工程入側の鋼材温度に対応するモデルパラメータについては、下限値及び上限値をそれぞれ−∞、0とする。また、入力変数として与えられる冷却工程の搬送速度が上昇すれば熱伝達係数は下がる。従って、冷却工程の搬送速度に対応するモデルパラメータについては、下限値及び上限値をそれぞれ−∞、0とする。さらに、入力変数として与えられる化学成分の一つの炭素濃度が上昇すれば硬度は上がる。従って、炭素濃度に対応するモデルパラメータについては、下限値及び上限値をそれぞれ0、∞にする。物理モデルから得られる先見情報に関する制約条件を加えることによって、要求点に近い実績データをより良くフィッティングし、且つ、予測対象の物理特性に合った偏回帰係数を持ち合わせた局所的な予測モデルを作成することができる。これにより、ステップS2の処理は完了し、熱伝達係数予測処理はステップS3の処理に進む。   Specifically, the prediction of the heat transfer coefficient in the cooling process of a thick steel plate, which is a kind of steel material, will be described as an example. If the steel material temperature on the cooling process entry side given as an input variable increases, the heat transfer coefficient decreases. Therefore, for the model parameter corresponding to the steel material temperature on the cooling process entry side, the lower limit value and the upper limit value are set to −∞ and 0, respectively. Moreover, if the conveyance speed of the cooling process given as an input variable increases, the heat transfer coefficient decreases. Therefore, for the model parameters corresponding to the conveyance speed of the cooling process, the lower limit value and the upper limit value are set to −∞ and 0, respectively. Furthermore, the hardness increases as the carbon concentration of one chemical component given as an input variable increases. Therefore, for the model parameter corresponding to the carbon concentration, the lower limit value and the upper limit value are set to 0 and ∞, respectively. By adding constraints on the foresight information obtained from the physical model, it is possible to better fit the actual data close to the requested point and create a local prediction model with partial regression coefficients that match the physical characteristics of the prediction target can do. Thereby, the process of step S2 is completed and the heat transfer coefficient prediction process proceeds to the process of step S3.

Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844

ステップS3の処理では、熱伝達係数予測部10cが、ステップS2の処理によって作成された予測モデルに要求点xの値を代入することにより、鋼材の熱伝達係数の予測値を算出する。これにより、ステップS3の処理は完了し、一連の熱伝達係数予測処理は終了する。   In the process of step S3, the heat transfer coefficient prediction unit 10c calculates the predicted value of the heat transfer coefficient of the steel material by substituting the value of the request point x into the prediction model created by the process of step S2. Thereby, the process of step S3 is completed and a series of heat transfer coefficient prediction processes are complete | finished.

なお、ステップS1〜S3の処理を実行する前に、実績データベース4、類似度算出部10a、予測式作成部10b、及び熱伝達係数予測部10cの処理に用いられる冷却条件に関するデータを主成分分析によって線形変換及び次元圧縮してもよい。線形変換及び次元圧縮された冷却条件を用いることによって、熱伝達係数をより精度高く予測できる。具体的には、入力変数である冷却条件の実績値がx(=[x ,x ,…,x )(但し、n=1,2,…,N、Lは入力変数の個数)である場合、始めに、以下に示す数式(14)を用いて平均が0、標準偏差が1になるように、各実績値xを標準化する。なお、数式(14)中、xL,avは、実績値xの平均値であり、分母の値は標準偏差を示している。標準化後の冷却条件の実績値xをz(=[z ,z ,…,z )又は以下の数式(15)のように表記する。 Before executing the processes of steps S1 to S3, principal component analysis is performed on the data relating to the cooling conditions used for the processes of the results database 4, the similarity calculation unit 10a, the prediction formula creation unit 10b, and the heat transfer coefficient prediction unit 10c. May be used for linear transformation and dimension compression. By using linear transformation and dimensionally compressed cooling conditions, the heat transfer coefficient can be predicted more accurately. Specifically, the actual value of the cooling condition as an input variable is x n (= [x 1 n , x 2 n ,..., X L n ] T ) (where n = 1, 2,..., N, L Is the number of input variables), first, each actual value xn is standardized using Equation (14) below so that the average is 0 and the standard deviation is 1. In Equation (14) , xL, av is an average value of the actual value xn , and the denominator value indicates a standard deviation. The actual value x n of the cooling condition after standardization is expressed as z n (= [z 1 n , z 2 n ,..., Z L n ] T ) or the following formula (15).

Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844

次に、以下に示す数式(16)で定義される共分散行列Vを算出し、この共分散行列Vの固有値とそれに対応する固有ベクトルとを算出する。共分散行列Vには、非負の固有値が複数あり、それらに対応する固有ベクトルも複数ある。そこで、固有ベクトルを対応する固有値が大きい順に並べ替え、固有ベクトルを対応する固有値が大きいものから順にM個取り出したものを行列P(=[w,w,…,w)と表す。但し、Mは入力変数の個数Lより小さい自然数であり、行列Pはローディング行列と呼ばれる。そして、ローディング行列Pを用いて冷却条件の実績値zを以下に示す数式(17)のように線形変換したものを実績データベース4に格納する。 Next, a covariance matrix V defined by the following equation (16) is calculated, and an eigenvalue of the covariance matrix V and an eigenvector corresponding thereto are calculated. The covariance matrix V has a plurality of non-negative eigenvalues and a plurality of eigenvectors corresponding to them. Therefore, the eigenvectors are rearranged in descending order of the corresponding eigenvalues, and the M eigenvectors extracted in descending order of the corresponding eigenvalues are represented as a matrix P (= [w 1 , w 2 ,..., W M ] T ). However, M is a natural number smaller than the number L of input variables, and the matrix P is called a loading matrix. Then, a result obtained by linearly converting the actual value z of the cooling condition using the loading matrix P as shown in the following formula (17) is stored in the actual result database 4.

Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844

また、予測対象の冷却条件x(=[x,x,…,x)の各要素についても同様に、始めに以下に示す数式(18)を用いて標準化し、標準化後の予測対象の冷却条件z(=[z,z,…,z)を算出する。そして、ローディング行列Pを用いて以下に示す数式(19)のように線形変換したものを要求点として用いる。 Similarly, each element of the cooling condition x (= [x 1 , x 2 ,..., X L ] T ) to be predicted is first standardized using the following formula (18), and after the standardization, The cooling condition z (= [z 1 , z 2 ,..., Z L ] T ) to be predicted is calculated. Then, a linear transformation using the loading matrix P as shown in the following equation (19) is used as a required point.

Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844

〔冷却制御処理〕
冷却制御装置6は、冷却予測装置5によって予測された鋼材と冷却水との間の熱伝達係数に基づいて冷却条件を操作することによって冷却工程出側の鋼材温度が目標値になるように冷却条件を操作する。具体的には、鋼材の表面温度をTs[K]、冷却水温度をTw[K]、熱伝達係数をα[W/(m・K)]とすると、鋼板と冷却水との間の熱流束密度J[W/m]は以下に示す数式(20)のように表される。
[Cooling control processing]
The cooling control device 6 operates the cooling condition based on the heat transfer coefficient between the steel material and the cooling water predicted by the cooling prediction device 5 so that the steel material temperature at the cooling process outlet side becomes a target value. Manipulate conditions. Specifically, when the surface temperature of the steel material is Ts [K], the cooling water temperature is Tw [K], and the heat transfer coefficient is α [W / (m 2 · K)], the distance between the steel plate and the cooling water is The heat flux density J [W / m 2 ] is expressed as the following mathematical formula (20).

Figure 2014018844
Figure 2014018844

熱伝達係数、鋼材の厚みと幅、鋼材の冷却工程入側温度、搬送速度、及び鋼材に冷却水がかかる面積が与えられると、数式(20)を境界条件として、偏微分方程式を解くことにより、鋼材の冷却工程出側の鋼材温度を計算することができる。この冷却工程出側の鋼材温度の計算値と予め与えられている目標値とを比較し、これらの値が一致するまで冷却水がかかる面積を操作し、偏微分方程式を解いて冷却工程出側の鋼材温度を計算する。最終的に計算値と目標値とが一致したときの冷却水がかかる面積に基づいて、冷却設備の冷却バンク数、すなわち冷却水を噴射するノズルの数を決定する。これに基づいて冷却設備の設定を行うことによって、冷却工程出側の鋼材温度を適正に制御できる。   Given heat transfer coefficient, steel thickness and width, steel cooling process entry temperature, conveyance speed, and area where cooling water is applied to steel, by solving partial differential equation using equation (20) as a boundary condition, The steel material temperature at the delivery side of the steel material can be calculated. Compare the calculated value of the steel temperature of the cooling process delivery side with the target value given in advance, manipulate the area where the cooling water is applied until these values match, solve the partial differential equation and exit the cooling process Calculate the steel material temperature. The number of cooling banks of the cooling facility, that is, the number of nozzles that inject cooling water is determined based on the area that the cooling water takes when the calculated value and the target value finally match. By setting the cooling equipment based on this, it is possible to appropriately control the steel material temperature on the cooling process delivery side.

〔実験例〕
本願発明の熱伝達係数予測方法と従来の熱伝達係数予測方法とを用いて、厚鋼板の加速冷却材を対象に、鋼材が冷却工程に到達する前に予め鋼材の熱伝達係数を予測した実験結果について説明する。ここで、従来の熱伝達係数予測方法とは、対象材の熱伝達係数は直前に冷却工程を通過した鋼材の熱伝達係数と同じであると仮定して予測する方法である。
[Experimental example]
Using the heat transfer coefficient prediction method of the present invention and the conventional heat transfer coefficient prediction method, an experiment in which the heat transfer coefficient of the steel material is predicted in advance before the steel material reaches the cooling process for the accelerated coolant of the thick steel plate The results will be described. Here, the conventional heat transfer coefficient prediction method is a method of prediction assuming that the heat transfer coefficient of the target material is the same as the heat transfer coefficient of the steel material that has just passed through the cooling step.

図4(a),(b)はそれぞれ、従来の熱伝達係数予測方法及び本願発明の熱伝達係数予測方法を用いて予測された熱伝達係数の予測誤差(予測値−実績値)を示すヒストグラムである。図4(c),(d)はそれぞれ、熱伝達係数の実績値と従来の熱伝達係数予測方法及び本願発明の熱伝達係数予測方法を用いて予測された熱伝達係数の予測値との関係を示す図である。なお、図4(a),(b)に示すグラフの横軸及び図4(c),(d)に示すグラフの縦軸及び横軸に示す熱伝達係数の値は、標準化して無次元化した値としている。すなわち、標準化前の熱伝達係数(単位[W/(m・K)])をy、標準化後の熱伝達係数をΨと表したとき、両者は以下に示す数式(21)のような関係がある。なお、数式(21)の右辺の分母及び分子の第2項はそれぞれ標準偏差及び熱伝達係数の実績値y(n=1,2,…,N)の平均値を示し、以下に示す数式(22)、(23)のように表される。すなわち、標準化は、熱伝達係数の実績値が平均0、標準偏差1になるように線形変換されている。標準化後の熱伝達係数は、無次元化されているので単位は無い。図5以降においてもこのように標準化された熱伝達係数の値を用いて図示している。 4 (a) and 4 (b) are histograms showing prediction errors (predicted value-actual value) of the heat transfer coefficient predicted using the conventional heat transfer coefficient prediction method and the heat transfer coefficient prediction method of the present invention, respectively. It is. 4C and 4D show the relationship between the actual value of the heat transfer coefficient and the predicted value of the heat transfer coefficient predicted by using the conventional heat transfer coefficient prediction method and the heat transfer coefficient prediction method of the present invention. FIG. The values of the heat transfer coefficients shown on the horizontal axis of the graphs shown in FIGS. 4A and 4B and the vertical axis and horizontal axis of the graphs shown in FIGS. 4C and 4D are standardized and dimensionless. Value That is, when the heat transfer coefficient before standardization (unit [W / (m 2 · K)]) is expressed as y and the heat transfer coefficient after standardization is expressed as Ψ, the relationship is expressed by the following formula (21). There is. Note that the denominator on the right side of Equation (21) and the second term of the numerator indicate the standard deviation and the average value of the actual values y n (n = 1, 2,..., N) of the heat transfer coefficient, respectively. It is expressed as (22) and (23). That is, the standardization is linearly converted so that the actual value of the heat transfer coefficient is 0 on average and 1 on standard deviation. Since the heat transfer coefficient after standardization is made dimensionless, there is no unit. In FIG. 5 and subsequent figures, the heat transfer coefficient values thus standardized are used for illustration.

Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844
Figure 2014018844

図4(a),(c)に示すように、従来の熱伝達係数予測方法を用いて予測された熱伝達係数の予測誤差のRMSE(Root Mean Square Error:根平均二乗誤差)は0.245(標準化後)であった。これに対して、図4(b),(d)に示すように、本願発明の熱伝達係数予測方法を用いて予測された熱伝達係数の予測誤差のRMSEは0.078(標準化後)であった。このことから、本願発明の熱伝達係数予測方法によれば、熱伝達係数を精度高く予測できることが明らかになった。   As shown in FIGS. 4A and 4C, the RMSE (Root Mean Square Error) of the prediction error of the heat transfer coefficient predicted by using the conventional heat transfer coefficient prediction method is 0.245. (After standardization). On the other hand, as shown in FIGS. 4B and 4D, the RMSE of the prediction error of the heat transfer coefficient predicted by using the heat transfer coefficient prediction method of the present invention is 0.078 (after standardization). there were. From this, it became clear that according to the heat transfer coefficient prediction method of the present invention, the heat transfer coefficient can be predicted with high accuracy.

図5(a),(b)はそれぞれ、本願発明の熱伝達係数予測方法において、時間における類似度を考慮しない場合と時間における類似度を考慮した場合とにおける、熱伝達係数の予測誤差(予測値−実績値)のヒストグラムである。また、図5(c),(d)はそれぞれ、時間における類似度を考慮しない場合と時間における類似度を考慮した場合とにおける、熱伝達係数の実績値と予測値との散布図である。ここで、時間における類似度を計算するための忘却要素の値は0.995を選択している。なお、図5(a),(b)に示すグラフの横軸は熱伝達係数の予測誤差(標準化後)である。また、図5(c),(d)に示すグラフの横軸及び縦軸はそれぞれ、熱伝達係数の実績値(標準化後)及び予測値(標準化後)を示す。図5(c)に示すように、時間における類似度を考慮しない場合における熱伝達係数の予測誤差のRMSEは0.138(標準化後)であった。これに対して、図5(d)に示すように、時間における類似度を考慮した場合における熱伝達係数の予測誤差は0.085(標準化後)であった。時間における類似度を考慮しない場合、図5(c)に示すように、誤差平均の絶対値が大きいことがわかる。これは、製造プロセスの特性の経年変化に対して十分に迅速に対応した学習が行われず、熱伝達係数予測について定常的な偏差が残っているものと考えることができる。時間における類似度を考慮しない場合は、実績データベースに蓄積されている古いデータも新しいデータも同様に扱うことによって生じると考えられる。そこで、忘却要素を導入して時間における類似度を考慮するようにし、古いデータの類似度は小さく、新しいデータの類似度は大きくなるようにした。これにより、図5(d)に示すように、誤差平均の絶対値が大幅に小さくなっていることがわかる。このことから、時間における類似度を考慮することによって、熱伝達係数をより精度高く予測できることがわかった。   5 (a) and 5 (b) show the heat transfer coefficient prediction error (prediction) when the similarity in time is not considered and when the similarity in time is considered in the heat transfer coefficient prediction method of the present invention. (Value-actual value) histogram. FIGS. 5C and 5D are scatter diagrams of the actual value and the predicted value of the heat transfer coefficient when the similarity in time is not considered and when the similarity in time is considered. Here, 0.995 is selected as the value of the forgetting factor for calculating the similarity in time. In addition, the horizontal axis of the graph shown to Fig.5 (a), (b) is a prediction error (after standardization) of a heat transfer coefficient. In addition, the horizontal axis and the vertical axis of the graphs shown in FIGS. 5C and 5D respectively show the actual value (after standardization) and the predicted value (after standardization) of the heat transfer coefficient. As shown in FIG. 5C, the RMSE of the heat transfer coefficient prediction error when the similarity in time was not taken into account was 0.138 (after standardization). On the other hand, as shown in FIG. 5D, the prediction error of the heat transfer coefficient when considering the similarity in time was 0.085 (after standardization). When the similarity in time is not considered, as shown in FIG. 5C, it can be seen that the absolute value of the error average is large. This can be considered that the learning that sufficiently responds to the secular change in the characteristics of the manufacturing process is not performed sufficiently, and that there is a stationary deviation in the prediction of the heat transfer coefficient. If the similarity in time is not taken into consideration, it is considered that the old data and the new data accumulated in the performance database are handled in the same manner. Therefore, the forgetting factor is introduced so that the similarity in time is taken into account, the similarity of old data is small, and the similarity of new data is large. Thereby, as shown in FIG.5 (d), it turns out that the absolute value of an error average is significantly small. From this, it was found that the heat transfer coefficient can be predicted with higher accuracy by considering the similarity in time.

図6(a),(b)はそれぞれ、本願発明の熱伝達係数予測方法において、そのままの冷却条件を用いる場合と主成分分析により線形変換された冷却条件を用いる場合とにおける、熱伝達係数の予測誤差(予測値−実績値)のヒストグラムである。また、図6(c),(d)はそれぞれ、そのままの冷却条件を用いる場合と主成分分析により線形変換された冷却条件を用いる場合とにおける、熱伝達係数の実績値と予測値との散布図である。なお、図6(a),(b)に示すグラフの横軸は熱伝達係数の予測誤差(標準化後)である。また、図6(c),(d)に示すグラフの横軸及び縦軸はそれぞれ、熱伝達係数の実績値(標準化後)及び予測値(標準化後)を示す。   6 (a) and 6 (b) respectively show the heat transfer coefficient in the heat transfer coefficient prediction method of the present invention when the cooling condition is used as it is and when the cooling condition linearly transformed by the principal component analysis is used. It is a histogram of a prediction error (predicted value-actual value). 6 (c) and 6 (d) respectively show the distribution of the actual value and the predicted value of the heat transfer coefficient when using the cooling condition as it is and when using the cooling condition linearly transformed by the principal component analysis. FIG. Note that the horizontal axis of the graphs shown in FIGS. 6A and 6B is the heat transfer coefficient prediction error (after standardization). In addition, the horizontal axis and the vertical axis of the graphs shown in FIGS. 6C and 6D respectively indicate the actual value (after standardization) and the predicted value (after standardization) of the heat transfer coefficient.

図6(c)に示すように、そのまま冷却条件を用いる場合における硬度の予測誤差のRMSEは0.105(標準化後)であった。これに対して、図6(d)に示すように、主成分分析により線形変換された冷却条件を用いる場合における熱伝達係数の予測誤差のRMSEは0.084(標準化後)であった。そのままの冷却条件を用いる場合、図6(c)に示すように、予測誤差のRMSEが大きいことがわかる。これは、冷却条件の実績データの中に相関が非常に高いものが含まれる多重共線性といわれる状態にあるため、そのようなデータをもとに作ったモデルに予測対象の冷却条件を入れて計算した熱伝達係数予測値は誤差が大きくなる傾向にある。そこで、主成分分析により次元圧縮することで、多重共線性の問題を回避するようにした。これにより、図6(d)に示すように、予測誤差のRMSEが大幅に小さくなっていることがわかる。このことから、主成分分析により線形変換された冷却条件を用いることによって、熱伝達係数をより精度高く予測できることがわかった。   As shown in FIG. 6C, the RMSE of the hardness prediction error in the case of using the cooling condition as it is was 0.105 (after standardization). On the other hand, as shown in FIG. 6D, the RMSE of the prediction error of the heat transfer coefficient when using the cooling condition linearly converted by the principal component analysis was 0.084 (after standardization). When using the cooling conditions as they are, it can be seen that the RMSE of the prediction error is large as shown in FIG. This is a state called multicollinearity, in which the actual data of cooling conditions includes a very high correlation, so the cooling conditions to be predicted are put in the model made based on such data. The calculated heat transfer coefficient prediction value tends to have a large error. Therefore, we tried to avoid the problem of multicollinearity by compressing dimensions by principal component analysis. Thereby, as shown in FIG. 6D, it can be seen that the RMSE of the prediction error is significantly reduced. From this, it was found that the heat transfer coefficient can be predicted with higher accuracy by using the cooling condition linearly transformed by the principal component analysis.

さらに、厚鋼板の加速冷却材について、従来の冷却制御方法と本願発明の制御方法とで、冷却工程出側の鋼材温度について制御誤差の比較を行った。従来の冷却制御方法は、従来の熱伝達係数予測方法を用いて予測された熱伝達係数を用いて冷却工程出側の鋼材温度を制御する方法であり、本願発明の制御方法は、本願発明の熱伝達係数予測方法を用いて予測された熱伝達係数を用いて冷却工程出側の鋼材温度を制御する方法である。それぞれの方法について、冷却工程出側の鋼材温度の制御誤差(実績値−目標値)のRMSEの比較を行った。従来の冷却制御方法での制御誤差のRMSEは17.0[℃]であった。これに対して、本願発明の材質制御方法での制御誤差のRMSEは12.7[℃]であり、従来の冷却制御方法に比べて冷却工程出側の鋼材温度の制御誤差を大幅に低減できた。このことから、本願発明の冷却制御方法によれば、冷却工程出側の鋼材温度を精度高く目標値に近づけることが明らかになった。   Furthermore, the control error was compared about the steel material temperature of the cooling process delivery side about the accelerated cooling material of a thick steel plate with the conventional cooling control method and the control method of this invention. The conventional cooling control method is a method of controlling the steel material temperature on the cooling process exit side using the heat transfer coefficient predicted using the conventional heat transfer coefficient prediction method, and the control method of the present invention is the method of the present invention. This is a method of controlling the steel temperature at the cooling process delivery side using the heat transfer coefficient predicted using the heat transfer coefficient prediction method. About each method, the RMSE of the control error (actual value-target value) of the steel material temperature at the cooling process delivery side was compared. The RMSE of the control error in the conventional cooling control method was 17.0 [° C.]. On the other hand, the RMSE of the control error in the material control method of the present invention is 12.7 [° C.], and the control error of the steel temperature at the cooling process outlet side can be greatly reduced compared to the conventional cooling control method. It was. From this, it became clear that according to the cooling control method of the present invention, the steel temperature at the cooling process outlet side is brought close to the target value with high accuracy.

以上の説明から明らかなように、本発明の一実施形態である熱伝達係数予測処理によれば、類似度算出部10aが、実績データベース4内に格納されている複数の冷却条件xについて、予測対象の冷却条件xに対する類似度Wを算出し、予測式作成部10bが、実績データベース4に格納されている冷却条件xのデータを用いて、冷却条件xと熱伝達係数yとの関係を表す予測モデルを作成すると共に、類似度算出部10aによって算出された類似度Wを重みとする評価関数を予測モデルの予測誤差を評価する評価関数として最適化問題を解くことによって、予測モデルのモデルパラメータを決定し、熱伝達係数予測部10cが、予測式作成部10bによって作成された予測モデルに予測対象の冷却条件xを入力することによって、予測対象の冷却条件xで鋼材を冷却した場合の熱伝達係数yを予測する。このような構成によれば、実績データベース4内に格納されている実績値に基づいて予測モデルの調整を自動的に行うことができるので、鋼材が冷却工程に到達する前に予め熱伝達係数を精度高く予測することができる。 As is clear from the above description, according to the heat transfer coefficient prediction process that is an embodiment of the present invention, the similarity calculation unit 10a is configured to obtain a plurality of cooling conditions x n stored in the performance database 4. The degree of similarity W n with respect to the cooling condition x to be predicted is calculated, and the prediction formula creation unit 10b uses the data of the cooling condition x n stored in the result database 4 to calculate the cooling condition x and the heat transfer coefficient y. Prediction models are created by creating a prediction model representing a relationship and solving an optimization problem using an evaluation function weighted by the similarity W n calculated by the similarity calculation unit 10a as an evaluation function for evaluating the prediction error of the prediction model. By determining model parameters of the model, the heat transfer coefficient prediction unit 10c inputs the cooling condition x to be predicted into the prediction model created by the prediction formula creation unit 10b. The heat transfer coefficient y when the steel material is cooled under the cooling condition x to be predicted is predicted. According to such a configuration, since the prediction model can be automatically adjusted based on the actual value stored in the actual result database 4, the heat transfer coefficient is set in advance before the steel material reaches the cooling process. Predict with high accuracy.

また、本発明の一実施形態である熱伝達係数予測処理によれば、予測式作成部10bは、予測対象の鋼材の物理的特性を制約条件として最適化問題を解くので、物理現象に反する予測モデルが作成されることを抑制し、熱伝達係数の予測精度をさらに向上させることができる。   In addition, according to the heat transfer coefficient prediction process according to an embodiment of the present invention, the prediction formula creation unit 10b solves the optimization problem using the physical characteristics of the steel material to be predicted as a constraint, so that the prediction is contrary to the physical phenomenon. It can suppress that a model is created and can further improve the prediction accuracy of a heat transfer coefficient.

さらに、本発明の一実施形態である冷却制御処理によれば、本発明の一実施形態である熱伝達係数予測処理により従来と比べて精度の高い熱伝達係数予測値に基づいて冷却工程出側の鋼材温度を制御するので、冷却工程出側の鋼板温度を目標値に適正に制御することができる。ここでは、操作する冷却条件として、冷却設備の冷却バンク数、すなわち、冷却水を噴射するノズルの数を選択し、目標の鋼材温度になるための適正な値を計算し、冷却設備を設定するようにした。   Furthermore, according to the cooling control process that is one embodiment of the present invention, the cooling process delivery side is based on the heat transfer coefficient prediction value that is more accurate than the prior art by the heat transfer coefficient prediction process that is one embodiment of the present invention. Therefore, the steel plate temperature on the cooling process delivery side can be appropriately controlled to the target value. Here, as the cooling condition to be operated, select the number of cooling banks of the cooling facility, that is, the number of nozzles that inject cooling water, calculate an appropriate value to reach the target steel temperature, and set the cooling facility I did it.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 冷却制御システム
2 入力装置
3 出力装置
4 実績データベース
5 熱伝達係数予測装置
6 冷却制御装置
10 CPU
10a 類似度算出部
10b 予測式作成部
10c 熱伝達係数予測部
11 RAM
12 ROM
12a 熱伝達係数予測プログラム
DESCRIPTION OF SYMBOLS 1 Cooling control system 2 Input device 3 Output device 4 Results database 5 Heat transfer coefficient prediction device 6 Cooling control device 10 CPU
10a Similarity calculation unit 10b Prediction formula creation unit 10c Heat transfer coefficient prediction unit 11 RAM
12 ROM
12a Heat transfer coefficient prediction program

Claims (5)

過去に実施された冷却工程における、鋼材の冷却条件と鋼材と冷却媒体との間の熱伝達係数とを関連づけして格納する実績データベースと、
前記実績データベース内に格納されている複数の冷却条件について、予測対象の冷却条件に対する類似度を算出する類似度算出部と、
前記実績データベースに格納されている冷却条件に関する情報を用いて、冷却条件と前記熱伝達係数との関係を表す予測モデルを作成すると共に、前記類似度算出部によって算出された類似度を重みとする評価関数を予測モデルの予測誤差を評価する評価関数として最適化問題を解くことによって、前記予測モデルのパラメータを決定する予測式作成部と、
前記予測式作成部によって作成された予測式に前記予測対象の冷却条件を入力することによって、予測対象の冷却条件で冷却工程を実施した場合の鋼材と冷却媒体との間の熱伝達係数を予測する熱伝達係数予測部と、
を備えることを特徴とする鋼材の熱伝達係数予測装置。
A performance database that associates and stores the cooling conditions of the steel material and the heat transfer coefficient between the steel material and the cooling medium in the cooling process performed in the past;
For a plurality of cooling conditions stored in the results database, a similarity calculation unit that calculates the similarity to the cooling condition to be predicted; and
A prediction model representing the relationship between the cooling condition and the heat transfer coefficient is created using information on the cooling condition stored in the performance database, and the similarity calculated by the similarity calculation unit is weighted A prediction formula creation unit that determines parameters of the prediction model by solving an optimization problem using the evaluation function as an evaluation function for evaluating a prediction error of the prediction model;
By inputting the cooling condition of the prediction target in the prediction formula created by the prediction formula creation unit, the heat transfer coefficient between the steel material and the cooling medium when the cooling process is performed under the cooling condition of the prediction target is predicted. A heat transfer coefficient predicting unit,
An apparatus for predicting a heat transfer coefficient of a steel material.
前記予測式作成部は、予測対象の鋼材の物理的特性を制約条件として前記最適化問題を解くことを特徴とする請求項1に記載の鋼材の熱伝達係数予測装置。   The said prediction formula preparation part solves the said optimization problem on the basis of the physical characteristic of the steel material of prediction object, The heat transfer coefficient prediction apparatus of the steel material of Claim 1 characterized by the above-mentioned. 前記類似度算出部は、予測対象の冷却条件に対する類似度と予測対象との時間的な類似度との積を類似度として算出することを特徴とする請求項1又は2に記載の鋼材の熱伝達係数予測装置。   The said similarity calculation part calculates the product of the similarity with respect to the cooling condition of prediction object, and the temporal similarity of prediction object as a similarity, The heat | fever of the steel materials of Claim 1 or 2 characterized by the above-mentioned. Transfer coefficient prediction device. 前記実績データベース、前記類似度算出部、前記予測式作成部、及び前記熱伝達係数予測部が処理に用いる冷却条件は、主成分分析により線形変換及び次元圧縮されたものであることを特徴とする請求項1〜3のうち、いずれか1項に記載の鋼材の熱伝達係数予測装置。   The cooling conditions used for processing by the results database, the similarity calculation unit, the prediction formula creation unit, and the heat transfer coefficient prediction unit are linearly converted and dimensionally compressed by principal component analysis. The heat transfer coefficient prediction apparatus for steel materials according to any one of claims 1 to 3. 請求項1〜4のうち、いずれか1項に記載の鋼材の熱伝達係数予測装置によって予測された鋼材と冷却媒体との間の熱伝達係数に基づいて冷却工程の冷却条件を制御するステップを含むことを特徴とする鋼材の冷却制御方法。   The step of controlling the cooling condition of the cooling process based on the heat transfer coefficient between the steel material and the cooling medium predicted by the heat transfer coefficient prediction device for steel material according to any one of claims 1 to 4. A cooling control method for steel, comprising:
JP2012161906A 2012-07-20 2012-07-20 Steel heat transfer coefficient prediction apparatus and cooling control method Active JP5962290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012161906A JP5962290B2 (en) 2012-07-20 2012-07-20 Steel heat transfer coefficient prediction apparatus and cooling control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012161906A JP5962290B2 (en) 2012-07-20 2012-07-20 Steel heat transfer coefficient prediction apparatus and cooling control method

Publications (2)

Publication Number Publication Date
JP2014018844A true JP2014018844A (en) 2014-02-03
JP5962290B2 JP5962290B2 (en) 2016-08-03

Family

ID=50194331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012161906A Active JP5962290B2 (en) 2012-07-20 2012-07-20 Steel heat transfer coefficient prediction apparatus and cooling control method

Country Status (1)

Country Link
JP (1) JP5962290B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209898A (en) * 2015-05-07 2016-12-15 新日鐵住金株式会社 Cooling control method for thick steel plate, cooling control apparatus, manufacturing method, and manufacturing apparatus
CN106269915A (en) * 2016-08-17 2017-01-04 武汉钢铁股份有限公司 A kind of ultrafast cold and hot enthalpy determines method and device
KR20190112380A (en) 2018-03-26 2019-10-07 홍성민 A cinerary urn
CN111462839A (en) * 2020-04-21 2020-07-28 浙江水利水电学院 Multiscale prediction method for thermal expansion coefficient of hardened cement mortar
US10843247B2 (en) 2014-10-10 2020-11-24 Jfe Steel Corporation Material property value estimating method, material property value estimating device, and steel-strip manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7287416B2 (en) * 2020-07-07 2023-06-06 Jfeスチール株式会社 Thick steel plate manufacturing specification determination support device, manufacturing specification search method, computer program, computer-readable recording medium, and thick steel plate manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232214A (en) * 1990-12-28 1992-08-20 Nippon Steel Corp Method and device for controlling cooling of steel plate
JP2008112288A (en) * 2006-10-30 2008-05-15 Jfe Steel Kk Prediction type creation device, result prediction device, quality design device, prediction type creation method and method for manufacturing product
JP2012081518A (en) * 2010-09-16 2012-04-26 Sumitomo Metal Ind Ltd Control method for cooling of thick steel plate, cooling controller, and method for production of thick steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232214A (en) * 1990-12-28 1992-08-20 Nippon Steel Corp Method and device for controlling cooling of steel plate
JP2008112288A (en) * 2006-10-30 2008-05-15 Jfe Steel Kk Prediction type creation device, result prediction device, quality design device, prediction type creation method and method for manufacturing product
JP2012081518A (en) * 2010-09-16 2012-04-26 Sumitomo Metal Ind Ltd Control method for cooling of thick steel plate, cooling controller, and method for production of thick steel plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10843247B2 (en) 2014-10-10 2020-11-24 Jfe Steel Corporation Material property value estimating method, material property value estimating device, and steel-strip manufacturing method
JP2016209898A (en) * 2015-05-07 2016-12-15 新日鐵住金株式会社 Cooling control method for thick steel plate, cooling control apparatus, manufacturing method, and manufacturing apparatus
CN106269915A (en) * 2016-08-17 2017-01-04 武汉钢铁股份有限公司 A kind of ultrafast cold and hot enthalpy determines method and device
CN106269915B (en) * 2016-08-17 2018-01-23 武汉钢铁有限公司 A kind of ultrafast cold and hot enthalpy determines method and device
KR20190112380A (en) 2018-03-26 2019-10-07 홍성민 A cinerary urn
CN111462839A (en) * 2020-04-21 2020-07-28 浙江水利水电学院 Multiscale prediction method for thermal expansion coefficient of hardened cement mortar
CN111462839B (en) * 2020-04-21 2023-10-13 浙江水利水电学院 Multiscale prediction method for thermal expansion coefficient of hardened cement mortar

Also Published As

Publication number Publication date
JP5962290B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5962290B2 (en) Steel heat transfer coefficient prediction apparatus and cooling control method
JP6439780B2 (en) Magnetic property prediction device and magnetic property control device for electrical steel sheet
JP5169096B2 (en) Quality prediction apparatus, quality prediction method, and product manufacturing method
KR101011546B1 (en) Prediction formula making device and prediction formula making method
JP2014038595A (en) Material prediction device and material control method for steel material
JP5516390B2 (en) Quality prediction apparatus, quality prediction method, program, and computer-readable recording medium
JP2008112288A (en) Prediction type creation device, result prediction device, quality design device, prediction type creation method and method for manufacturing product
JP5434837B2 (en) Quality prediction apparatus, quality prediction method, program, and computer-readable recording medium
JP5704040B2 (en) Product quality management method and product quality management device
JP2012081518A (en) Control method for cooling of thick steel plate, cooling controller, and method for production of thick steel plate
JP6024718B2 (en) Blast furnace heat prediction apparatus and blast furnace heat prediction method
JP2009151383A (en) Analyzer for analyzing relation between operation and quality in production process, analytical method, program, and computer-readable recording medium
JP2013080458A (en) Quality prediction device, method for determining operating condition, quality prediction method, computer program, and computer readable recording medium
KR20210110661A (en) Analysis system and analysis method
JP5853723B2 (en) Phosphorus concentration prediction device and blowing control method
JP6834209B2 (en) Product status prediction device, product status control device, product status prediction method and program
JP6662109B2 (en) Product state prediction device, product state control device, product state prediction method and program
JP5195331B2 (en) Quality prediction apparatus, prediction method, program, and computer-readable recording medium in manufacturing process
JP5167891B2 (en) Result prediction apparatus and product quality prediction method using the same
JP6003909B2 (en) Blast furnace air permeability prediction apparatus and blast furnace air permeability prediction method
JP5682131B2 (en) Steel material prediction device
JP5821656B2 (en) Quick lime concentration prediction device and blowing control method
JP2006309709A (en) Result prediction device, control device and quality design device
JP2005242818A (en) Quality effect factor analyzing method, quality forecasting method, quality control method, quality effect factor analyzing device, quality forecasting device, quality control device, quality effect factor analyzing system, quality forecasting system, quality control system, and computer program
JP4299508B2 (en) Operation and quality related analysis device in manufacturing process, related analysis method, and computer-readable storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5962290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250