JPH0763709A - Method and apparatus for measuring depth-wise assembly organization - Google Patents

Method and apparatus for measuring depth-wise assembly organization

Info

Publication number
JPH0763709A
JPH0763709A JP5215439A JP21543993A JPH0763709A JP H0763709 A JPH0763709 A JP H0763709A JP 5215439 A JP5215439 A JP 5215439A JP 21543993 A JP21543993 A JP 21543993A JP H0763709 A JPH0763709 A JP H0763709A
Authority
JP
Japan
Prior art keywords
ray
rays
sample
depth
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5215439A
Other languages
Japanese (ja)
Inventor
Toru Fujimura
亨 藤村
Michio Katayama
道雄 片山
Yuji Kobayashi
勇二 小林
Yoshio Iwasaki
吉男 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp, Kawasaki Steel Corp filed Critical Rigaku Denki Co Ltd
Priority to JP5215439A priority Critical patent/JPH0763709A/en
Publication of JPH0763709A publication Critical patent/JPH0763709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure a distribution of a depth-wise crystal orientation of various polycrystalline materials at the same position under high reliability simply in a short time without working of the material. CONSTITUTION:A lattice surface (hkl) to be measured is specified a specified angle theta of incidence is inputted into an arithmetic device 16 to irradiate a sample S supported by a goniometer 10 with X rays at the angle theta of incidence from an X-ray generator 12 and a mobile type photodetecting slit 22 with a fixed angle of photodetecting is moved parallel sequentially to positions A1-n corresponding to depths t1-tn from the surface of the sample S to measure the intensity of diffraction X rays at each position with a semiconductor detector 14. Then, the diffraction X rays are measured under the same conditions for a random oriented sample the same in composition as the sample S. A random intensity ratio is determined at a specified depth of the sample S based on the results of the measurements at photodetecting slit positions obtained from both the samples. An orientation distribution of the lattice surface is determined in the depth from the intensity ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、深さ方向集合組織の測
定方法及び装置、特に多結晶材料、例えば金属の深さ方
向の集合組織を非破壊で且つ迅速に測定することができ
る、エネルギ分散法による深さ方向集合組織の測定方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a texture in the depth direction, and more particularly to an energy method capable of nondestructively and rapidly measuring the texture in the depth direction of a polycrystalline material such as a metal. The present invention relates to a method and apparatus for measuring a texture in the depth direction by a dispersion method.

【0002】[0002]

【従来の技術】多結晶材料、特に金属の集合組織は加工
特性や磁気特性に大きな影響を及ぼすので、集合組織を
制御することは製品の品質向上を図る上で有効な手段で
ある。
2. Description of the Related Art Since the texture of a polycrystalline material, particularly a metal, has a great influence on the processing characteristics and magnetic properties, controlling the texture is an effective means for improving the quality of products.

【0003】例えば、一方向性珪素鋼板の磁気特性向上
をもたらす二次再結晶粒の(110)[001]方位へ
の集積度の向上は、鋼板表面から板厚の1/10〜1/
5深さ位置における(110)[001]方位の一次再
結晶集合組織の発達が必要である。
For example, the improvement of the degree of integration of secondary recrystallized grains in the (110) [001] orientation, which brings about the improvement of the magnetic properties of the unidirectional silicon steel sheet, is improved from the steel sheet surface to 1/10 to 1/1 of the sheet thickness.
It is necessary to develop the primary recrystallization texture of (110) [001] orientation at 5 depth positions.

【0004】又、低炭素鋼板の塑性歪み比(r 値)を向
上させるためには、{111}方位の集合組織を深さ方
向に均一に生成させなければならない。
Further, in order to improve the plastic strain ratio (r value) of the low carbon steel sheet, the texture of {111} orientation must be uniformly generated in the depth direction.

【0005】更に、フェライト系ステンレス冷延鋼板の
リジング防止のためには、{110}〈001〉方位の
再結晶集合組織を鋼板表面の奥深くまで発達させ、{1
00}〈011〉方位の圧延組織の生成を抑制すること
が重要である。
Further, in order to prevent ridging of a ferritic stainless cold rolled steel sheet, a recrystallization texture of {110} <001> orientation is developed deep into the surface of the steel sheet, and {1
It is important to suppress the formation of rolling texture in the {00} <011> orientation.

【0006】このように集合組織を高度に制御するため
には、材料表面の集合組織を測定することが必要である
ことは言うまでもなく、特に、深さ方向の集合組織の分
布を測定することが不可欠である。
Needless to say, it is necessary to measure the texture of the material surface in order to highly control the texture as described above, and in particular, it is necessary to measure the distribution of the texture in the depth direction. It is essential.

【0007】集合組織は、材料の結晶配向性を評価した
ものであり、その測定は、試料面のX線回折測定から逆
極点図又は正極点図を作成して行うのが最も一般的であ
る。
The texture is an evaluation of the crystal orientation of the material, and its measurement is most commonly made by preparing an inverse pole figure or a positive pole figure from the X-ray diffraction measurement of the sample surface. .

【0008】X線を試料面に照射する場合、X線は、試
料と相互作用して、そのエネルギに依存して数μm 〜数
百μm の試料内部まで浸透するので、X線回折測定から
得られる極点図には試料表面から回折X線の侵入深さま
での情報が含まれている。
When irradiating the sample surface with X-rays, the X-rays interact with the sample and penetrate to the inside of the sample of several μm to several hundreds of μm depending on the energy thereof. The pole figure obtained includes information from the sample surface to the penetration depth of the diffracted X-rays.

【0009】ところで、深さ方向の集合組織の分布を求
めるには、特定の深さ位置での結晶配向性の測定が必要
である。そのため、従来は、測定を行う各深さ位置で、
試料を研磨等により加工し、数十μm の厚さの薄い試験
片を作成して測定していた。ところが、このように各測
定深さ位置における材料から研磨等により試験片を作成
する方法は、その試験片の作成に多大な労力を必要とす
る上に、この方法では、材料面の同一位置から測定試料
を採取できないため、測定結果に材料面内の場所による
ばらつきが含まれるという問題があった。
By the way, in order to obtain the distribution of texture in the depth direction, it is necessary to measure the crystal orientation at a specific depth position. Therefore, conventionally, at each depth position for measurement,
The sample was processed by polishing, etc., and a thin test piece with a thickness of several tens of μm was prepared and measured. However, the method of creating a test piece from the material at each measurement depth position by polishing or the like as described above requires a great deal of labor to create the test piece, and in this method, from the same position on the material surface. Since a measurement sample cannot be collected, there is a problem in that the measurement result includes variations due to locations within the material surface.

【0010】又、深さ方向の集合組織を簡便に評価する
別な手段としては、試料断面のエッチピットから推定す
る方法があるが、この方法は、加工歪みのある試料で
は、エッチピットが転位以外の領域では現われ難く、
又、エッチピットのサイズが材料組成、腐食液組成、浸
漬時間等で敏感に変化するため、材料組織に応じたサイ
ズ制御が難しいという欠点がある。又、この方法では、
結晶配向性を定量的に評価することができないという問
題もある。
Further, as another means for easily evaluating the texture in the depth direction, there is a method of estimating from the etch pits of the sample cross section. In this method, the etch pits are dislocations in a sample having a processing strain. It is hard to appear in areas other than
Further, since the size of the etch pit sensitively changes depending on the material composition, the corrosive solution composition, the immersion time, etc., it is difficult to control the size according to the material structure. Also, with this method,
There is also a problem that the crystal orientation cannot be quantitatively evaluated.

【0011】更に、鋼板の集合組織の測定に関しては、
電磁鋼板等の集合組織を対象とした技術として、入射角
を一定の角度に固定して連続X線を照射し、該試料から
の回折X線を、入射角の2倍の位置で、且つ、回折ピー
クと検出器から生じるエスケープが重なり合う位置に固
定した半導体検出器により検出し、検出信号を波高分析
器によりエネルギ分析し、前記エスケープピークの影響
を除去して得られた各結晶格子面毎の回折X線強度か
ら、極密度分布関数を求める方法が、特開平2−145
948号公報に、又、主として表面処理鋼板を測定対象
とした技術として、表面層成分の蛍光X線強度を検出し
て表面層厚さを求め、次いで、各測定対象結晶面(hk
l)毎に、前記表面層厚さ以下、あるいは、これに近い
一定のX線侵入深さを与える設定回折角度を求め、各測
定対象結晶面毎に、回折角度を前記設定回折角度に設定
して回折強度を検出し、該検出回折強度から表面層の表
面法線方向の軸密度集合組織を測定する方法が、特公平
5−10617号公報に開示されているが、前者は深さ
方向の測定を目的としておらず、又、後者は比較的表層
部の集合組織の測定を目的としているため、いずれの方
法によっても深さ方向の集合組織を深部迄測定すること
ができない。
Further, regarding the measurement of the texture of the steel sheet,
As a technique for a texture such as an electromagnetic steel sheet, the incident angle is fixed to a constant angle and continuous X-rays are irradiated, and the diffracted X-rays from the sample are at a position twice the incident angle, and Detected by the semiconductor detector fixed at the position where the diffraction peak and the escape generated from the detector overlap, the detected signal is energy-analyzed by the wave height analyzer, and for each crystal lattice plane obtained by removing the influence of the escape peak. A method for obtaining a pole density distribution function from the intensity of diffracted X-rays is disclosed in Japanese Patent Laid-Open No. 2-145.
In Japanese Patent Laid-Open No. 948, as a technique mainly for measuring a surface-treated steel sheet, a fluorescent X-ray intensity of a surface layer component is detected to obtain a surface layer thickness, and then each measurement target crystal plane (hk
For each l), a set diffraction angle that gives a constant X-ray penetration depth that is less than or equal to the surface layer thickness is obtained, and the diffraction angle is set to the set diffraction angle for each crystal surface to be measured. A method of detecting the diffraction intensity by using the above method and measuring the axial density texture in the surface normal direction of the surface layer from the detected diffraction intensity is disclosed in Japanese Examined Patent Publication No. 5-10617. Since the latter is not intended for measurement, and the latter is intended for measuring the texture of the surface layer, the texture in the depth direction cannot be measured to the depth by any method.

【0012】そこで、本出願人は、電磁鋼板、冷延鋼板
等を測定対象とし、板厚深さ方向の集合組織の測定を可
能とする、連続X線を測定試料面に対して2種類以上の
入射角で照射し、各入射角の入射X線について検出され
た回折X線をエネルギ分光して特定の格子面からの回折
X線強度を求めると共に、上記測定試料と同一組成の無
秩序配向試料について同一の条件で上記特定の格子面か
らの回折X線強度を求め、上記各入射角について得られ
る、上記無秩序配向試料の回折X線強度に対する上記測
定試料の回折X線強度の比から、これら各入射角に対応
する特定深さ位置におけるランダム強度比を算出し、上
記ランダム強度比から厚さ方向について上記特定の格子
面の配向度の分布を求める技術を、特開平5−1999
号公報に提案している。
Therefore, the applicant of the present invention has two or more types of continuous X-rays with respect to the surface of the sample to be measured, which are capable of measuring the texture in the depth direction of the sheet by measuring electromagnetic steel sheets, cold rolled steel sheets and the like. And the diffraction X-ray detected from the incident X-rays at each incident angle is subjected to energy spectroscopy to obtain the intensity of the diffracted X-rays from a specific lattice plane, and a randomly oriented sample having the same composition as the above-mentioned measurement sample. For the incident X-ray intensities from the specific lattice plane under the same conditions, the ratio of the X-ray intensities of the measurement sample to the X-ray intensities of the disordered alignment sample obtained for each of the incident angles is calculated from A technique for calculating a random intensity ratio at a specific depth position corresponding to each incident angle and obtaining a distribution of the degree of orientation of the specific lattice plane in the thickness direction from the random intensity ratio is disclosed in JP-A-5-1999.
It is proposed in the Gazette.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記特
開平5−1999号公報に開示されている技術は、それ
自体有効であるが、本発明者等が詳細に検討した結果、
板厚深さ方向の深部まで、その集合組織を測定する際
に、深さ方向の一部の領域に測定の異常値が見られる場
合があることが明らかとなった。
However, although the technique disclosed in Japanese Patent Laid-Open No. 5-1999 is effective in itself, as a result of a detailed study by the present inventors,
It was revealed that when measuring the texture up to the deep part in the plate thickness direction, an abnormal value of the measurement may be seen in a part of the depth direction.

【0014】本発明は、前記従来の問題点を解決するべ
くなされたもので、多結晶からなる各種材料に対し、白
色(連続)X線を用いたエルネルギ分散型X線回折法に
より、材料を加工することなく短時間で且つ簡便に同一
位置における厚さ方向の結晶配向度の分布を板厚深さ方
向の深部迄正確に測定することができる深さ方向集合組
織の測定方法及び装置を提供することを課題とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and various materials made of polycrystals can be formed by the Ernergi dispersion type X-ray diffraction method using white (continuous) X-rays. A method and an apparatus for measuring a texture in the depth direction, which can accurately measure the distribution of the crystal orientation degree in the thickness direction at the same position in a short time without processing, up to the deep portion in the depth direction of the plate thickness. The task is to do.

【0015】[0015]

【課題を解決するための手段】本発明は、測定試料面に
所定の入射角で連続X線を照射し、該測定試料面の法線
に対して入射X線と対称の位置で回折X線を検出する深
さ方向集合組織の測定方法において、上記連続X線を測
定試料面に対して所定の入射角で照射し、該入射X線に
ついて得られる回折X線を、同一受光角で複数の受光位
置で検出し、エネルギ分光して特定の格子面からの回折
X線強度を求めると共に、上記測定試料と同一組成の無
秩序配向試料について同一の条件で上記特定の格子面か
らの回折X線強度を求め、上記各受光位置について得ら
れる、上記無秩序配向試料の回折X線強度に対する上記
測定試料の回折X線強度の比から、これら各受光位置に
対応する特定深さ位置におけるランダム強度比を算出
し、上記ランダム強度比から深さ方向について上記特定
の格子面の配向度の分布を求めることにより、前記課題
を解決したものである。
According to the present invention, continuous X-rays are irradiated onto a measurement sample surface at a predetermined incident angle, and diffracted X-rays are arranged at a position symmetrical to the incident X-ray with respect to the normal line of the measurement sample surface. In the method for measuring a texture in the depth direction, the continuous X-rays are irradiated onto a measurement sample surface at a predetermined incident angle, and a plurality of diffracted X-rays obtained for the incident X-rays are received at the same light receiving angle. The intensity of the diffracted X-ray from the specific lattice plane is detected by detecting the light at the light receiving position, and the intensity of the diffracted X-ray from the specific lattice plane is measured under the same conditions for the disordered orientation sample having the same composition as the measurement sample. From the ratio of the diffracted X-ray intensity of the measurement sample to the diffracted X-ray intensity of the chaotically oriented sample obtained at each of the light-receiving positions, and calculating a random intensity ratio at a specific depth position corresponding to each of the light-receiving positions. And above the random strength By obtaining the distribution of the degree of orientation of the specific lattice plane in the depth direction from the ratio is obtained by solving the above problems.

【0016】本発明は、又、上記深さ方向集合組織の測
定方法において、連続X線の所定の入射角を、該連続X
線中の特性X線に基づく回折X線が受光されない角度に
設定するようにしたものである。
The present invention also provides a method for measuring texture in the depth direction, wherein a predetermined incident angle of continuous X-rays is set to the continuous X-ray.
The angle is set so that the diffracted X-ray based on the characteristic X-ray in the line is not received.

【0017】本発明は、又、測定試料を支持し且つX線
の入射角を調整する機能を有するゴニオメータと、上記
測定試料面に照射するX線を発生するX線発生装置と、
上記測定試料面の法線について上記X線発生装置と対称
の位置に配されたエネルギ分散計数装置と、該エネルギ
分散計数装置で測定した回折X線強度に基づいて所定の
演算を行う演算装置とを備えた深さ方向集合組織の測定
装置であって、上記X線発生装置には、上記測定試料面
に対するX線のビーム幅を制限する発散スリットが設け
られ、上記エネルギ分散計数装置の前方には、同一受光
角度で平行移動する機能を有する受光スリットが設けら
れている構成としたことにより、同様に前記課題を解決
したものである。
The present invention also provides a goniometer having a function of supporting a measurement sample and adjusting an incident angle of X-rays, and an X-ray generator for generating X-rays for irradiating the surface of the measurement sample.
An energy dispersive counter arranged at a position symmetrical to the X-ray generator with respect to a normal line of the measurement sample surface, and an arithmetic unit for performing a predetermined calculation based on the diffracted X-ray intensity measured by the energy dispersive counter. And a divergence slit for limiting the beam width of the X-ray with respect to the measurement sample surface, the divergence slit being provided in front of the energy dispersion counter. The above problem is similarly solved by adopting a configuration in which a light receiving slit having a function of moving in parallel at the same light receiving angle is provided.

【0018】[0018]

【作用】本発明は、一方向性珪素鋼板及びフェライト系
ステンレス冷延鋼板等の鋼板をX線分析する際の解析精
度向上とその品質向上を図るため、本発明者等が前記特
開平5−1999号公報に開示されている技術に存在す
る、深さ方向の一部の領域に測定の異常値が見られるこ
とがあるという問題を解決するべく種々検討した結果な
されたもので、例えば、後述する図1に示すように、測
定試料Sに対して一定の入射角θで連続X線を照射する
と共に、回折角2θで回折X線を半導体検出器14で検
出する際に、所定の幅で回折X線を半導体検出器14に
導入する機能を有する可動型受光スリット22を、同一
の受光角、即ち同一の回折角2θを維持しながら平行移
動させ、2個所以上の所定位置で回折X線を分割して測
定するようにしたものである。
In order to improve the analysis accuracy and quality of X-ray analysis of steel sheets such as unidirectional silicon steel sheets and ferritic stainless steel cold-rolled steel sheets, the present invention has been made by the present inventors. This has been made as a result of various studies to solve the problem that an abnormal value of measurement may be seen in a partial region in the depth direction, which exists in the technique disclosed in 1999, for example, as described below. As shown in FIG. 1, when the measurement sample S is irradiated with continuous X-rays at a constant incident angle θ and when the semiconductor detector 14 detects the diffracted X-rays at the diffraction angle 2θ, the semiconductor detector 14 has a predetermined width. The movable type light receiving slit 22 having a function of introducing the diffracted X-rays into the semiconductor detector 14 is moved in parallel while maintaining the same light receiving angle, that is, the same diffraction angle 2θ, and the diffracted X-rays are formed at two or more predetermined positions. I also divided the measurement It is.

【0019】まず、本発明の測定原理について詳細に説
明する。
First, the measurement principle of the present invention will be described in detail.

【0020】平板の多結晶試料に入射角θで白色X線が
入射し、エネルギEhkl の入射X線に対し2θの方向に
回折するとき、深さtにある厚みdtの体積中の(hk
l)格子面からの回折X線強度は次の(1)式で記述さ
れる。
When a white X-ray is incident on a flat plate polycrystalline sample at an incident angle θ and is diffracted in the direction of 2θ with respect to the incident X-ray having energy E hkl , (hk in a volume of thickness dt at depth t)
l) The diffracted X-ray intensity from the lattice plane is described by the following equation (1).

【0021】 ΔIhkl (t)={Iohkl(θ)So (θ)/ sinθ}dt ×fhkl (t)L(θ)T(θ)Phkl hkl 2 × exp{−2μ(Ehkl )t/ sinθ} …(1)ΔI hkl (t) = {I ohkl (θ) So (θ) / sin θ} dt × f hkl (t) L (θ) T (θ) P hkl F hkl 2 × exp {-2μ (E hkl ) T / sin θ} (1)

【0022】ここで、Iohkl(θ):Thomsonの弾性散
乱強度式 So (θ) :入射X線の断面積 fhkl (t):試料面に平行に(hkl)面が配向する
結晶粒の体積分率 L(θ) :ローレンツ因子 T(θ) :デバイ・ウォーラー温度因子 Phkl :(hkl)面の多重度 Fhkl :(hkl)面の構造因子 μ(Ehkl ):エネルギEhkl のX線に対する試料の線
吸収係数
Here, I ohkl (θ): Thomson's elastic scattering intensity equation S o (θ): Cross- sectional area of incident X-ray f hkl (t): Crystal grain whose (hkl) plane is oriented parallel to the sample surface Volume fraction of L (θ): Lorentz factor T (θ): Debye-Waller temperature factor P hkl : Multiplicity of (hkl) plane F hkl : Structural factor of (hkl) plane μ (E hkl ): Energy E hkl Absorption coefficient of sample for X-ray

【0023】今、(hkl)回折面の格子面間隔をd
hkl とすると、エネルギ分散X線回折では次の(2)式
が成立するから、上記(1)式のμは入射角θの関数で
表わされる。
Now, let (d) be the lattice spacing of the (hkl) diffractive surface.
If hkl , the following expression (2) is established in energy dispersive X-ray diffraction, and therefore μ in the above expression (1) is expressed by a function of the incident angle θ.

【0024】 Ehkl =6.2/(dhkl sinθ) …(2)E hkl = 6.2 / (d hkl sin θ) (2)

【0025】十分に厚い試料の場合、受光スリットで分
割しないときに測定される回折強度は、上記(1)式の
深さtを0から∞まで積分した、次の(3)式で与えら
れる左辺に相当する。
In the case of a sufficiently thick sample, the diffraction intensity measured without division by the light-receiving slit is given by the following expression (3) obtained by integrating the depth t of expression (1) from 0 to ∞. Corresponds to the left side.

【0026】[0026]

【数1】 [Equation 1]

【0027】上記(3)式で、G(θ)は深さtに依存
しない項であり、S(θ)は次の(4)式で与えられ
る。
In the above equation (3), G (θ) is a term that does not depend on the depth t, and S (θ) is given by the following equation (4).

【0028】 S(θ)=2μ(θ)/ sinθ …(4)S (θ) = 2μ (θ) / sin θ (4)

【0029】なお、このときの回折X線の侵入深さx
は、次の(5)式に示すようにθに依存して変化する。
The penetration depth x of the diffracted X-ray at this time is x
Changes depending on θ as shown in the following equation (5).

【0030】 x =−ln (1−K)/S(θ) …(5)X = −ln (1−K) / S (θ) (5)

【0031】ここで、Kはキャリブレーション定数で、
通常0.632から0.99が使用される。
Where K is a calibration constant,
Usually, 0.632 to 0.99 is used.

【0032】又、前記(4)式のμ(θ)は、Victore
enの経験式(International Tables for X−ray C
rystallography III ,Kynoch Press,Birmingham
,(1962),p 157)により次の(6)式のよ
うに計算できる。
Further, μ (θ) in the equation (4) is Victore
en's empirical formula (International Tables for X-ray C
rystallography III, Kynoch Press, Birmingham
, (1962), p 157) can be calculated as in the following expression (6).

【0033】 μ(θ)/ρ=C(6.2/Ehkl 3 −D(6.2/Ehkl 4 +BσK-N …(6) ここで、ρ :密度 C,D,B:原子の種類と吸収端に依存する定数 σK-N :Klein−Nishinaの自由電子の散乱断面積
の式
Μ (θ) / ρ = C (6.2 / E hkl ) 3 −D (6.2 / E hkl ) 4 + Bσ KN (6) where, ρ: density C, D, B: atom Of σ KN : Klein-Nishina free electron scattering cross section

【0034】今、一例として、α−Fe の(110)面
及び(200)面の入射角θに対する侵入深さx (11
0)及びx (200)を、それぞれ表1に示す。
Now, as an example, the penetration depth x (11) with respect to the incident angle θ of the (110) plane and the (200) plane of α-Fe.
0) and x (200) are shown in Table 1, respectively.

【0035】[0035]

【表1】 [Table 1]

【0036】入射角θを15°、10°、5°、4°と
順次小さくすることにより、侵入深さは(110)面で
はそれぞれ3.5μm 、7.1μm 、23.7μm 、3
5.1μm となり、(200)面ではそれぞれ9.1μ
m 、18.4μm 、61.7μm 、91.3μm とな
り、いずれの面でも入射角θが小さくなるに従って深く
なることがわかる。
By decreasing the incident angle θ in the order of 15 °, 10 °, 5 °, and 4 °, the penetration depths are 3.5 μm, 7.1 μm, 23.7 μm, and 33.7 μm on the (110) plane, respectively.
5.1 μm, which is 9.1 μm on the (200) plane.
m, 18.4 μm, 61.7 μm, 91.3 μm, and it can be seen that the depth increases as the incident angle θ decreases on any surface.

【0037】結晶格子面(hkl)の配向度の深さ方向
の分布を求めるには、ある入射角θにおいて、上述した
侵入深さに相当するまで回折X線を受光スリットを移動
することにより分割して測定した回折強度を用いて前記
(3)式からfhkl (t)を求めることに帰結する。
In order to obtain the distribution of the orientation degree of the crystal lattice plane (hkl) in the depth direction, the diffracted X-ray is divided by moving the light-receiving slit until it corresponds to the above penetration depth at a certain incident angle θ. This results in obtaining f hkl (t) from the above equation (3) using the diffraction intensity measured by

【0038】今、入射角をθ、回折角を2θに固定し、
受光スリットが深さ0からt1 までの回折X線を測定す
る位置にあるとすると、回折強度Ihkl (t1 )は前記
(3)式から次の(7)式のように表わすことができ
る。
Now, with the incident angle fixed at θ and the diffraction angle fixed at 2θ,
Assuming that the light-receiving slit is located at a position where diffracted X-rays from depth 0 to t 1 are measured, the diffraction intensity I hkl (t 1 ) can be expressed by the following equation (7) from equation (3). it can.

【0039】[0039]

【数2】 [Equation 2]

【0040】試料表面からt1 までの(hkl)面の体
積分率をfhkl (t1 )(一定)とすると、fhkl (t
1 )は上記(7)式から次の(8)式のように計算でき
る。
If the volume fraction of the (hkl) plane from the sample surface to t 1 is f hkl (t 1 ) (constant), then f hkl (t
1 ) can be calculated from the above equation (7) as the following equation (8).

【0041】 fhkl (t1 )={Ihkl (t1 )S(θ)}/ [G(θ){1− exp(−S(θ)t1 )}]…(8)F hkl (t 1 ) = {I hkl (t 1 ) S (θ)} / [G (θ) {1-exp (−S (θ) t 1 )}] ... (8)

【0042】次に、受光スリットを移動し、深さt1
らt2 迄の回折X線を測定し、その間の(hkl)面の
体積分率をfhkl (t2 )とすると、回折強度I
hkl (t2)は、同様に次の(9)式となるから、体積
分率fhkl (t2 )は下記(10)式で与えられる。
Next, the light receiving slit is moved to measure the diffracted X-rays from the depths t 1 to t 2 , and the volume fraction of the (hkl) plane between them is f hkl (t 2 ). I
Since hkl (t 2 ) is similarly expressed by the following equation (9), the volume fraction f hkl (t 2 ) is given by the following equation (10).

【0043】[0043]

【数3】 [Equation 3]

【0044】 fhkl (t2 )={Ihkl (t2 )S(θ)}/[G(θ) ×{ exp(−S(θ)t1 )− exp(−S(θ)t2 )}] …(10)F hkl (t 2 ) = {I hkl (t 2 ) S (θ)} / [G (θ) × {exp (−S (θ) t 1 ) − exp (−S (θ) t 2 )}]… (10)

【0045】同様に深さtn まで測定を行うことによ
り、深さtn-1 とtn の間の(hkl)面の体積分率f
hkl (tn )を、次の(11)式のように求めることが
できる。但し、n ≧1、t0 =0である。
[0045] Similarly depth t by measuring to n, the depth t n-1 and t n between (hkl) plane of the volume fraction f
hkl (t n ) can be calculated by the following equation (11). However, n ≧ 1 and t 0 = 0.

【0046】 fhkl (tn )={Ihkl (tn )S(θ)}/[G(θ) ×{ exp(−S(θ)tn-1 )− exp(−S(θ)tn )}] …(11)F hkl (t n ) = {I hkl (t n ) S (θ)} / [G (θ) × {exp (−S (θ) t n−1 ) − exp (−S (θ) t n )}] (11)

【0047】以上詳述したと同じ測定を無秩序配向試料
についても実行する。
The same measurements as detailed above are performed on a randomly oriented sample.

【0048】無秩序配向試料では、深さ方向の結晶配向
度の分布が一定であるから、(hkl)面の体積分率f
hkl (t)=C′(一定)である。よって、入射角θ、
回折角2θに固定し、受光スリットを移動して測定した
深さtn-1 からtn 迄に対応する無秩序配向試料の回折
強度IRhkl(tn )は次の(12)式となる。
Since the distribution of the crystal orientation degree in the depth direction is constant in the disorderly oriented sample, the volume fraction f of the (hkl) plane is f.
hkl (t) = C '(constant). Therefore, the incident angle θ,
The diffraction intensity I Rhkl (t n ) of the disordered orientation sample corresponding to the depths t n-1 to t n measured by fixing the diffraction angle 2θ and moving the light receiving slit is given by the following expression (12).

【0049】 IRhkl(tn )=C′G(θ){ exp(−S(θ)tn-1 ) − exp(−S(θ)tn )}/S(θ) …(12)I Rhkl (t n ) = C′G (θ) {exp (−S (θ) t n−1 ) −exp (−S (θ) t n )} / S (θ) (12)

【0050】上記(12)式を、前記(11)式に代入
すると、深さtn-1 からtn 迄の間の、無秩序配向試料
に対する試料の体積分率の比(特定深さでのランダム強
度比)Phkl (tn )は、次の(13)式によって決定
することができる。
By substituting the equation (12) into the equation (11), the ratio of the volume fraction of the sample to the disorderly oriented sample between the depths t n-1 and t n (at a specific depth) The random intensity ratio) P hkl (t n ) can be determined by the following equation (13).

【0051】 Phkl (tn )=Ihkl (tn )/IRhkl(tn ) …(13)P hkl (t n ) = I hkl (t n ) / I Rhkl (t n ) ... (13)

【0052】上記(13)式により、特定深さ位置での
ランダム強度比を計算で求めることにより、深さ方向に
ついて特定の格子面配向度の分布を求めることができ
る。
The distribution of the specific degree of lattice plane orientation in the depth direction can be obtained by calculating the random intensity ratio at the specific depth position by the equation (13).

【0053】なお、受光スリット位置Aと深さtの関係
は、次の(14)式で求めることができる。但し、Aは
t=0のときにおける2θ方向への回折X線を受光する
位置を原点とする距離である。
The relationship between the light receiving slit position A and the depth t can be obtained by the following equation (14). However, A is the distance with the origin being the position for receiving the diffracted X-rays in the 2θ direction when t = 0.

【0054】 t=A/(2cos θ) …(14)T = A / (2cos θ) (14)

【0055】次に、本発明によれば、板厚深さ方向の全
領域で、信頼性が高い測定値が得られる理由を説明す
る。
Next, according to the present invention, the reason why highly reliable measured values can be obtained in the entire region in the thickness depth direction will be described.

【0056】一般に、深さ方向深部迄の集合組織の測定
を目的とする場合、X線強度が大きなモリブデン(Mo
)、タングステン(W)等のターゲットを用いる。
Generally, for the purpose of measuring the texture up to the deep part in the depth direction, molybdenum (Mo
), A target such as tungsten (W) is used.

【0057】前記特開平5−1999号公報に開示され
ている従来法のように2種類以上の入射角を用いる場合
に深さ方向の一部の領域に測定の異常値が見られる原因
を、詳細に検討した結果、その原因が、エネルギの大き
な連続X線を用いる場合、その連続X線中に存在する特
性X線の影響であることが明らかとなった。
When two or more types of incident angles are used as in the conventional method disclosed in the above-mentioned Japanese Patent Laid-Open No. 5-1999, the cause of the abnormal value of measurement being observed in a partial area in the depth direction is as follows. As a result of detailed examination, it has been clarified that the cause is the influence of the characteristic X-rays existing in the continuous X-rays when the continuous X-rays with large energy are used.

【0058】即ち、例えばMo をX線のターゲットとし
て用いた場合、そのX線の発生プロファイルには連続X
線と共に、Mo Kα1 線(波長0.7093Å)等の特
性X線を含んでいる。
That is, for example, when Mo is used as an X-ray target, the continuous X-ray is generated in the X-ray generation profile.
Along with the lines, characteristic X-rays such as Mo Kα 1 line (wavelength 0.7093Å) are included.

【0059】一例としてα−Fe の(200)面(面間
隔d200 =1.4332Å)を測定する場合を考える
と、次の(15)式で表わされるブラッグの回折の式よ
り、d、λにそれぞれd200 =1.4332ÅとMo K
α1 線の波長0.7093Åを代入すると、n=1のと
きθ=14.3°となり、2θ=28.6°で回折線が
生じる。この強度は、特性X線以外の連続X線に対して
数倍〜数十倍の強さを有しているため、特性X線及びそ
の近傍の波長のデータに影響を与え、この波長に対応す
る深さ及びその近傍の配向度測定データの誤差を生じさ
せる。なお、この波長に対応する深さは、前記(5)式
より侵入深さとして求めることができ、この例では、1
0μm となる。
As an example, considering the case of measuring the (200) plane of α-Fe (plane spacing d 200 = 1.4332Å), d and λ can be calculated from the Bragg diffraction equation represented by the following equation (15). And d 200 = 1.4332Å and Mo K respectively
Substituting the wavelength 0.7093Å of the α 1 line, θ = 14.3 ° when n = 1, and a diffraction line occurs at 2θ = 28.6 °. Since this intensity is several to several tens of times stronger than continuous X-rays other than the characteristic X-ray, it affects the characteristic X-ray and the wavelength data in the vicinity thereof, and corresponds to this wavelength. This causes an error in the orientation measurement data of the depth to be moved and its vicinity. The depth corresponding to this wavelength can be obtained as the penetration depth from the equation (5), and in this example, 1
It becomes 0 μm.

【0060】2dsin θ= nλ …(15) d:格子面間隔 θ:入射角 n :反射次数 λ:入射X線の波長2 dsin θ = nλ (15) d: lattice spacing θ: incident angle n: reflection order λ: incident X-ray wavelength

【0061】そこで、本発明では、上記のような配向度
測定データの誤差を生じさせる入射角以外で、且つ目的
とする深さまでのX線の侵入深さが得られる入射角を、
前記(5)式及び(15)式で計算により求めて予め設
定することができるようにした。このようにする場合に
は、生じた回折X線を受光スリットにより分割して、深
さに対応した強度変化を得るようにできるので、前述の
ような特性X線による誤差を含まない配向度の測定デー
タを得ることができる。
Therefore, in the present invention, an incident angle other than the above-mentioned incident angle that causes an error in the orientation degree measurement data, and an incident angle at which the penetration depth of X-rays up to a target depth is obtained,
It is made possible to obtain the values by calculation using the equations (5) and (15) and set them in advance. In this case, the generated diffracted X-rays can be divided by the light-receiving slit to obtain the intensity change corresponding to the depth, so that the degree of orientation that does not include the error due to the characteristic X-ray as described above can be obtained. Measurement data can be obtained.

【0062】又、前記従来法では、入射角を変化させる
ことにより深さ方向の測定を行っているが、浅い部分を
測定するには連続X線のうちで低エネルギ側のX線を必
要とする。ところが、通常のX線のターゲットを使用し
た場合は、約10K eV以下の低エネルギ側のX線は強
度が弱いため、後述する図6に示すように、深さ0〜1
0μm の浅い領域では正確な測定ができない部分が生じ
ていた。
Further, in the conventional method, the depth direction is measured by changing the incident angle, but the X-ray on the low energy side is required among the continuous X-rays to measure the shallow portion. To do. However, when an ordinary X-ray target is used, the intensity of X-rays on the low energy side of about 10 K eV or less is weak, and as shown in FIG.
In the shallow region of 0 μm, there was a portion where accurate measurement could not be performed.

【0063】これに対し、本発明では、後述する図5に
示すように、浅い部分から深い部分まで異常値が生じる
ことなく正確に測定することが可能となった。
On the other hand, according to the present invention, as shown in FIG. 5, which will be described later, it is possible to accurately measure from a shallow portion to a deep portion without generating an abnormal value.

【0064】[0064]

【実施例】以下、図面を参照して、本発明の実施例を詳
細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0065】本実施例は、X線のターゲットがMo 、管
電圧が60 kV、管電流が300 mA、発散スリット及
び受光スリットの幅が0.05mm、X線の入射角(θ)
が4°、X線の回折角(2θ)が8°、測定時間が各測
定深さで1000秒の条件で行った。
In this embodiment, the X-ray target is Mo, the tube voltage is 60 kV, the tube current is 300 mA, the widths of the divergence slit and the light receiving slit are 0.05 mm, and the X-ray incident angle (θ).
Is 4 °, the X-ray diffraction angle (2θ) is 8 °, and the measurement time is 1000 seconds at each measurement depth.

【0066】図1は、本発明に係る一実施例の深さ方向
集合組織の測定装置を示す概略構成図である。
FIG. 1 is a schematic block diagram showing a measuring apparatus for texture in the depth direction according to an embodiment of the present invention.

【0067】本実施例の深さ方向集合組織の測定装置
は、測定試料Sを支持し、且つ該試料Sの表面に照射す
るX線の入射角を調整する機能を有するゴニオメータ1
0と、高出力且つ高エネルギの白色X線を発生させるこ
とができる回転対陰極型X線発生装置12と、上記試料
Sからの回折X線を測定する半導体検出器(エネルギ分
散計数装置)14と、該半導体検出器14で検出された
回折X線について所定の演算を行う演算装置16とを備
えている。
The depth direction texture measuring apparatus of the present embodiment supports the measurement sample S and has a function of adjusting the incident angle of the X-rays irradiated on the surface of the sample S.
0, a rotating anticathode type X-ray generator 12 capable of generating high-power and high-energy white X-rays, and a semiconductor detector (energy dispersion counter) 14 for measuring the diffracted X-rays from the sample S. And a calculation device 16 for performing a predetermined calculation on the diffracted X-rays detected by the semiconductor detector 14.

【0068】上記ゴニオメータ10にはゴニオメータ制
御装置18が接続され、上記演算装置16からの指令に
より、X線の入射角θを任意に変更することが可能とな
っている。
A goniometer control device 18 is connected to the goniometer 10, and the incident angle θ of the X-ray can be arbitrarily changed by a command from the arithmetic device 16.

【0069】又、上記半導体検出器14は、測定試料S
の測定面の法線について上記X線発生装置12と対称の
位置に配設されており、上記測定面に対して入射角θで
X線が照射されると、回折角2θの回折X線を受光し、
検出することが可能となっている。
Further, the semiconductor detector 14 is the measurement sample S.
Is arranged at a position symmetrical to the X-ray generator 12 with respect to the normal line of the measurement surface, and when the measurement surface is irradiated with X-rays at an incident angle θ, a diffracted X-ray with a diffraction angle 2θ is generated. Receive light,
It is possible to detect.

【0070】上記X線発生装置12には、前記測定試料
Sの表面に照射するX線のビーム幅を絞るための発散ス
リット20が付設され、又、上記半導体検出器14の前
方には、受光する回折X線に対して所定のスリット幅
で、受光角を維持したままその位置を平行移動すること
ができる可動型受光スリット22が付設されている。こ
の受光スリット22は、前記演算装置16から入力され
る信号に基づいてスリット制御装置24により適切に制
御されるようになってる。
The X-ray generator 12 is provided with a divergence slit 20 for narrowing the beam width of the X-rays which irradiate the surface of the measurement sample S. Further, in front of the semiconductor detector 14, a light receiving beam is received. A movable light-receiving slit 22 having a predetermined slit width for the diffracted X-rays and capable of moving its position in parallel while maintaining the light-receiving angle is additionally provided. The light receiving slit 22 is appropriately controlled by the slit controller 24 based on the signal input from the arithmetic unit 16.

【0071】又、上記半導体検出器14で検出した信号
は、前置増幅器26及び多重型波高分析器28を介して
前記演算装置16に入力されるようになっている。
The signal detected by the semiconductor detector 14 is input to the arithmetic unit 16 via the preamplifier 26 and the multiple wave height analyzer 28.

【0072】上述した本実施例装置では、測定試料Sの
測定深さに対応して受光スリット22が平行移動するよ
うに制御される。その際、受光スリット22の移動は、
移動手段としてパルスモータを用いて数μm 〜数十μm
の間隔で行われるようになっている。但し、受光スリッ
ト22の移動手段はパルスモータに限定されない。
In the apparatus of this embodiment described above, the light-receiving slit 22 is controlled so as to move in parallel according to the measurement depth of the measurement sample S. At that time, the movement of the light receiving slit 22 is
Using a pulse motor as a moving means, several μm to several tens of μm
It is supposed to be done at intervals. However, the moving means of the light receiving slit 22 is not limited to the pulse motor.

【0073】次に、上記測定装置を用いて行う本実施例
方法を、図2、図3のフローチャートに従って説明す
る。
Next, the method of this embodiment performed by using the above measuring apparatus will be described with reference to the flow charts of FIGS.

【0074】まず、測定条件を決めるために、測定する
格子面(hkl)を指定し、前記(6)式の定数C,
D,B、密度ρ及び入射角θを演算装置16に入力する
(ステップ110〜114)。
First, in order to determine the measurement conditions, the lattice plane (hkl) to be measured is specified, and the constant C,
D, B, the density ρ, and the incident angle θ are input to the arithmetic unit 16 (steps 110 to 114).

【0075】次に、前記(6)式から入射角θにおける
試料の線吸収係数μ(θ)を計算し、(4)式及び
(5)式により侵入深さx を計算し(ステップ11
6)、受光スリット22の位置A1 〜An を入力し(ス
テップ118)、更に前記(14)式から受光スリット
位置A1 〜An に対応する測定深さt1 〜tn を計算す
る(ステップ120)。算出した深さtの条件が適切で
あるか否かを判断し、それが不適切のときには、上記ス
テップ118に戻って受光スリット位置Aを入力し直
し、再度測定深さtを計算する(ステップ122、12
4)。
Next, the linear absorption coefficient μ (θ) of the sample at the incident angle θ is calculated from the equation (6), and the penetration depth x is calculated from the equations (4) and (5) (step 11
6) The positions A 1 to A n of the light receiving slit 22 are input (step 118), and the measurement depths t 1 to t n corresponding to the light receiving slit positions A 1 to A n are calculated from the equation (14). (Step 120). It is judged whether or not the condition of the calculated depth t is appropriate, and if it is inappropriate, the process returns to step 118, the light receiving slit position A is input again, and the measurement depth t is calculated again (step 122, 12
4).

【0076】上記深さtの条件が適切であれば、その入
射角θを測定条件として設定し、受光スリット位置A1
からX線回折測定を開始する。その際、まず、A1 <A
2 <・・・<An であることを確認する(ステップ12
6)。
If the condition of the depth t is appropriate, the incident angle θ is set as the measurement condition, and the light receiving slit position A 1
The X-ray diffraction measurement is started from. At that time, first, A 1 <A
Confirm that 2 <... <A n (step 12)
6).

【0077】次いで、ゴニオメータ10を所定の入射角
θに設定し(ステップ128)、受光スリット22の位
置を設定した後(ステップ130)、回折X線強度の計
数(測定)を実行する(ステップ132)。
Next, the goniometer 10 is set to a predetermined incident angle θ (step 128), the position of the light-receiving slit 22 is set (step 130), and then the diffraction X-ray intensity is counted (measured) (step 132). ).

【0078】その後、受光スリット位置Aが最大の受光
スリット位置An であるか否かを判定し(ステップ13
4、136)、A=An でない場合は上記ステップ13
0に戻り、受光スリット22を次の受光スリット位置に
設定し、同様の操作を実行する。
Thereafter, it is judged whether or not the light receiving slit position A is the maximum light receiving slit position A n (step 13).
4, 136), and if A = A n is not satisfied, the above step 13 is performed.
Returning to 0, the light receiving slit 22 is set to the next light receiving slit position, and the same operation is executed.

【0079】A=An であれば、即ち試料Sについて受
光スリット位置が最小のA1 から最大のAn までのX線
回折の測定が終了したら、上記測定試料Sと同じ組成を
持つ無秩序配向試料に交換し(ステップ138、14
0)、該試料について、測定試料Sと同じ条件で前記ス
テップ130〜136に従ってX線回折の測定を行う。
When A = A n , that is, when the measurement of the X-ray diffraction from the minimum A 1 of the light receiving slit position to the maximum A n of the sample S is completed, the disordered orientation having the same composition as the measurement sample S is obtained. Replace with sample (steps 138, 14
0), X-ray diffraction measurement is performed on the sample under the same conditions as the measurement sample S according to steps 130 to 136.

【0080】上述の如く、測定試料Sと無秩序配向試料
について、各受光スリット位置A1〜An で測定した回
折強度は、前記多重型波高分析器28によって、指定し
てある(hkl)面の積分強度(ピーク面積)又はピー
ク高さとして読み取り、その結果を演算装置16に記憶
させる。
As described above, the diffraction intensity measured at each of the light-receiving slit positions A 1 to A n of the measurement sample S and the disordered orientation sample has the (hkl) plane specified by the multiple wave height analyzer 28. The integrated intensity (peak area) or peak height is read and the result is stored in the arithmetic unit 16.

【0081】X線回折測定が全て終了した後(ステップ
142)、上記演算装置16において前記(13)式か
ら深さt1 〜tn 位置におけるランダム強度Phkl (t
1 )〜Phkl (tn )の計算を行い、所定の(hkl)
面の深さ方向の配向度分布を出力することにより、深さ
方向集合組織の測定が終了する(ステップ144、14
6)。
After all the X-ray diffraction measurement is completed (step 142), the random intensity P hkl (t at the depth t 1 -t n position in the arithmetic unit 16 is calculated from the equation (13).
1 ) to P hkl (t n ) are calculated and predetermined (hkl)
By outputting the orientation distribution in the depth direction of the surface, the measurement of the texture in the depth direction is completed (steps 144, 14).
6).

【0082】本実施例を一方向性珪素鋼板の脱炭・一次
再結晶焼鈍後の試料に適用した場合の測定条件とその結
果を、(110)面について表2に、(200)面につ
いて表3にそれぞれ示した。
The measurement conditions and the results when this embodiment was applied to the decarburized / primary recrystallization annealed samples of unidirectional silicon steel sheet are shown in Table 2 for the (110) plane and for the (200) plane. 3 respectively.

【0083】[0083]

【表2】 [Table 2]

【0084】[0084]

【表3】 [Table 3]

【0085】又、図4には、Mo をX線のターゲットと
して用いた場合の(110)面及び(200)面の深さ
方向の配向度分布の出力結果をそれぞれ示した。
Further, FIG. 4 shows the output results of the orientation degree distributions in the depth direction of the (110) plane and the (200) plane when Mo is used as an X-ray target.

【0086】この図4から、本実施例によれば、Mo を
X線のターゲットとして用いた場合でも、深さ方向に測
定の異常値が見られないことがわかる。
From this FIG. 4, it can be seen that according to the present embodiment, even when Mo is used as the X-ray target, no abnormal value is observed in the depth direction.

【0087】又、図5及び図6には、Mo をX線のター
ゲットとして、本発明方法(スリットスキャン法)及び
従来方法(入射角変更法)を用いて、冷延鋼板について
α−Fe (200)面を測定した結果をそれぞれ示し
た。
Further, in FIGS. 5 and 6, using Mo as an X-ray target and using the method of the present invention (slit scan method) and the conventional method (incident angle changing method), α-Fe ( The results of measuring the (200) plane are shown.

【0088】上記図6より、従来方法では深さ10μm
前後の部分にMo ターゲットによる特性X線に基づく異
常値が見られるが、これに対して本発明では、鋼板の深
さ方向の浅い部分(表面)から深部まで異常値が生じる
ことなく、正確に測定することが可能であることがわか
る。
As shown in FIG. 6, the conventional method has a depth of 10 μm.
Although abnormal values based on the characteristic X-rays due to the Mo target are seen in the front and rear portions, in the present invention, abnormal values do not occur accurately from the shallow portion (surface) in the depth direction of the steel sheet to the deep portion, and are accurate. It turns out that it is possible to measure.

【0089】以上詳述した如く、本実施例によれば、試
料を特別に加工することなく、即ち、非破壊で、短時間
で且つ簡便に、同一位置における深さ方向について、多
結晶材料の任意の格子面の結晶配向度を高精度で求める
ことができる。
As described in detail above, according to the present embodiment, the polycrystalline material can be formed in the depth direction at the same position without special processing, that is, nondestructively, in a short time and simply. The degree of crystal orientation of any lattice plane can be obtained with high accuracy.

【0090】以上、本発明について具体的に説明した
が、本発明は、前記実施例に示したものに限られるもの
でなく、その要旨を逸脱しない範囲で種々変更可能であ
る。
The present invention has been specifically described above, but the present invention is not limited to the above-mentioned embodiments, and various modifications can be made without departing from the scope of the invention.

【0091】例えば、前記多重型波高分析器28で回折
強度を測定する場合は、試料からの蛍光X線を計数しな
いように、該多重波高分析器28のエネルギ・ウィンド
ウ幅を必要最小限に設定しておけば、半導体検出器14
の検出効率を上げることができると共に、計数値の読み
取り時間も早くすることができることは言うまでもな
い。
For example, when the diffraction intensity is measured by the multiple wave height analyzer 28, the energy window width of the multiple wave height analyzer 28 is set to a necessary minimum so as not to count the fluorescent X-rays from the sample. The semiconductor detector 14
It goes without saying that the detection efficiency of can be improved and the count value reading time can be shortened.

【0092】又、測定される回折X線に試料からの蛍光
X線が重なるときは、受光スリット22の直前又は直後
に、又、X線管球からの固有X線が重なるときは、発散
スリット20の直前又は直後に、それぞれ適切なフィル
タを設置してもよい。
When the fluorescent X-rays from the sample overlap the measured diffracted X-rays, immediately before or after the light-receiving slit 22, and when the characteristic X-rays from the X-ray tube overlap, the divergence slit. A suitable filter may be installed immediately before or after 20.

【0093】[0093]

【発明の効果】以上説明した通り、本発明によれば、多
結晶材料を加工することなく短時間で且つ簡便に、同一
位置における厚さ方向について任意の格子面の結晶配向
度の分布を、高信頼性の下で測定することができるとい
う優れた効果が得られる。
As described above, according to the present invention, the distribution of the degree of crystal orientation of an arbitrary lattice plane in the thickness direction at the same position can be easily obtained in a short time without processing a polycrystalline material. The excellent effect that it can be measured with high reliability is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の集合組織の測定装置を
示す概略構成図
FIG. 1 is a schematic configuration diagram showing a texture measuring apparatus according to an embodiment of the present invention.

【図2】本発明に係る一実施例方法の前段部分を示すフ
ローチャート
FIG. 2 is a flowchart showing a front part of an embodiment method according to the present invention.

【図3】上記実施例方法の後段部分を示すフローチャー
FIG. 3 is a flowchart showing a latter part of the method of the above embodiment.

【図4】上記実施例による深さ方向における配向度分布
の測定結果を示す線図
FIG. 4 is a diagram showing the measurement results of the orientation degree distribution in the depth direction according to the above example.

【図5】本発明方法による測定結果と深さの関係を示す
線図
FIG. 5 is a diagram showing the relationship between the measurement result and the depth by the method of the present invention.

【図6】従来方法による測定結果と深さの関係を示す線
FIG. 6 is a diagram showing a relationship between a measurement result and a depth by a conventional method.

【符号の説明】[Explanation of symbols]

10…ゴニオメータ 12…X線発生装置 14…半導体検出器 16…演算装置 18…ゴニオメータ制御装置 20…発散スリット 22…可動型受光スリット 24…可動型受光スリット制御装置 26…前置増幅器 28…多重型波高分析器 10 ... Goniometer 12 ... X-ray generator 14 ... Semiconductor detector 16 ... Arithmetic device 18 ... Goniometer controller 20 ... Divergence slit 22 ... Movable type light receiving slit 24 ... Movable type light receiving slit controller 26 ... Preamplifier 28 ... Multiplex type Wave height analyzer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片山 道雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 小林 勇二 東京都昭島市松原町三丁目9番12号 理学 電機株式会社拝島工場内 (72)発明者 岩崎 吉男 東京都昭島市松原町三丁目9番12号 理学 電機株式会社拝島工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michio Katayama 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Technical Research Division (72) Inventor Yuji Kobayashi 3-9-12 Matsubara-cho, Akishima-shi, Tokyo No. Rigaku Denki Co., Ltd. Haijima Factory (72) Inventor Yoshio Iwasaki 3-9-12 Matsubara-cho, Akishima-shi, Tokyo Rigaku Denki Co., Ltd. Haijima Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】測定試料面に所定の入射角で連続X線を照
射し、該測定試料面の法線に対して入射X線と対称の位
置で回折X線を検出する深さ方向集合組織の測定方法に
おいて、 上記連続X線を測定試料面に対して所定の入射角で照射
し、 該入射X線について得られる回折X線を、同一受光角で
複数の受光位置で検出し、エネルギ分光して特定の格子
面からの回折X線強度を求めると共に、 上記測定試料と同一組成の無秩序配向試料について同一
の条件で上記特定の格子面からの回折X線強度を求め、 上記各受光位置について得られる、上記無秩序配向試料
の回折X線強度に対する上記測定試料の回折X線強度の
比から、これら各受光位置に対応する特定深さ位置にお
けるランダム強度比を算出し、 上記ランダム強度比から深さ方向について上記特定の格
子面の配向度の分布を求めることを特徴とする深さ方向
集合組織の測定方法。
1. A texture in the depth direction for irradiating a measurement sample surface with continuous X-rays at a predetermined incident angle and detecting diffracted X-rays at a position symmetrical to the incident X-rays with respect to the normal line of the measurement sample surface. In the above measuring method, the continuous X-rays are irradiated onto the surface of the measurement sample at a predetermined incident angle, and the diffracted X-rays obtained from the incident X-rays are detected at a plurality of light receiving positions at the same light receiving angle, and the energy spectrum Then, the intensity of the diffracted X-ray from the specific lattice plane is determined, and the intensity of the diffracted X-ray from the specific lattice plane is determined under the same conditions for the disordered orientation sample having the same composition as the measurement sample. From the obtained ratio of the diffraction X-ray intensity of the measurement sample to the diffraction X-ray intensity of the disordered sample, a random intensity ratio at a specific depth position corresponding to each of these light receiving positions is calculated. In the direction Method of measuring the depth direction texture and obtains the degree of orientation of the distribution of the specific lattice plane.
【請求項2】請求項1において、 前記連続X線の所定の入射角を、該連続X線中の特性X
線に基づく回折X線が受光されない角度に設定すること
を特徴とする深さ方向集合組織の測定方法。
2. The method according to claim 1, wherein a predetermined incident angle of the continuous X-ray is set to a characteristic X in the continuous X-ray.
A method for measuring a texture in the depth direction, which is characterized by setting an angle at which a diffracted X-ray based on a line is not received.
【請求項3】測定試料を支持し且つX線の入射角を調整
する機能を有するゴニオメータと、上記測定試料面に照
射するX線を発生するX線発生装置と、上記測定試料面
の法線について上記X線発生装置と対称の位置に配され
たエネルギ分散計数装置と、該エネルギ分散計数装置で
測定した回折X線強度に基づいて所定の演算を行う演算
装置とを備えた深さ方向集合組織の測定装置であって、 上記X線発生装置には、上記測定試料面に対するX線の
ビーム幅を制限する発散スリットが設けられ、 上記エネルギ分散計数装置の前方には、同一受光角度で
平行移動する機能を有する受光スリットが設けられてい
ることを特徴とする深さ方向集合組織の測定装置。
3. A goniometer having a function of supporting a measurement sample and adjusting an incident angle of X-rays, an X-ray generator for generating X-rays for irradiating the measurement sample surface, and a normal line of the measurement sample surface. Regarding the above-mentioned X-ray generator, an energy dispersive counter arranged at a position symmetrical to the X-ray generator, and a calculator in the depth direction including a calculator for performing a predetermined calculation based on the diffracted X-ray intensity measured by the energy dispersive counter. A tissue measuring apparatus, wherein the X-ray generator is provided with a divergence slit that limits the beam width of the X-ray with respect to the measurement sample surface, and is parallel to the front of the energy dispersion counter at the same light-receiving angle. A depth direction texture measuring device characterized in that a light receiving slit having a function of moving is provided.
JP5215439A 1993-08-31 1993-08-31 Method and apparatus for measuring depth-wise assembly organization Pending JPH0763709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5215439A JPH0763709A (en) 1993-08-31 1993-08-31 Method and apparatus for measuring depth-wise assembly organization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5215439A JPH0763709A (en) 1993-08-31 1993-08-31 Method and apparatus for measuring depth-wise assembly organization

Publications (1)

Publication Number Publication Date
JPH0763709A true JPH0763709A (en) 1995-03-10

Family

ID=16672373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5215439A Pending JPH0763709A (en) 1993-08-31 1993-08-31 Method and apparatus for measuring depth-wise assembly organization

Country Status (1)

Country Link
JP (1) JPH0763709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380880A (en) * 2018-12-28 2020-07-07 中国兵器工业第五九研究所 Diffraction device and method for nondestructive testing of crystal orientation uniformity inside workpiece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380880A (en) * 2018-12-28 2020-07-07 中国兵器工业第五九研究所 Diffraction device and method for nondestructive testing of crystal orientation uniformity inside workpiece
CN111380880B (en) * 2018-12-28 2023-04-07 中国兵器工业第五九研究所 Diffraction device and method for nondestructive testing of crystal orientation uniformity inside workpiece

Similar Documents

Publication Publication Date Title
Sato et al. A Rietveld-type analysis code for pulsed neutron Bragg-edge transmission imaging and quantitative evaluation of texture and microstructure of a welded α-iron plate
Allen et al. Measurement of internal stress within bulk materials using neutron diffraction
KR101275532B1 (en) Apparatus and method for analysis of a sample having a surface layer
US7231016B2 (en) Efficient measurement of diffuse X-ray reflections
US6173036B1 (en) Depth profile metrology using grazing incidence X-ray fluorescence
JP7201825B2 (en) Diffraction device and method for non-destructive inspection of crystal orientation uniformity inside work
JP2005515474A (en) X-ray diffraction method
JP2005515474A6 (en) X-ray diffraction method
US5272746A (en) Method of evaluating a degree of fatigue in a structural material
US2521772A (en) Method of determining the thickness of a metal coating on a metal base
JPH0566204A (en) Total-reflection fluorescent x-ray analyzer
JPH051999A (en) Measurement method and device for complex structure
US20220412901A1 (en) Device and method for measuring short-wavelength characteristic x-ray diffraction based on array detection
JPH0763709A (en) Method and apparatus for measuring depth-wise assembly organization
JPS649575B2 (en)
Szpunar et al. Application of the Energy Dispersive X-Ray Diffraction Method to Texture Measurements
JPH09178675A (en) Measuring method for aggregate texture in depth direction
JPH0237539B2 (en)
Black et al. Three dimensional strain measurements with x-ray energy dispersive spectroscopy
JPH0288952A (en) Method and device for analyzing tissue
JPS6259256B2 (en)
JP3127875B2 (en) Total reflection X-ray fluorescence analysis method and apparatus
JPH02145948A (en) Measurement of texture by energy scattering
JPS6259255B2 (en)
Weissmann Characterization of lattice defects and concomitant strain distribution