JPH07207440A - Method and device for forming reactive sputtering film - Google Patents

Method and device for forming reactive sputtering film

Info

Publication number
JPH07207440A
JPH07207440A JP365594A JP365594A JPH07207440A JP H07207440 A JPH07207440 A JP H07207440A JP 365594 A JP365594 A JP 365594A JP 365594 A JP365594 A JP 365594A JP H07207440 A JPH07207440 A JP H07207440A
Authority
JP
Japan
Prior art keywords
gas
film
sputtering
voltage
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP365594A
Other languages
Japanese (ja)
Inventor
Hisashi Osaki
壽 大崎
Kazuo Kadowaki
一生 門脇
Hiromichi Nishimura
啓道 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP365594A priority Critical patent/JPH07207440A/en
Publication of JPH07207440A publication Critical patent/JPH07207440A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To surely form a film with desired quality at a desired film forming rate by a reactive sputtering method by controlling the sputtering conditions according to the output result from a data processing device which determines functional relations between voltage applied on the sputtering device, electric current and power. CONSTITUTION:A target 1b comprised of Sn, Zn, In, Ti and other metal is mounted on an electrode 1a in a sputtering chamber 1, and a substrate 1d where the film is to be formed is disposed on an electrode 1c facing to the target. The sputtering chamber 1 is evacuated with an evacuating device 5, while the mixture gas of reactive gas such as oxygen and rare gas such as Ar is supplied from a gas introducing device. Voltage is applied between electrodes 1a and 1c from a power source 2 to generate plasma and to form a film of metal oxide or the like produced from the target metal and the reactive gas, on the substrate 1d. In this method, functional relations between at least two among the voltage, current and power applied on the electrodes 1a and 1c are obtd. with a data processing device 4 and controlling signals are sent from the data processing device 4 to the power source 2 and the gas introducing device 3 according to the preliminarily determined conditions to properly control the sputtering conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反応性スパッタ法によ
る成膜方法、及び、成膜装置に関し、詳しくは、成膜を
行う際に、プラズマの電流−電圧特性を求め、これによ
り、得られる膜の品質を管理し、なおかつ、所望の成膜
速度で成膜を行う方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming method by a reactive sputtering method and a film forming apparatus. More specifically, when forming a film, the current-voltage characteristics of plasma are obtained, and the The present invention relates to a method of controlling the quality of a formed film and forming a film at a desired film forming rate.

【0002】[0002]

【従来の技術】反応性ガス、あるいは、反応性ガスと希
ガスとの混合ガスをターゲットに衝突させ、ターゲット
に含まれる原子をたたき出し、かかる原子が基板上に堆
積するまでの過程と堆積後に、ガスと反応させる、いわ
ゆる、反応性スパッタ法は、化合物膜の形成方法の有力
な一手段として用いられてきた。
2. Description of the Related Art A reactive gas or a mixed gas of a reactive gas and a noble gas is made to collide with a target to knock out atoms contained in the target, and a process until such atoms are deposited on a substrate and after the deposition, The so-called reactive sputtering method of reacting with a gas has been used as an effective means of forming a compound film.

【0003】従来、所望の品質を持つ膜を得るために
は、事前にスパッタガスの混合比、導入ガス流量、印加
電圧、投入電流、投入電力をいろいろに変えて、実際に
成膜し、得られた膜の品質を調べ、後程、成膜をする際
には、成膜条件を同じにしたときには同じ品質の膜が得
られるはずであるという膜質再現性に依り、最適の成膜
条件となる一組の成膜パラメター(スパッタガスの混合
比、導入ガス総流量、印加電圧、投入電流、投入電力)
のそれぞれの値を定めて、成膜するという方法が行われ
てきた。
Conventionally, in order to obtain a film having a desired quality, various factors such as a mixture ratio of sputter gas, an introduced gas flow rate, an applied voltage, an applied current and an applied power are changed in advance to obtain an actual film. The quality of the obtained film is investigated, and when the film is formed later, the film forming reproducibility means that a film of the same quality should be obtained when the film forming conditions are the same. One set of film formation parameters (sputtering gas mixture ratio, total flow rate of introduced gas, applied voltage, applied current, applied power)
The method of forming a film by setting the respective values has been used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、反応性
スパッタ法においては、ターゲットから原子をたたき出
す、いわゆる、スパッタガスそれ自身が反応性を持って
おり、さらに、電離したイオン、及び、これとスパッタ
ガス分子の衝突の結果生じた解離原子も反応性を持って
いる。これら、反応ガス分子、解離原子、イオンは、タ
ーゲット表面、ターゲットよりたたき出された原子、か
かる原子の集団、及び、基板上に形成された膜と反応す
るが、これら反応性を持った粒子の数、さらに、各粒子
の励起状態は、反応性に直接関係する状態量であり、こ
れらは、スパッタリングを行う容器の壁の電気抵抗や、
スパッタガスに含まれる不純物ガス、排気速度などのわ
ずかな変化で、大きく変わってしまう。この変化によ
り、成膜条件と膜の品質との間の再現性は失われてしま
うために、変化が生じた際は、実際に成膜することによ
り、再び、両者の関連性を測定し、所望の膜質を得るた
めの条件を求め直さなければならなかった。
However, in the reactive sputtering method, the so-called sputter gas itself, which knocks out atoms from the target, has reactivity, and further ionized ions, and this and the sputter gas Dissociated atoms produced as a result of molecular collisions are also reactive. These reactive gas molecules, dissociated atoms, and ions react with the target surface, the atoms knocked out from the target, the group of such atoms, and the film formed on the substrate. The number, further, the excited state of each particle is a state quantity directly related to the reactivity, these are the electrical resistance of the wall of the container for performing sputtering,
Even a slight change in the impurity gas contained in the sputtering gas, the pumping speed, etc. causes a great change. Due to this change, the reproducibility between the film forming conditions and the film quality is lost.Therefore, when a change occurs, by actually forming the film, the relationship between the two is measured again, The conditions for obtaining the desired film quality had to be recalculated.

【0005】さらに、従来の反応性スパッタ法による成
膜においては、成膜条件とその条件のもとで得られる膜
の品質との間の関係が不安定で、得られた膜の品質を解
析することによってしか、この関係が維持されているの
か、あるいは、変わってしまったのかがわからないとい
う問題を有していた。また、この関係がずれる度に品質
の異なる膜ができてしまい、同一膜質のものを常に得る
ことが困難であるという問題も有していた。当然のこと
ながら、この関係がずれる度ごとに、成膜条件を変えな
がら成膜し、得られた膜の品質を解析することによっ
て、成膜条件と膜質との間の関係を求め直した後、その
条件にもとづいて、所望の品質を持ったものを成膜しな
ければならないという問題もあった。
Further, in the conventional film formation by the reactive sputtering method, the relationship between the film formation conditions and the quality of the film obtained under the conditions is unstable, and the quality of the obtained film is analyzed. Only by doing so, there was a problem that it was not possible to know whether this relationship was maintained or changed. Further, there is a problem that it is difficult to always obtain a film having the same film quality because a film having different quality is formed each time this relationship is deviated. As a matter of course, each time the relationship is deviated, film formation is performed while changing the film formation conditions, and the quality of the obtained film is analyzed to re-determine the relationship between the film formation condition and the film quality. However, there is also a problem in that a film having a desired quality must be formed on the basis of the conditions.

【0006】本発明は、上記問題点に鑑みてなされたも
ので、その目的は、反応性スパッタ法により成膜する際
に、成膜条件と所望の膜質との間のズレを成膜前に検知
し、ズレが生じている場合には修正して、所望の品質の
膜を確実に、さらに、所望の成膜速度で得ることができ
る成膜方法、及び、成膜装置を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to form a film between the film forming conditions and a desired film quality before forming the film by the reactive sputtering method. (EN) Provided are a film forming method and a film forming apparatus which can detect a film and correct it when it is misaligned so that a film having a desired quality can be obtained reliably and at a desired film forming rate. is there.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、反応性ガスを含むスパッタガスを用い
て、直流スパッタ法により成膜する方法において、電源
よりスパッタ装置に供給される電圧、電流及び電力のう
ち少なくとも2つの間の関数関係を求めるデータ処理装
置を用い、このデータ処理装置の処理結果に基づいてス
パッタ条件を制御することを特徴とする成膜方法を提供
するものである。
In order to achieve the above object, the present invention provides a method for forming a film by a DC sputtering method using a sputtering gas containing a reactive gas, wherein a voltage supplied from a power source to a sputtering apparatus is used. The present invention provides a film forming method characterized by using a data processing device for obtaining a functional relationship between at least two of electric current and electric power, and controlling sputtering conditions based on a processing result of the data processing device. .

【0008】前記スパッタガスは、前記関数関係を特徴
あるものにすることから、反応性ガスと希ガスの混合ガ
スであることが望ましい。
The sputter gas is preferably a mixed gas of a reactive gas and a rare gas because it makes the functional relationship characteristic.

【0009】本発明によれば、電源よりスパッタ装置の
電極に供給される電圧、電流及び電力のうち少なくとも
2つの間の関数関係、その他必要に応じてスパッタガス
の混合比と、導入ガス総流量とを測定し、得られた関数
関係に基づいて、そのときの反応性スパッタリング過程
全体の状態をとらえ、これより、得られる膜の品質を管
理し、さらに、これを所望の成膜速度にて成膜すること
ができるものである。
According to the present invention, the functional relationship between at least two of the voltage, current and power supplied from the power supply to the electrode of the sputtering apparatus, the mixing ratio of the sputtering gas and the total flow rate of the introduced gas as required. And, based on the obtained functional relationship, grasp the state of the entire reactive sputtering process at that time, and from this, the quality of the obtained film is controlled, and further, at the desired film formation rate. A film can be formed.

【0010】本発明の成膜方法の好ましい態様において
は、前記電圧、電流、電力の間の関数関係が、所望の関
係になるように、前記スパッタガスの混合比と前記導入
総ガス流量とを調整して、得られる膜の品質を管理す
る。
In a preferred aspect of the film forming method of the present invention, the mixing ratio of the sputter gas and the total introduced gas flow rate are set so that the functional relationship among the voltage, current and power has a desired relationship. Adjust to control the quality of the resulting film.

【0011】本発明の成膜法の他の好ましい態様におい
ては、前記スパッタガスの混合比を一定に保って、前記
電圧、電流、電力の間の関数関係を測定し、前記導入総
ガス流量を調整することにより、得られる膜の品質と成
膜速度を管理する。
In another preferable embodiment of the film forming method of the present invention, the functional relationship among the voltage, the current and the power is measured while keeping the mixing ratio of the sputter gas constant, and the total introduced gas flow rate is determined. By adjusting, the quality of the obtained film and the film forming rate are controlled.

【0012】本発明において用いられるターゲットとし
ては、特に限定されないが、酸素欠乏、あるいは、金属
過剰の状態で導電性を示す金属酸化物を形成する金属か
らなるターゲットが好ましく、例えば、Sn、In、Z
n、Ti、Th、V、Nb、Ta、Mo、W、Cu、C
r、Mn、Fe、Ni、Co、Pr、Bi及びNbから
なる群から選ばれる少なくとも1種を主たる成分とする
ものなど挙げることができる。
The target used in the present invention is not particularly limited, but a target made of a metal that forms a metal oxide exhibiting conductivity in the state of oxygen deficiency or excess metal is preferable, for example, Sn, In, Z
n, Ti, Th, V, Nb, Ta, Mo, W, Cu, C
Examples thereof include those containing at least one selected from the group consisting of r, Mn, Fe, Ni, Co, Pr, Bi and Nb as a main component.

【0013】また、本発明は、ターゲット及び被処理品
である基板が設置されるスパッタ室と、このスパッタ室
内を真空にする排気装置と、前記スパッタ室の電極に電
圧を印加する電源装置と、前記スパッタ室に反応性ガス
と希ガスとの混合ガスからなるスパッタガスを導入する
ガス導入装置とを備えた成膜装置において、前記電源装
置及び前記ガス導入装置に電気的に接続されて、前記電
源装置及び前記ガス導入装置からのデータ信号を受け
て、スパッタガスの混合比と、導入ガス総流量と、前記
電源装置から前記スパッタ室の電極に供給される電圧、
電流、電力の間の関数関係とをそれぞれ求めるデータ処
理装置を設けたことを特徴とする成膜装置を提供するも
のである。
The present invention also includes a sputtering chamber in which a target and a substrate to be processed are installed, an exhaust device for evacuating the sputtering chamber, and a power supply device for applying a voltage to the electrodes of the sputtering chamber. In a film forming apparatus having a gas introducing device for introducing a sputtering gas composed of a mixed gas of a reactive gas and a rare gas into the sputtering chamber, the film forming device is electrically connected to the power supply device and the gas introducing device, Receiving a data signal from the power supply device and the gas introduction device, the mixing ratio of the sputtering gas, the total flow rate of the introduced gas, the voltage supplied from the power supply device to the electrode of the sputtering chamber,
The present invention provides a film forming apparatus characterized by being provided with a data processing device for obtaining a functional relationship between current and electric power, respectively.

【0014】前記データ処理装置は、求めたスパッタガ
スの混合比、導入ガス総流量、電圧、電流、電力の間の
関数関係に基づいて、あらかじめ設定された条件に従っ
て、電源装置及びガス導入装置に制御信号を送る機能を
有していることがさらに好ましい。
The data processing apparatus is designed so that the power supply apparatus and the gas introduction apparatus can be operated in accordance with preset conditions based on the obtained functional relationship among the sputter gas mixing ratio, the total introduction gas flow rate, the voltage, the current, and the electric power. It is more preferable to have a function of sending a control signal.

【0015】また、スパッタ室内の基板近傍に膜厚測定
装置を備えていることも好ましい。
It is also preferable to provide a film thickness measuring device near the substrate in the sputtering chamber.

【0016】[0016]

【作用】一般に、反応性の大きなスパッタガスとターゲ
ットを用いた反応性スパッタ法においては、電源より供
給される電圧、電流、電力、スパッタガスの混合比、導
入ガス総流量というコントロール可能なものにより、電
圧、電流、電力の間の関数関係は変化し、さらに、スパ
ッタリングを行う容器の壁の電気抵抗や、スパッタガス
に含まれる不純物ガス、排気速度などのコントロールの
困難な状態量によっても、前記の関数関係は大きく変化
する。
In general, in the reactive sputtering method using a highly reactive sputter gas and a target, it is possible to control the voltage supplied from the power source, the current, the power, the mixing ratio of the sputter gas, and the total flow rate of the introduced gas. , The voltage, the electric current, the functional relationship among the power is changed, and further, due to the electric resistance of the wall of the container for sputtering, the impurity gas contained in the sputtering gas, the exhaust gas speed, etc. The functional relationship of changes greatly.

【0017】本発明者らが上記事実について詳しく検討
した結果、その理由は明白ではないが、スパッタガスの
混合比を一定に保った場合には、電圧、電流、電力間の
関数関係の曲線形状は、導入ガス総流量や、容器の壁の
電気抵抗、不純物ガス、排気速度などの状態量によって
ほとんど変化しないことが見いだされた。そして、得ら
れる膜の性質は、電流−電圧曲線の変曲点などの特徴的
な箇所との位置関係によって決まることがわかった。さ
らに、スパッタガスの混合比を一定に保った状態で導入
ガス総流量を変えることにより、電流−電圧曲線の変曲
点などの電流値、あるいは、電力値、すなわち、成膜速
度を変えることが可能であることも見い出された。
As a result of a detailed examination of the above facts by the present inventors, the reason is not clear, but when the mixing ratio of the sputter gas is kept constant, the curve shape of the functional relationship between the voltage, the current and the power is formed. It has been found that is almost unchanged by the total amount of introduced gas, the electric resistance of the container wall, the impurity gas, the exhaust gas, and other state quantities. Then, it was found that the properties of the obtained film are determined by the positional relationship with the characteristic point such as the inflection point of the current-voltage curve. Furthermore, by changing the total flow rate of the introduced gas while keeping the mixing ratio of the sputtering gas constant, it is possible to change the current value such as the inflection point of the current-voltage curve, or the power value, that is, the film formation rate. It was also found possible.

【0018】本発明では、これらの新たに見い出された
事実を利用することにより、電流−電圧曲線の形状か
ら、所定の電圧、電流、電力の元で得られる膜の性質を
推定し、所望の膜が得られるように電圧、電流、電力を
調整して成膜を行う、あるいは、スパッタガスの混合比
や導入ガス総流量を調節して、電流−電圧特性を所望の
ものに変化させた上で、所望の品質の膜が所望の成膜速
度で得られるように電圧、電流、電力を調整して成膜を
行うようにしたものである。さらに、この方法を採用す
ることにより、形成される膜の品質を実際に調べなくと
も、得られた膜の品質を高い確度で推定し、管理できる
ようにしたものである。
In the present invention, by utilizing these newly found facts, the properties of the film obtained under a given voltage, current and power are estimated from the shape of the current-voltage curve, and the desired property is obtained. The voltage, current, and power are adjusted to form the film to form the film, or the mixing ratio of the sputtering gas and the total flow rate of the introduced gas are adjusted to change the current-voltage characteristics to the desired values. Then, the film is formed by adjusting the voltage, current, and power so that a film of desired quality can be obtained at a desired film forming rate. Furthermore, by adopting this method, the quality of the obtained film can be estimated and managed with high accuracy without actually checking the quality of the formed film.

【0019】[0019]

【実施例】図1に、本発明の成膜装置の一実施例の概略
構成を示す。図において、1は、スパッタ室であり、一
方の電極1aに電気的に接続されたターゲット1bと、
他方の電極1c上に設置された被処理品である基板1d
とを備えている。
EXAMPLE FIG. 1 shows a schematic structure of an example of a film forming apparatus of the present invention. In the figure, 1 is a sputtering chamber, and a target 1b electrically connected to one electrode 1a,
Substrate 1d, which is the object to be processed, installed on the other electrode 1c
It has and.

【0020】2は、電極1a、1b間に電力を供給する
電源装置であり、少なくとも電圧を可変できると共に、
その状態での電圧、電流、電力値を検出できる機能を有
している。
Reference numeral 2 is a power supply device for supplying electric power between the electrodes 1a and 1b, and at least the voltage can be varied, and
It has the function of detecting the voltage, current, and power value in that state.

【0021】3は、ガス導入装置であり、反応性ガスと
希ガスの混合比を変えてスパッタ室に導入できると共
に、その導入ガス総流量を変えることができ、さらに、
そのときのスパッタガスの混合比、及び、導入ガス総流
量を検出できる機能を有している。
Reference numeral 3 denotes a gas introduction device, which can change the mixing ratio of the reactive gas and the rare gas and introduce them into the sputtering chamber, and can change the total flow rate of the introduced gas.
It has the function of detecting the mixing ratio of the sputtering gas and the total flow rate of the introduced gas at that time.

【0022】4は、電源装置2、及び、ガス導入装置3
に電気的に接続されたデータ処理装置であり、電源装置
2、及び、ガス導入装置3から送られてくるデータ信号
を受けて、スパッタガスの混合比と、導入ガス流量と、
電圧、電流、電力の間の関数関係を求め、それらの結果
を保存し、ディスプレーなどに表示する機能を有してい
る。なお、データ処理装置4は、これらのデータ処理結
果に基づいて、電源装置2、及び、ガス導入装置3に制
御信号を送る機能を有していることがさらに好ましい。
Reference numeral 4 is a power supply device 2 and a gas introduction device 3.
A data processing device electrically connected to the power supply device 2 and the gas introduction device 3, and receives a data signal sent from the power supply device 2 and the gas introduction device 3,
It has the function of finding the functional relationship among voltage, current, and power, saving the results, and displaying them on a display or the like. It is further preferable that the data processing device 4 has a function of sending a control signal to the power supply device 2 and the gas introduction device 3 based on the data processing result.

【0023】5は、スパッタ室内を排気する排気装置で
ある。
An exhaust device 5 exhausts the interior of the sputtering chamber.

【0024】図2は、スズ・ターゲットを、酸素とアル
ゴンの各種混合比のスパッタガスでスパッタした際の電
流−電圧特性を示している。このように、スパッタガス
の混合比により、電流−電圧特性の形状は変化する。
FIG. 2 shows current-voltage characteristics when a tin target is sputtered with a sputtering gas having various mixing ratios of oxygen and argon. Thus, the shape of the current-voltage characteristic changes depending on the mixing ratio of the sputtering gas.

【0025】図3は、スズ・ターゲットを、酸素:アル
ゴン=50:50の混合比を持つスパッタガスで、上記
と同様に、スパッタした際の電流−電圧特性を示してい
る。この曲線上のAの範囲で成膜したときは酸化物膜が
得られ、Bの範囲で成膜したときは部分酸化物膜が得ら
れ、Cの範囲で成膜したときは金属膜が得られる。この
ように、得られる膜の品質は、電流−電圧特性の曲線上
の変曲点などの特徴的な箇所との位置関係で決まること
がわかる。
FIG. 3 shows current-voltage characteristics when a tin target is sputtered with a sputtering gas having a mixing ratio of oxygen: argon = 50: 50, in the same manner as above. An oxide film is obtained when formed in the range A on this curve, a partial oxide film is obtained when formed in the range B, and a metal film is obtained when formed in the range C. To be As described above, it is understood that the quality of the obtained film is determined by the positional relationship with the characteristic point such as the inflection point on the curve of the current-voltage characteristic.

【0026】なお、図3において、成膜速度の大きいC
の範囲で金属膜を成膜し、成膜速度の小さいAの範囲に
移動させて、この間に基板上に成膜された金属膜を酸化
させることを繰り返すことにより、酸化物膜を電流−電
圧特性の曲線上の一点で連続して成膜させるよりも大き
い成膜速度で成膜させることができた。
In FIG. 3, C having a high film formation rate is used.
The metal film formed in the range of A, the film formation speed is moved to the range of A where the film formation rate is low, and the metal film formed on the substrate is oxidized during this period. It was possible to form a film at a film formation rate higher than that at which the film was continuously formed at one point on the characteristic curve.

【0027】図4は、スズ・ターゲットを、酸素:アル
ゴン=50:50の混合比を持つスパッタガスで、導入
ガス総流量を変化させてスパッタした際の電流−電圧特
性を示している。Dは導入ガス総流量が70sccmの
場合、Eは導入ガス総流量が80sccmの場合、Fは
導入ガス総流量が90sccmの場合の電流−電圧特性
を示している。このように、導入ガス総流量を変えて
も、スパッタガスの混合比が同じならば、電流−電圧特
性の曲線形状はほとんど変化しない。また、この曲線の
形状は、スパッタリングを行う容器の壁の電気抵抗、ス
パッタガスに含まれる不純物ガス、排気速度などのコン
トロールの困難な状態量の変化によって変化しないこと
がわかった。
FIG. 4 shows current-voltage characteristics when a tin target is sputtered with a sputtering gas having a mixture ratio of oxygen: argon = 50: 50 while changing the total flow rate of the introduced gas. D shows the current-voltage characteristics when the total introduction gas flow rate is 70 sccm, E shows the total introduction gas flow rate of 80 sccm, and F shows the current-voltage characteristics when the total introduction gas flow rate is 90 sccm. As described above, even if the total flow rate of the introduced gas is changed, the curve shape of the current-voltage characteristic hardly changes if the mixing ratio of the sputter gas is the same. It was also found that the shape of this curve does not change due to changes in the amount of state that are difficult to control, such as the electrical resistance of the wall of the container for sputtering, the impurity gas contained in the sputtering gas, and the exhaust rate.

【0028】さらに、また、スパッタガスの混合ガス比
を変えずに、導入ガス総流量を変化させると、電力−電
流特性の曲線形状は変化しないが、同じ品質を持った膜
が成膜できる曲線上の点の電流値が変化する。ここで、
図5は、スパッタ条件を図4と同様にし、スズ・ターゲ
ットを、酸素:アルゴン=50:50の混合比を持つス
パッタガスで、導入ガス総流量を変化させてスパッタし
た際の単位電流当たりの成膜速度を示している。Gは導
入ガス総流量が70sccmの場合、Hは導入ガス総流
量が80sccmの場合、Iは導入ガス総流量が90s
ccmの場合の単位電流当たりの成膜速度を示してい
る。したがって、スパッタガスの混合比を一定に保って
導入ガス総流量を変えることにより、成膜速度を所望の
値に調節することができることがわかる。
Furthermore, when the total flow rate of the introduced gas is changed without changing the mixed gas ratio of the sputter gas, the curve shape of the power-current characteristics does not change, but a curve with which a film having the same quality can be formed. The current value at the upper point changes. here,
In FIG. 5, the sputtering conditions were the same as those in FIG. 4, and the tin target was sputtered with a mixing ratio of oxygen: argon = 50: 50 and the total flow rate of the introduced gas was changed. The film forming speed is shown. G indicates a total introduction gas flow rate of 70 sccm, H indicates a total introduction gas flow rate of 80 sccm, and I indicates a total introduction gas flow rate of 90 s.
The film forming rate per unit current in the case of ccm is shown. Therefore, it is understood that the film formation rate can be adjusted to a desired value by keeping the mixing ratio of the sputtering gas constant and changing the total flow rate of the introduced gas.

【0029】[実施例1]図6に、横25cm、縦56
cm、高さ18cmの大きさのスパッタ室にスズ・ター
ゲットを取り付け、酸素ガスを毎分60cc、アルゴン
ガスを毎分30cc導入して、スパッタした際の電力−
電圧特性を示す。さらに、図6の電力−電圧特性の曲線
上に示したJ、K、Lの条件で形成した膜の波長632
0Åでの屈折率を表1に示す。ここで、J、Kの条件で
形成した膜は酸化物、Lの条件で形成した膜は部分酸化
物である。
[Embodiment 1] In FIG. 6, width 25 cm, length 56
cm and height of 18 cm, a tin target was attached to the sputter chamber, oxygen gas was introduced at 60 cc / min, and argon gas was introduced at 30 cc / min.
The voltage characteristics are shown. Furthermore, the wavelength 632 of the film formed under the conditions of J, K, and L shown on the curve of the power-voltage characteristic of FIG.
Table 1 shows the refractive index at 0Å. Here, the film formed under the conditions of J and K is an oxide, and the film formed under the condition of L is a partial oxide.

【0030】このように、電力−電圧特性を求めること
により、酸化物膜、部分酸化物膜、金属膜を容易にコン
トロールして得ることができ、酸化物膜では屈折率の違
う膜も得ることもできることがわかる。
By thus determining the power-voltage characteristics, it is possible to easily control and obtain an oxide film, a partial oxide film, and a metal film, and an oxide film having a different refractive index can also be obtained. You can see that

【0031】[実施例2]横25cm、縦56cm、高
さ18cmの大きさのスパッタ室にスズ・ターゲットを
取り付け、酸素ガスとアルゴンガスの混合比を58:4
2に保ち、全導入ガス流量を毎分80cc、110c
c、130ccの3通りに変えた。このときの電力−電
圧特性は、それぞれ、図7、8、9に示すようになる。
それぞれの電力−電圧特性曲線上の同様の位置である
M、N、Oで示した点で形成した膜の波長6320Åで
の屈折率を表2に示す。この結果から明らかなように、
屈折率の違いは、0.2%程度にすぎず、ほぼ同一品質
の膜を異なった成膜速度で得ることができた。
[Example 2] A tin target was attached to a sputtering chamber having a size of 25 cm in width, 56 cm in length and 18 cm in height, and a mixing ratio of oxygen gas and argon gas was 58: 4.
2 and keep the total introduced gas flow rate at 80cc / min and 110c / min
c, 130 cc. The power-voltage characteristics at this time are as shown in FIGS. 7, 8 and 9, respectively.
Table 2 shows the refractive index at the wavelength 6320Å of the film formed at the points indicated by M, N, and O, which are the same positions on the respective power-voltage characteristic curves. As is clear from this result,
The difference in refractive index was only about 0.2%, and films of almost the same quality could be obtained at different film forming rates.

【0032】[実施例3]横25cm、縦56cm、高
さ18cmの大きさのスパッタ室にスズ・ターゲットを
取り付け、酸素ガスを52.2sccm、アルゴンガス
を37.8sccm導入して、スパッタした。このとき
の電力−電圧特性を図10に示す。この電力−電圧特性
曲線上のP、Q、Rで示した点で形成した酸化スズ膜を
50℃の1規定水酸化ナトリウム水溶液中に浸し、酸化
スズ膜の溶失量を測定した。溶失量の時間変化の様子を
図11に与える。図11で、Sは、図10の電力−電圧
特性曲線上のPで成膜した酸化スズ、TはQで成膜した
酸化スズ、UはRで成膜した酸化スズの溶失量の変化を
示し、表3に図11より得られた溶失速度を示す。この
ように、電力−電圧特性を求めることにより、たとえ
ば、水酸化ナトリウムに対する耐久性能の異なる酸化ス
ズを得ることができる。
[Example 3] A sputtering target having a size of 25 cm in width, 56 cm in length, and 18 cm in height was equipped with a tin target, oxygen gas was introduced at 52.2 sccm, and argon gas was introduced at 37.8 sccm to perform sputtering. The power-voltage characteristic at this time is shown in FIG. The tin oxide film formed at points indicated by P, Q, and R on this power-voltage characteristic curve was immersed in a 1N aqueous sodium hydroxide solution at 50 ° C., and the amount of the tin oxide film dissolved away was measured. FIG. 11 shows how the amount of ablated loss changes with time. 11, S is a tin oxide film formed by P on the power-voltage characteristic curve of FIG. 10, T is a tin oxide film formed by Q, and U is a change in the amount of tin oxide formed by R film. Table 3 shows the dissolution rate obtained from FIG. By thus determining the power-voltage characteristics, it is possible to obtain, for example, tin oxide having different durability performance against sodium hydroxide.

【0033】[実施例4]横25cm、縦56cm、高
さ18cmの大きさのスパッタ室にスズ・ターゲットを
取り付け、酸素ガスとアルゴンガスの混合比を50:5
0に保ち、全導入ガス流量を毎分70cc、80cc、
90ccの3通りに変えた。このときの電流−電圧特性
は、図4のD、E、Fに示すようになる。電流−電圧特
性曲線上のいくつかの点で成膜した膜の導電率を縦軸と
し、電圧を増加させたときの始めの変曲点である電流−
電圧曲線の肩の点での電圧と成膜時の電圧との差を横軸
にして、図4のD、E、Fのそれぞれについて、図1
2、図13、図14に示す。この結果から明らかなよう
に、導電率の高い酸化スズは、導入ガス総流量によら
ず、始めの変曲点から等しい電圧を増加した点で得られ
ることがわかる。
[Example 4] A tin target was attached to a sputtering chamber having a size of 25 cm in width, 56 cm in length and 18 cm in height, and a mixing ratio of oxygen gas and argon gas was 50: 5.
0, keep the total introduced gas flow rate at 70cc, 80cc / min,
It was changed to 90cc in 3 ways. The current-voltage characteristics at this time are as shown in D, E, and F of FIG. The electric conductivity of the film formed at several points on the current-voltage characteristic curve is taken as the vertical axis, and the current inflection point at the beginning when the voltage is increased
The difference between the voltage at the shoulder of the voltage curve and the voltage at the time of film formation is plotted on the horizontal axis for each of D, E, and F in FIG.
2, FIG. 13 and FIG. As is clear from this result, it is understood that tin oxide having high conductivity can be obtained at the point where the equal voltage is increased from the inflection point at the beginning regardless of the total flow rate of the introduced gas.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
実際に膜質を解析することによりスパッタ状態の変化を
調べるのではなく、電流−電圧特性、あるいは、電力−
電圧特性を調べるだけで状態変化を検知し、得られる膜
の品質を管理することができる。
As described above, according to the present invention,
Instead of investigating changes in the sputtering state by actually analyzing the film quality, the current-voltage characteristics or power-
It is possible to detect the state change and control the quality of the obtained film simply by examining the voltage characteristics.

【0038】また、本発明の好ましい態様によれば、ス
パッタガスの混合比、及び、導入ガス総流量を調節する
ことにより、電流−電圧特性を所望のものに変化させ
て、所望の条件で所望の品質の膜を成膜することができ
る。
Further, according to a preferred embodiment of the present invention, the current-voltage characteristic is changed to a desired value by adjusting the mixing ratio of the sputtering gas and the total flow rate of the introduced gas, and the desired value is obtained under the desired condition. It is possible to form a film having the following quality.

【0039】さらに、本発明の好ましい態様によれば、
導入する混合ガス比を一定に保った状態で、導入ガス総
流量を変化させて、電流−電圧特性を測定し、成膜速度
と膜質の両方を所望の値に調節して成膜できる。
Furthermore, according to a preferred embodiment of the present invention,
With the mixed gas ratio to be introduced kept constant, the total flow rate of the introduced gas is changed, the current-voltage characteristics are measured, and both the film formation rate and the film quality can be adjusted to desired values for film formation.

【0040】さらに別の本発明の好ましい態様によれ
ば、成膜条件を電流−電圧特性上の適当な範囲と速度で
移動させながら成膜することにより、膜の深さ方向に膜
質に変調のかかった新規な物質を合成することができ
る。
According to another preferred embodiment of the present invention, the film quality is modulated in the depth direction of the film by forming the film while moving the film formation conditions at an appropriate range and speed on the current-voltage characteristics. It is possible to synthesize such novel substances.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の成膜装置の一実施例を示す概略図。FIG. 1 is a schematic view showing an embodiment of a film forming apparatus of the present invention.

【図2】スズ・ターゲットを、酸素、あるいは、酸素と
アルゴンの混合ガスでスパッタした際の電流−電圧特性
を示す図。
FIG. 2 is a diagram showing current-voltage characteristics when a tin target is sputtered with oxygen or a mixed gas of oxygen and argon.

【図3】スズ・ターゲットを、酸素:アルゴン=50:
50の混合比を持つスパッタガスでスパッタした際の電
流−電圧特性を示す図。
FIG. 3: Tin target with oxygen: argon = 50:
The figure which shows the current-voltage characteristic at the time of sputter | spatterring with the sputtering gas which has a mixing ratio of 50.

【図4】スズ・ターゲットを、酸素:アルゴン=50:
50の混合比を持つスパッタガスで、導入ガス総流量を
変化させてスパッタした際の電流−電圧特性を示す図。
[Fig. 4] Oxygen: Argon = 50:
The figure which shows the current-voltage characteristic at the time of sputter | spattering by changing the total flow rate of introduction gas with the sputtering gas which has a mixture ratio of 50.

【図5】スズ・ターゲットを、酸素:アルゴン=50:
50の混合比を持つスパッタガスで、導入ガス総流量を
変化させてスパッタした際の単位電流当たりの成膜速度
を示す図。
FIG. 5: Tin target with oxygen: argon = 50:
The figure which shows the film-forming rate per unit current at the time of sputter | spattering by changing the total introduction gas flow rate with the sputter gas which has a mixture ratio of 50.

【図6】スズ・ターゲットを、酸素ガスを毎分60c
c、アルゴンガスを毎分30cc導入して、スパッタし
た際の電力−電圧特性を示す図。
Figure 6: Tin target, oxygen gas 60c per minute
The figure which shows the power-voltage characteristic at the time of c, sputter | spattering by introducing 30 cc of argon gas per minute.

【図7】スズ・ターゲットを、酸素ガスとアルゴンガス
の混合比を58:42に保ち、全導入ガス流量を毎分8
0ccにして、スパッタしたときの電力−電圧特性を示
す図。
FIG. 7: The tin target was kept at a mixing ratio of oxygen gas and argon gas of 58:42 and the total introduced gas flow rate was 8 per minute.
The figure which shows the electric power-voltage characteristic at the time of sputtering by setting it as 0 cc.

【図8】スズ・ターゲットを、酸素ガスとアルゴンガス
の混合比を58:42に保ち、全導入ガス流量を毎分1
10ccにして、スパッタしたときの電力−電圧特性を
示す図。
FIG. 8: The tin target was kept at a mixing ratio of oxygen gas and argon gas of 58:42 and the total introduction gas flow rate was 1 minute / minute.
The figure which shows the electric power-voltage characteristic when it is 10 cc and is sputtered.

【図9】スズ・ターゲットを、酸素ガスとアルゴンガス
の混合比を58:42に保ち、全導入ガス流量を毎分1
30ccにして、スパッタしたときの電力−電圧特性を
示す図。
FIG. 9: The tin target was kept at a mixing ratio of oxygen gas and argon gas of 58:42, and the total introduction gas flow rate was 1 minute / minute.
The figure which shows the power-voltage characteristic when it is set to 30 cc and is sputtered.

【図10】スズ・ターゲットを、酸素ガスを52.2s
ccm、アルゴンガスを37.8sccm導入して、ス
パッタした際の電流−電圧特性を示す図。
FIG. 10: Tin target, oxygen gas 52.2s
The figure which shows the current-voltage characteristic at the time of sputtering by introducing ccm and 37.8 sccm of argon gas.

【図11】図10に示した、スズ・ターゲットを、酸素
ガスを52.2sccm、アルゴンガスを37.8sc
cm導入して、スパッタした際の電流−電圧特性上の
P、Q、Rで示した点で形成した酸化スズ膜を50℃の
1規定水酸化ナトリウム水溶液中に浸して、測定した酸
化スズ膜の溶失量の時間変化を示す図。
FIG. 11 shows the tin target shown in FIG. 10, which is 52.2 sccm in oxygen gas and 37.8 sc in argon gas.
cm was introduced, and the tin oxide film formed at the points indicated by P, Q, and R on the current-voltage characteristics at the time of sputtering was immersed in a 1N sodium hydroxide aqueous solution at 50 ° C., and the tin oxide film was measured. The figure which shows the time change of the ablation amount of.

【図12】図4中のDに示す、スズ・ターゲットを、酸
素ガスとアルゴンガスの混合比を50:50に保ち、全
導入ガス流量を毎分70ccにしてスパッタして得られ
る電流−電圧特性上のいくつかの点で成膜した膜の導電
率を縦軸とし、電圧を増加させたときの始めの変曲点で
ある電流−電圧曲線の肩の点での電圧と成膜時の電圧と
の差を横軸にして示した図。
FIG. 12 is a current-voltage obtained by sputtering a tin target shown by D in FIG. 4 at a mixing ratio of oxygen gas and argon gas of 50:50 and a total introduced gas flow rate of 70 cc / min. The conductivity of the film formed at several points on the characteristics is taken as the vertical axis, and the voltage at the shoulder point of the current-voltage curve, which is the first inflection point when the voltage is increased, and the The figure which showed the difference with voltage as the horizontal axis.

【図13】図4中のEに示す、スズ・ターゲットを、酸
素ガスとアルゴンガスの混合比を50:50に保ち、全
導入ガス流量を毎分80ccにしてスパッタして得られ
る電流−電圧特性上のいくつかの点で成膜した膜の導電
率を縦軸とし、電圧を増加させたときの始めの変曲点で
ある電流−電圧曲線の肩の点での電圧と成膜時の電圧と
の差を横軸にして示した図。
FIG. 13 is a current-voltage obtained by sputtering the tin target shown by E in FIG. 4 while keeping the mixing ratio of oxygen gas and argon gas at 50:50 and the total flow rate of introduced gas at 80 cc / min. The conductivity of the film formed at several points on the characteristics is taken as the vertical axis, and the voltage at the shoulder point of the current-voltage curve, which is the first inflection point when the voltage is increased, and the The figure which showed the difference with voltage as the horizontal axis.

【図14】図4中のFに示す、スズ・ターゲットを、酸
素ガスとアルゴンガスの混合比を50:50に保ち、全
導入ガス流量を毎分90ccにしてスパッタして得られ
る電流−電圧特性上のいくつかの点で成膜した膜の導電
率を縦軸とし、電圧を増加させたときの始めの変曲点で
ある電流−電圧曲線の肩の点での電圧と成膜時の電圧と
の差を横軸にして示した図。
FIG. 14 is a current-voltage obtained by sputtering a tin target shown by F in FIG. 4 at a mixing ratio of oxygen gas and argon gas of 50:50 and a total introduced gas flow rate of 90 cc / min. The conductivity of the film formed at several points on the characteristics is taken as the vertical axis, and the voltage at the shoulder point of the current-voltage curve, which is the first inflection point when the voltage is increased, and the The figure which showed the difference with voltage as the horizontal axis.

【符号の説明】[Explanation of symbols]

1:スパッタ室 1a、1c:電極 1b:ターゲット 1d:基板 2:電源装置 3:ガス導入装置 4:データ処理装置 5:真空排気装置 1: Sputtering chamber 1a, 1c: Electrode 1b: Target 1d: Substrate 2: Power supply device 3: Gas introduction device 4: Data processing device 5: Vacuum exhaust device

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】反応性ガスを含むスパッタガスを用いて、
直流スパッタ法により成膜する方法において、電源より
スパッタ装置に供給される電圧、電流及び電力のうち少
なくとも2つの間の関数関係を求めるデータ処理装置を
用い、このデータ処理装置の処理結果に基づいてスパッ
タ条件を制御することを特徴とする成膜方法。
1. A sputtering gas containing a reactive gas is used,
In the method of forming a film by the DC sputtering method, a data processing device that obtains a functional relationship between at least two of voltage, current and power supplied from a power source to the sputtering device is used, and based on the processing result of this data processing device. A film forming method characterized by controlling sputtering conditions.
【請求項2】前記スパッタガスが反応性ガスと希ガスの
混合ガスであることを特徴とする請求項1に記載の成膜
方法。
2. The film forming method according to claim 1, wherein the sputtering gas is a mixed gas of a reactive gas and a rare gas.
【請求項3】前記関数関係において、電圧増加の際に最
初に現れる電圧−電流曲線の変曲点付近の電圧で成膜す
ることを特徴とする請求項1または2に記載の成膜方
法。
3. The film forming method according to claim 1, wherein in the functional relationship, the film is formed at a voltage near an inflection point of a voltage-current curve that first appears when the voltage is increased.
【請求項4】前記関数関係において、電圧増加の際に最
初に現れる電圧−電流曲線の変曲点と次の変曲点との間
の電圧で成膜することを特徴とする請求項1または2に
記載の成膜方法。
4. In the functional relation, the film is formed at a voltage between an inflection point of a voltage-current curve that first appears when the voltage increases and a next inflection point. 2. The film forming method as described in 2.
【請求項5】前記スパッタガスの反応性ガスと希ガスの
混合比を一定に保ち成膜することを特徴とする請求項1
〜4いずれか1項に記載の成膜方法。
5. A film is formed by keeping the mixing ratio of the reactive gas of the sputtering gas and the rare gas constant.
[4] The film forming method according to any one of [4] to [4].
【請求項6】酸素欠乏、あるいは、金属過剰の状態で導
電性を示す金属酸化物を形成する金属をターゲットとし
て用いて成膜することを特徴とする請求項1〜5いずれ
か1項に記載の成膜方法。
6. The film is formed by using as a target a metal that forms a metal oxide exhibiting conductivity in the state of oxygen deficiency or excess metal. Film forming method.
【請求項7】前記ターゲットは、Sn、In、Zn、T
i、Th、V、Nb、Ta、Mo、W、Cu、Cr、M
n、Fe、Ni、Co、Pr、Bi及びNbからなる群
から選ばれる少なくとも1種を主たる成分とするもので
あることを特徴とする請求項1〜6いずれか1項に記載
の成膜方法。
7. The target is Sn, In, Zn, T
i, Th, V, Nb, Ta, Mo, W, Cu, Cr, M
7. The film forming method according to claim 1, wherein at least one selected from the group consisting of n, Fe, Ni, Co, Pr, Bi and Nb is a main component. .
【請求項8】ターゲット、及び、被処理品である基板が
設置されるスパッタ室と、このスパッタ室を真空にする
排気装置と、前記スパッタ室の電極に電圧を印加する電
源装置と、前記スパッタ室に反応性ガスと希ガスの混合
ガスを導入するガス導入装置を備えた成膜装置におい
て、前記電源、及び、ガス導入装置に電気的に接続され
てこれらよりデータ信号を受けて、スパッタガスの混合
比と、導入ガス総流量と、前記電源装置から前記スパッ
タ室の電極に供給される電圧、電流及び電力のうち少な
くとも2つの間の関数関係とをそれぞれ求めるデータ処
理装置を設けたことを特徴とする成膜装置。
8. A sputtering chamber in which a target and a substrate to be processed are installed, an exhaust device for evacuating the sputtering chamber, a power supply device for applying a voltage to electrodes of the sputtering chamber, and the sputtering device. In a film forming apparatus equipped with a gas introduction device for introducing a mixed gas of a reactive gas and a rare gas into a chamber, a sputtering gas is electrically connected to the power supply and the gas introduction device and receives a data signal from them. A data processing device for determining the mixing ratio, the total flow rate of introduced gas, and the functional relationship between at least two of the voltage, current, and power supplied from the power supply device to the electrode of the sputtering chamber. Characteristic film forming apparatus.
【請求項9】スパッタ室内の基板近傍に膜厚測定装置を
備えたことを特徴とする請求項8に記載の成膜装置。
9. The film forming apparatus according to claim 8, further comprising a film thickness measuring device near the substrate in the sputtering chamber.
JP365594A 1994-01-18 1994-01-18 Method and device for forming reactive sputtering film Pending JPH07207440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP365594A JPH07207440A (en) 1994-01-18 1994-01-18 Method and device for forming reactive sputtering film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP365594A JPH07207440A (en) 1994-01-18 1994-01-18 Method and device for forming reactive sputtering film

Publications (1)

Publication Number Publication Date
JPH07207440A true JPH07207440A (en) 1995-08-08

Family

ID=11563492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP365594A Pending JPH07207440A (en) 1994-01-18 1994-01-18 Method and device for forming reactive sputtering film

Country Status (1)

Country Link
JP (1) JPH07207440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100258180A1 (en) * 2009-02-04 2010-10-14 Yuepeng Deng Method of forming an indium-containing transparent conductive oxide film, metal targets used in the method and photovoltaic devices utilizing said films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100258180A1 (en) * 2009-02-04 2010-10-14 Yuepeng Deng Method of forming an indium-containing transparent conductive oxide film, metal targets used in the method and photovoltaic devices utilizing said films

Similar Documents

Publication Publication Date Title
US9637814B2 (en) High-rate reactive sputtering of dielectric stoichiometric films
CA1263217A (en) Low contact electrical resistant composition, substrates coated therewith, and process for preparing such
Morabito Selected area and in-depth auger analysis of thin films
JP2007063623A (en) Method for manufacturing optical thin film
JPH10130830A (en) Method for precipitating metal oxide layer on substrate by sputtering induction and optical operating layer system
JP2006342371A (en) Electroconductive compound thin film, and method for depositing the same
JPH07207440A (en) Method and device for forming reactive sputtering film
EP1697555B1 (en) Method and device for magnetron sputtering
Howson et al. Reactive sputtering of electrically conducting tin oxide
JP2771208B2 (en) Method for producing transparent conductive film coated with metal oxide thin film
JP2002180247A (en) Method and apparatus for manufacturing transparent electrically conductive laminate
US20040173160A1 (en) Apparatus for thin film deposition, especially under reactive conditions
EP0567954B1 (en) Method of forming thin film on substrate by reactive DC sputtering
US9957600B2 (en) Target age compensation method for performing stable reactive sputtering processes
JPS62211378A (en) Sputtering device
US3664943A (en) Method of producing tantalum nitride film resistors
JP2001073131A (en) Method for depositing copper thin film and sputtering system used for the method
JP2000129427A (en) Production of transparent electroconductive laminated body
CA2059525A1 (en) Method of depositing optical oxide coatings at enhanced rates
JPS596376A (en) Sputtering apparatus
TWI485277B (en) Multi-sputtering cathodes stabilized process control method for reactive-sputtering deposition
EP0695814A1 (en) Thin film sputtering
JPS63250459A (en) Production of transparent conductive film
JP2004323941A (en) Method of depositing zinc oxide film
KR100209701B1 (en) Dielectric film making method