JP2001073131A - Method for depositing copper thin film and sputtering system used for the method - Google Patents

Method for depositing copper thin film and sputtering system used for the method

Info

Publication number
JP2001073131A
JP2001073131A JP24841799A JP24841799A JP2001073131A JP 2001073131 A JP2001073131 A JP 2001073131A JP 24841799 A JP24841799 A JP 24841799A JP 24841799 A JP24841799 A JP 24841799A JP 2001073131 A JP2001073131 A JP 2001073131A
Authority
JP
Japan
Prior art keywords
gas
sputtering
thin film
copper
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24841799A
Other languages
Japanese (ja)
Other versions
JP4360716B2 (en
Inventor
Takashi Komatsu
孝 小松
Satoshi Nakamura
中村  聡
Yasuhiro Taguma
康宏 田熊
Toshimitsu Uehigashi
俊光 上東
Yasushi Higuchi
靖 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP24841799A priority Critical patent/JP4360716B2/en
Publication of JP2001073131A publication Critical patent/JP2001073131A/en
Application granted granted Critical
Publication of JP4360716B2 publication Critical patent/JP4360716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a copper thin film having small specific resistance. SOLUTION: At the time of arranging a substrate 15 in a sputtering system 1 and sputtering a copper target 21, a trace amt. of air is introduced from piping 31 for adding gas and is added to a sputtering gas. When a copper thin film deposited on the surface of a silicon substrate 15 is left in the air, its specific resistance decreases and approaches the value of bulk copper. Effectively, the partial pressure of the air to be introduced is controlled to <=6.65×10-4 Pa. For reducing the partial pressure value, preferably, the air is intermittently introduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタ成膜の技
術分野にかかり、特に、銅または銅を主成分とするター
ゲットをスパッタし、銅薄膜を形成する技術分野に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the technical field of sputter deposition, and more particularly to the technical field of forming a copper thin film by sputtering copper or a target containing copper as a main component.

【0002】[0002]

【従来の技術】近年では、アルミニウム薄膜に代わり、
比抵抗の小さい銅薄膜が半導体デバイスの配線材料とし
て注目されている。
2. Description of the Related Art In recent years, instead of aluminum thin films,
A copper thin film having a small specific resistance has attracted attention as a wiring material for a semiconductor device.

【0003】図4(a)の符号101は、半導体デバイス
を構成するシリコン基板であり、その表面にはシリコン
酸化膜102が形成されている。
[0003] In FIG. 4A, reference numeral 101 denotes a silicon substrate constituting a semiconductor device, and a silicon oxide film 102 is formed on the surface thereof.

【0004】このシリコン基板101をスパッタ装置内
に搬入し、アルゴンガスのプラズマを生成し、銅から成
るターゲットをスパッタし、シリコン酸化膜102上に
銅薄膜を形成し、パターニングして銅配線105を形成
する(図4(b))。
The silicon substrate 101 is carried into a sputtering apparatus, and a plasma of argon gas is generated, a copper target is sputtered, a copper thin film is formed on the silicon oxide film 102, and the copper wiring 105 is patterned. It is formed (FIG. 4B).

【0005】このようにスパッタ成膜法で形成された銅
配線105の比抵抗は、おおよそ2.2μΩcmであ
り、バルク状態の銅の比抵抗1.7μΩcmに比べて大
きくなってしまう。
The specific resistance of the copper wiring 105 formed by the sputtering film forming method is approximately 2.2 μΩcm, which is larger than the specific resistance of bulk copper of 1.7 μΩcm.

【0006】スパッタ装置で銅薄膜を形成した場合、銅
薄膜を水素中でアニール処理すれば、形成直後の銅薄膜
に比抵抗を小さくできることが知られているが、1.9
μΩcm程度までしか小さくならず、不十分である。
When a copper thin film is formed by a sputtering apparatus, it is known that the specific resistance of the copper thin film immediately after formation can be reduced by annealing the copper thin film in hydrogen.
It is only small to about μΩcm, which is insufficient.

【0007】また、アニール処理をするためには、スパ
ッタ装置とは別に、そのアニール処理のための装置を必
要とし、コスト高になるという問題がある。
Further, in order to perform the annealing process, a device for the annealing process is required separately from the sputtering device, and there is a problem that the cost is increased.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記従来技術
の不都合を解決するために創作されたものであり、その
目的は、低抵抗の銅薄膜を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned disadvantages of the prior art, and an object of the present invention is to provide a low-resistance copper thin film.

【0009】[0009]

【課題を解決するための手段】本発明の発明者等は、ス
パッタリングガスのプラズマを発生させ、銅または銅を
主成分とするターゲットをスパッタし、成膜対象物表面
に銅薄膜を形成する場合に、スパッタ雰囲気中に大気を
微少量導入すると、形成された銅薄膜の比抵抗が成膜後
の時間の経過とともに低下することを見いだした。
Means for Solving the Problems The present inventors have proposed a method of forming a copper thin film on the surface of a film-forming target by generating a plasma of a sputtering gas and sputtering copper or a target containing copper as a main component. In addition, it has been found that when a small amount of air is introduced into the sputtering atmosphere, the specific resistance of the formed copper thin film decreases as time elapses after film formation.

【0010】特に、添加ガスを5×10-7Torr(6.6
5×10-4Pa)の分圧にしてスパッタした銅薄膜で
は、成膜後10数時間後にはバルク状態の銅とほぼ等し
い値まで比抵抗が低下することを見いだした。
[0010] In particular, the added gas is 5 × 10 -7 Torr (6.6).
In a copper thin film sputtered at a partial pressure of 5 × 10 −4 Pa), it was found that the resistivity dropped to a value almost equal to that of copper in a bulk state 10 hours after the film formation.

【0011】本発明は上記知見に基づいて創作されたも
のであり、請求項1記載の発明は、真空雰囲気中にスパ
ッタガスを導入し、銅または銅を主成分とするターゲッ
トをスパッタし、前記真空雰囲気中に置かれた成膜対象
物表面に銅薄膜または銅を主成分とする薄膜を形成する
銅薄膜製造方法であって、前記ターゲットをスパッタす
る際に、構造中に窒素原子を有するガスと、酸素原子を
有するガスと、又は窒素原子と酸素原子とを有するガス
とのうち、いずれか一種以上のガスから成る添加ガスを
前記真空雰囲気中に導入することを特徴とする。請求項
2記載の発明は、請求項1記載の銅薄膜製造方法であっ
て、前記添加ガスは、酸素ガス、窒素ガス、水のうち、
少なくともいずれか一種以上のガスが含まれていること
を特徴とする。請求項3記載の発明は、請求項1又は請
求項2のいずれか1項記載の銅薄膜製造方法であって、
前記スパッタ中の前記添加ガスの分圧は、6.65×1
-4Pa以下にすることを特徴とする。請求項4記載の
発明は、請求項1乃至請求項3のいずれか1項記載の銅
薄膜製造方法であって、前記添加ガスを間欠的に導入す
ることを特徴とする。請求項5記載の発明は、スパッタ
装置であって、真空槽と、前記真空槽内に配置された銅
または銅を主成分とするターゲットとを有し、前記真空
槽内を真空雰囲気にし、スパッタガスを導入し、前記タ
ーゲットをスパッタし、前記真空雰囲気中に配置された
成膜対象物表面に薄膜を形成するスパッタ装置であっ
て、前記真空槽にはガス添加用配管が設けられ、前記ス
パッタガスの雰囲気中に、分圧で6.65×10-4Pa
以下の圧力の添加ガスを連続またはパルス的に導入でき
るように構成されたことを特徴とする。請求項6記載の
発明は、請求項5記載のスパッタ装置であって、前記ガ
ス添加用配管の端部は大気に開放され、前記真空槽内に
前記添加ガスとして大気を導入できるように構成された
ことを特徴とする。
The present invention has been made based on the above findings. According to the first aspect of the present invention, a sputtering gas is introduced into a vacuum atmosphere, and copper or a target containing copper as a main component is sputtered. A copper thin film manufacturing method for forming a copper thin film or a thin film containing copper as a main component on a surface of a film formation target placed in a vacuum atmosphere, wherein a gas having a nitrogen atom in a structure when sputtering the target. And a gas having an oxygen atom or a gas having a nitrogen atom and an oxygen atom is introduced into the vacuum atmosphere. The invention according to claim 2 is the method for producing a copper thin film according to claim 1, wherein the additive gas is an oxygen gas, a nitrogen gas, or water.
At least one kind of gas is contained. The invention according to claim 3 is the method for producing a copper thin film according to any one of claims 1 and 2,
The partial pressure of the additional gas during the sputtering was 6.65 × 1
The pressure is set to 0 -4 Pa or less. According to a fourth aspect of the present invention, there is provided the method for producing a copper thin film according to any one of the first to third aspects, wherein the additive gas is introduced intermittently. The invention according to claim 5 is a sputtering apparatus, comprising: a vacuum chamber; and a target containing copper or copper as a main component disposed in the vacuum chamber. A sputtering apparatus that introduces gas, sputters the target, and forms a thin film on the surface of a film formation target placed in the vacuum atmosphere, wherein the vacuum tank is provided with a gas addition pipe, 6.65 × 10 −4 Pa at a partial pressure in a gas atmosphere
It is characterized in that the additive gas having the following pressure can be introduced continuously or in a pulsed manner. The invention according to claim 6 is the sputtering apparatus according to claim 5, wherein an end of the gas addition pipe is opened to the atmosphere so that the atmosphere can be introduced as the addition gas into the vacuum chamber. It is characterized by having.

【0012】本発明は上記のように構成されており、ア
ルゴンガス等のスパッタガス中に、化学構造中に窒素原
子、酸素原子、又はその両方の原子を含む添加ガスを所
定の分圧で含有させ、スパッタガス及び添加ガスのプラ
ズマを発生させ、銅を主成分とするターゲットをスパッ
タしている。
The present invention is configured as described above, and an additive gas containing a nitrogen atom, an oxygen atom, or both atoms in a chemical structure is contained at a predetermined partial pressure in a sputtering gas such as an argon gas. Then, a plasma of a sputtering gas and an additional gas is generated to sputter a target containing copper as a main component.

【0013】上記のような添加ガスの導入量は、ガス添
加用配管に設けた流量制御バルブを用いて制御し、分圧
を6.65×10-4Pa以下にするのが望ましい。
It is desirable to control the introduction amount of the additive gas as described above using a flow control valve provided in the gas addition pipe, and to set the partial pressure to 6.65 × 10 −4 Pa or less.

【0014】流量制御バルブで制御する場合、その最小
制御流量に相当する分圧よりも小さくすることは困難で
ある。従って、添加ガスを流量制御バルブを介して導入
する場合に、導入とその停止とを繰り返し、間欠的に導
入するようにすると、添加ガスの実効分圧値(時間平均
値)を、流量制御バルブで制御できる値よりも小さくす
ることができる。また、間欠的に導入するタイミングに
より、膜界面の組成制御も可能となる。
When controlling with a flow control valve, it is difficult to make it smaller than the partial pressure corresponding to the minimum control flow. Therefore, when the additive gas is introduced through the flow control valve, the introduction and the stop thereof are repeated, and if the additive gas is intermittently introduced, the effective partial pressure value (time average value) of the additive gas is determined by the flow control valve. Can be made smaller than the value that can be controlled by. Further, the composition of the film interface can be controlled by the timing of the intermittent introduction.

【0015】[0015]

【発明の実施の形態】本発明のスパッタ装置を、本発明
の銅薄膜製造方法と共に説明する。図1を参照し、符号
1は本発明のスパッタ装置の一例であり、真空槽10を
有している。真空槽10の底壁側にはカソード装置12
が配置されており、天井側には基板ホルダ13が配置さ
れている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A sputtering apparatus of the present invention will be described together with a method of manufacturing a copper thin film of the present invention. Referring to FIG. 1, reference numeral 1 is an example of a sputtering apparatus of the present invention, and has a vacuum chamber 10. A cathode device 12 is provided on the bottom wall side of the vacuum chamber 10.
Are arranged, and a substrate holder 13 is arranged on the ceiling side.

【0016】カソード装置12はカソード電極22を有
しており、その表面(真空槽10の内部側)には銅から成
るターゲット21が水平に設けられている。このターゲ
ット21は、基板ホルダ13と対向する位置に配置され
ている。
The cathode device 12 has a cathode electrode 22, and a target 21 made of copper is horizontally provided on the surface (inside of the vacuum chamber 10). The target 21 is arranged at a position facing the substrate holder 13.

【0017】また、カソード電極22の裏面(真空槽1
0の外部側)には、ターゲット21表面に磁場を形成す
るマグネトロン磁石23が配置されている。ターゲット
21と基板15の間の距離(T/S)は275mmのいわ
ゆるロングスロースパッタリング(LTS)となってい
る。
The back surface of the cathode electrode 22 (the vacuum chamber 1)
A magnetron magnet 23 that forms a magnetic field on the surface of the target 21 is disposed on the outside of the target 21. The distance (T / S) between the target 21 and the substrate 15 is so-called long throw sputtering (LTS) of 275 mm.

【0018】真空槽10底壁には、回転軸16が気密に
挿通されており、その先端部分には、シャッタ17が取
り付けられている。基板ホルダ13には爪14が設けら
れており、基板ホルダ13のターゲット21側の面に
は、爪14によってシリコン基板15が保持されてい
る。
A rotary shaft 16 is hermetically inserted through the bottom wall of the vacuum chamber 10, and a shutter 17 is attached to a tip portion thereof. A nail 14 is provided on the substrate holder 13, and a silicon substrate 15 is held on the surface of the substrate holder 13 on the target 21 side by the nail 14.

【0019】真空槽10には、真空排気系18が接続さ
れており、このスパッタ装置1で銅薄膜を形成する際に
は、真空排気系18によって真空槽10内を真空排気す
る。真空槽10には、ガス添加用配管31と、スパッタ
ガス導入用配管33とを有するガス導入系3が接続され
ている。
An evacuation system 18 is connected to the vacuum chamber 10. When a copper thin film is formed by the sputtering apparatus 1, the inside of the vacuum chamber 10 is evacuated by the evacuation system 18. A gas introduction system 3 having a gas addition pipe 31 and a sputtering gas introduction pipe 33 is connected to the vacuum chamber 10.

【0020】ガス添加用配管31には、流量制御バルブ
32が設けられており、端部が大気中に開放されてい
る。スパッタガス導入用配管33は、マスフローコント
ローラ36を介して、スパッタガスボンベ37に接続さ
れており、真空槽10内にスパッタガスボンベ中37に
充填されたスパッタガス(ここではアルゴンガス)を導入
できるように構成されている。
The gas addition pipe 31 is provided with a flow control valve 32, and its end is open to the atmosphere. The sputter gas introduction pipe 33 is connected to a sputter gas cylinder 37 via a mass flow controller 36 so that a sputter gas (here, argon gas) filled in the sputter gas cylinder 37 can be introduced into the vacuum chamber 10. It is configured.

【0021】真空排気系18により、真空槽10内が4
×10-6Torr〜2×10-7Torrの圧力まで真空排気され
た後、流量制御バルブ32を操作し、真空槽10内に大
気(空気)を添加ガスとして導入する。
The inside of the vacuum chamber 10 is reduced by 4
After evacuating to a pressure of × 10 −6 Torr to 2 × 10 −7 Torr, the flow control valve 32 is operated to introduce air (air) into the vacuum chamber 10 as an additional gas.

【0022】このときはスパッタガスを導入せず、導入
された添加ガスにより、真空槽10内の圧力が上昇し、
所定分圧(例えば5×10-7Torrの分圧)で安定したとこ
ろで、スパッタガスを導入する。
In this case, the sputtering gas is not introduced, and the pressure in the vacuum chamber 10 is increased by the introduced additive gas.
When the pressure becomes stable at a predetermined partial pressure (for example, a partial pressure of 5 × 10 −7 Torr), a sputtering gas is introduced.

【0023】スパッタガスはマスフローコントローラ3
6によって流量制御しながら導入する(ここでは20s
ccmの流量で導入した)。このとき、添加ガスの導入
量は変えないでおく。
The sputtering gas is a mass flow controller 3
6 while controlling the flow rate (here, 20 s
ccm). At this time, the introduction amount of the additive gas is not changed.

【0024】スパッタガスの導入により、真空槽10内
の圧力が上昇し、5×10-4Torrの圧力で安定したとこ
ろで、カソード電極22に負電圧を印加し、ターゲット
21表面近傍にプラズマを発生させる。
When the pressure in the vacuum chamber 10 rises due to the introduction of the sputtering gas and becomes stable at a pressure of 5 × 10 −4 Torr, a negative voltage is applied to the cathode electrode 22 to generate plasma near the surface of the target 21. Let it.

【0025】この状態では、シャッタ17はシリコン基
板15とターゲット21の間に配置されており、3.7
kW(約518V×7.18A)の電力で5分間×2回
(2回の間に2分間の放電休止状態を設定する)のプレス
パッタを行い、ターゲット21表面をクリーニングし、
次いで、回転軸16を回転させ、シリコン基板15とタ
ーゲット21の間からシャッタ17を退け、2分後にス
パッタを開始すると、シリコン基板15表面に銅薄膜が
形成され始める(スパッタ電力は3.17kW)。
In this state, the shutter 17 is disposed between the silicon substrate 15 and the target 21, and the shutter 17 is 3.7.
5 minutes x 2 times with kW (about 518V x 7.18A) power
Pre-sputtering (setting a 2 minute discharge pause between two times) is performed, and the surface of the target 21 is cleaned.
Next, the rotating shaft 16 is rotated, the shutter 17 is withdrawn from between the silicon substrate 15 and the target 21, and sputtering is started two minutes later. Then, a copper thin film starts to be formed on the surface of the silicon substrate 15 (the sputtering power is 3.17 kW). .

【0026】スパッタを80秒間行い、シリコン基板1
5表面に約2000Åの銅薄膜を形成した後、カソード
電極21への電圧印加を停止すると共に、添加ガス(大
気)の導入とスパッタガスの導入を停止し、スパッタを
終了させる。基板ホルダ13の温度は、プリスパッタ開
始前では30℃であったが、スパッタ終了時には50℃
程度に昇温していた。
Sputtering is performed for 80 seconds, and the silicon substrate 1
After forming a copper thin film of about 2000 ° on the surface of 5, the application of voltage to the cathode electrode 21 is stopped, the introduction of the additive gas (atmosphere) and the introduction of the sputtering gas are stopped, and the sputtering is terminated. The temperature of the substrate holder 13 was 30 ° C. before the start of the pre-sputtering, but was 50 ° C. at the end of the sputtering.
The temperature had risen to the extent.

【0027】スパッタ終了後、シリコン基板15を取り
出し、形成した銅薄膜の比抵抗を測定した。その比抵抗
の値は、時間経過に従い小さくなった。
After the completion of the sputtering, the silicon substrate 15 was taken out, and the specific resistance of the formed copper thin film was measured. The value of the specific resistance decreased with the passage of time.

【0028】図2のグラフに、真空槽10内に導入した
添加ガス(ここでは大気)のスパッタガス中の分圧Pと、
形成された銅薄膜の比抵抗の経時変化を示す。導入した
スパッタガスの流量は20sccmであり、スパッタ雰
囲気の圧力は5×10-4Torrである。添加ガスの分圧P
は、添加ガス導入前の真空槽10の到達圧力P0と、添
加ガス導入後の圧力P1との差(P1−P0)で表される。
グラフ中のバルク銅は、銅塊の場合の比抵抗の値であ
る。
The graph in FIG. 2 shows the partial pressure P of the additive gas (here, the atmosphere) introduced into the vacuum chamber 10 in the sputtering gas,
4 shows a change with time of the specific resistance of the formed copper thin film. The flow rate of the introduced sputtering gas is 20 sccm, and the pressure of the sputtering atmosphere is 5 × 10 −4 Torr. Partial pressure of additive gas P
Is represented by the difference (P 1 −P 0 ) between the ultimate pressure P 0 of the vacuum chamber 10 before the introduction of the additional gas and the pressure P 1 after the introduction of the additional gas.
Bulk copper in the graph is the value of the specific resistance in the case of a copper lump.

【0029】このグラフから、スパッタ雰囲気中に含ま
れる添加ガス(大気)の分圧Pを、6.65×10-4Pa
(5×10-6Torr)以下の大きさにすると効果的であるこ
とが分かる。特に、2.66×10-5Pa(2×10-7T
orr)以下の微小な大きさにすると、形成される銅薄膜の
比抵抗は1.7〜1.8μΩcmとなり、バルク銅の値
(1.7μΩcm)にほぼ等しくなることがわかる。な
お、シリコン表面に熱酸化膜が形成されている基板を用
いても同様の結果が得られた。
From this graph, it is found that the partial pressure P of the additional gas (atmosphere) contained in the sputtering atmosphere is 6.65 × 10 −4 Pa.
(5 × 10 −6 Torr) or less is effective. In particular, 2.66 × 10 −5 Pa (2 × 10 −7 T
orr) or smaller, the specific resistance of the formed copper thin film is 1.7-1.8 μΩcm, and the value of bulk copper
(1.7 μΩcm). Similar results were obtained using a substrate having a thermal oxide film formed on the silicon surface.

【0030】以上は、流量制御バルブ32により、真空
槽10内に添加ガスを連続的に導入したが、添加ガスの
真空槽10内での分圧Pを一層微小な値にするために、
間欠的に導入することができる。
In the above description, the additive gas was continuously introduced into the vacuum chamber 10 by the flow control valve 32. In order to reduce the partial pressure P of the additive gas in the vacuum chamber 10 to a smaller value,
Can be introduced intermittently.

【0031】例えば、所定の時間間隔で、真空槽10内
に間欠的に添加ガス(この添加ガスは化学構造中に酸素
原子を有するガス、窒素原子を有するガス、酸素原子と
窒素原子を有するガス及び水のいずれか一種以上のガス
である。)を微少量導入すると、その分圧を一層小さく
することができる。
For example, at predetermined time intervals, an additional gas (a gas having an oxygen atom in a chemical structure, a gas having a nitrogen atom, a gas having an oxygen atom and a nitrogen atom, And at least one gas of water) can be introduced, and the partial pressure can be further reduced.

【0032】図3のグラフは、2.5秒間の添加ガス導
入を14秒間隔で繰り返し行った場合の真空槽10内の
圧力変化を示している。添加ガスの導入により、真空槽
10内の圧力はパルス的に2.66×10-5Pa(2×
10-7Torr)だけ上昇する。
The graph in FIG. 3 shows the pressure change in the vacuum chamber 10 when the additional gas introduction for 2.5 seconds is repeated at intervals of 14 seconds. Due to the introduction of the additional gas, the pressure in the vacuum chamber 10 is pulsed to 2.66 × 10 −5 Pa (2 ×
10 -7 Torr).

【0033】このグラフを平均すると、真空槽10内に
は、1×10-8〜1×10-9Torr程度の分圧で添加ガス
が含まれていることになる。微小分圧の添加ガスを精度
よく導入することは困難であるが、上記のように、間欠
的に添加ガスを導入することで達成できる。
When this graph is averaged, the additional gas is contained in the vacuum chamber 10 at a partial pressure of about 1 × 10 −8 to 1 × 10 −9 Torr. Although it is difficult to introduce an additive gas having a minute partial pressure with high precision, it can be achieved by intermittently introducing the additive gas as described above.

【0034】また、真空槽10内に連続的に添加ガスを
導入する配管と、パルス状に添加ガスを導入する配管と
を別々に設け、連続的に添加ガスを導入すると共に、そ
のパルス状の導入を重畳させてもよい。
Further, a pipe for continuously introducing the additive gas into the vacuum chamber 10 and a pipe for introducing the additive gas in a pulse form are separately provided so that the additive gas is continuously introduced and the pulse-like gas is supplied. The introduction may be superimposed.

【0035】なお、以上は、直流電源を印加してターゲ
ットをスパッタする場合について説明したが、本発明
は、交流電圧を印加するRFスパッタ法や、直流電圧に
交流電圧を重畳するスパッタ法、直流電圧の大きさを変
化させるスパッタ法等、種々のスパッタ法に適用するこ
とができる。また、基板ホルダ13に電圧を印加し、シ
リコン基板15にバイアスを印加したり、フローティン
グにしてもよい。
Although the above description has been given of the case where a target is sputtered by applying a DC power supply, the present invention relates to an RF sputtering method for applying an AC voltage, a sputtering method for superimposing an AC voltage on a DC voltage, and a DC method. The present invention can be applied to various sputtering methods such as a sputtering method in which the magnitude of a voltage is changed. Alternatively, a voltage may be applied to the substrate holder 13 to apply a bias to the silicon substrate 15 or the silicon substrate 15 may be floated.

【0036】また、上記の添加ガスには大気(空気)を使
用したが、酸素ガス、窒素ガス、又は水分を含有するア
ルゴンガスであってもよい。酸素ガスと窒素ガスの混合
ガスであってもよい。また、酸素ガス、窒素ガス、その
混合ガスに水分が含有されるガスであってもよい。その
場合には、ガス添加用配管の端部を流量制御バルブを介
して、添加ガスを充填したガスボンベに接続しておくと
よい。
Although the above-mentioned added gas is air (air), it may be oxygen gas, nitrogen gas, or argon gas containing water. It may be a mixed gas of oxygen gas and nitrogen gas. Further, oxygen gas, nitrogen gas, or a gas containing a moisture in a mixed gas thereof may be used. In this case, the end of the gas addition pipe may be connected to a gas cylinder filled with the addition gas via a flow control valve.

【0037】また、上記はシリコン基板15上に銅薄膜
を形成したが、成膜対象物はシリコン基板に限定される
ものではない。
In the above description, the copper thin film is formed on the silicon substrate 15, but the object to be formed is not limited to the silicon substrate.

【0038】更にまた、本発明に用いる銅ターゲットは
銅から成るターゲット、または銅を主成分とするターゲ
ットであり、銅を主成分とするターゲットは他の金属を
含有していてもよい。
Further, the copper target used in the present invention is a target made of copper or a target containing copper as a main component, and the target containing copper as a main component may contain another metal.

【0039】また、低抵抗化を促進するためにアニール
を併用してもよい。ターゲット・基板間の距離は275
mmの例を示したが、より短距離のスパッタ装置を用い
てもよい。
Further, annealing may be used in combination to promote lowering the resistance. The distance between target and substrate is 275
Although the example of mm is shown, a sputtering device with a shorter distance may be used.

【0040】[0040]

【発明の効果】銅薄膜の比抵抗を小さくできるので、L
SI配線に適している。添加ガスを間欠的に導入する場
合、流量制御バルブで制御可能な値よりも小さい分圧値
にすることができる。銅薄膜形成後、アニール処理をし
なくても比抵抗を小さくすることができる。
As described above, the specific resistance of the copper thin film can be reduced.
Suitable for SI wiring. When the additional gas is introduced intermittently, a partial pressure value smaller than a value controllable by the flow control valve can be set. After the formation of the copper thin film, the specific resistance can be reduced without performing annealing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例のスパッタ装置を示す図FIG. 1 is a diagram showing a sputtering apparatus according to an example of the present invention.

【図2】銅薄膜の比抵抗の経時変化を示すグラフFIG. 2 is a graph showing the change with time of the specific resistance of a copper thin film.

【図3】添加ガスを間欠的に導入した場合の圧力変化を
示すグラフ
FIG. 3 is a graph showing a pressure change when an additional gas is intermittently introduced.

【図4】(a)、(b):銅薄膜の形成方法を説明するため
の図
FIGS. 4A and 4B are diagrams for explaining a method of forming a copper thin film.

【符号の説明】[Explanation of symbols]

1……スパッタ装置 10……真空槽 21……タ
ーゲット 31……ガス添加用配管
DESCRIPTION OF SYMBOLS 1 ... Sputter apparatus 10 ... Vacuum tank 21 ... Target 31 ... Gas addition piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田熊 康宏 千葉県山武郡山武町横田523番地 日本真 空技術株式会社半導体技術研究所内 (72)発明者 上東 俊光 静岡県裾野市須山1220−14 日本真空技術 株式会社半導体技術研究所内 (72)発明者 樋口 靖 静岡県裾野市須山1220−14 日本真空技術 株式会社半導体技術研究所内 Fターム(参考) 4K029 AA06 BA08 CA05 DA02 DA04 DA12 DC03 DC39 EA04 JA01 4M104 BB04 DD42 HH16 5F103 AA08 BB22 DD28 HH03 NN04 NN06 RR05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhiro Takuma 523 Yokota, Yamatake-cho, Sanmu-gun, Chiba Japan Semiconductor Technology Research Laboratories (72) Inventor Toshimitsu Kamito 1220-14 Suyama, Susono-shi, Shizuoka Japan Vacuum Technology Semiconductor Technology Research Institute, Inc. (72) Inventor Yasushi Yaguchi 1220-14 Suyama, Susono City, Shizuoka Prefecture Japan Vacuum Technology Semiconductor Technology Research Institute F-term (reference) 4K029 AA06 BA08 CA05 DA02 DA04 DA12 DC03 DC39 EA04 JA01 4M104 BB04 DD42 HH16 5F103 AA08 BB22 DD28 HH03 NN04 NN06 RR05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】真空雰囲気中にスパッタガスを導入し、銅
または銅を主成分とするターゲットをスパッタし、前記
真空雰囲気中に置かれた成膜対象物表面に銅薄膜または
銅を主成分とする薄膜を形成する銅薄膜製造方法であっ
て、 前記ターゲットをスパッタする際に、構造中に窒素原子
を有するガスと、酸素原子を有するガスと、又は窒素原
子と酸素原子とを有するガスとのうち、いずれか一種以
上のガスから成る添加ガスを前記真空雰囲気中に導入す
ることを特徴とする銅薄膜製造方法。
1. A sputtering gas is introduced into a vacuum atmosphere to sputter a copper or copper-based target, and a copper thin film or a copper-based material is deposited on the surface of a film-forming target placed in the vacuum atmosphere. A method of manufacturing a copper thin film for forming a thin film, comprising: when sputtering the target, a gas having a nitrogen atom in the structure, a gas having an oxygen atom, or a gas having a nitrogen atom and an oxygen atom. A method of manufacturing a copper thin film, comprising introducing an additional gas comprising at least one gas into the vacuum atmosphere.
【請求項2】前記添加ガスは、酸素ガス、窒素ガス、水
のうち、少なくともいずれか一種以上のガスが含まれて
いることを特徴とする請求項1記載の銅薄膜製造方法。
2. The method according to claim 1, wherein the additive gas contains at least one of oxygen gas, nitrogen gas, and water.
【請求項3】前記スパッタ中の前記添加ガスの分圧は、
6.65×10-4Pa以下にすることを特徴とする請求
項1又は請求項2のいずれか1項記載の銅薄膜製造方
法。
3. The partial pressure of the additional gas during the sputtering is as follows:
The method for producing a copper thin film according to claim 1, wherein the pressure is set to 6.65 × 10 −4 Pa or less.
【請求項4】前記添加ガスを間欠的に導入することを特
徴とする請求項1乃至請求項3のいずれか1項記載の銅
薄膜製造方法。
4. The method for producing a copper thin film according to claim 1, wherein the additive gas is introduced intermittently.
【請求項5】真空槽と、 前記真空槽内に配置された銅または銅を主成分とするタ
ーゲットとを有し、 前記真空槽内を真空雰囲気にし、スパッタガスを導入
し、前記ターゲットをスパッタし、前記真空雰囲気中に
配置された成膜対象物表面に薄膜を形成するスパッタ装
置であって、 前記真空槽にはガス添加用配管が設けられ、前記スパッ
タガスの雰囲気中に、分圧で6.65×10-4Pa以下
の圧力の添加ガスを連続またはパルス的に導入できるよ
うに構成されたことを特徴とするスパッタ装置。
5. A vacuum chamber, comprising: a copper or copper-based target disposed in the vacuum chamber; setting a vacuum atmosphere in the vacuum chamber, introducing a sputtering gas, and sputtering the target; A sputtering apparatus for forming a thin film on a surface of a film formation target placed in the vacuum atmosphere, wherein a gas addition pipe is provided in the vacuum tank, and a partial pressure is applied to the sputtering gas atmosphere. 6. A sputtering apparatus characterized in that an additive gas having a pressure of 6.65 × 10 −4 Pa or less can be introduced continuously or in pulses.
【請求項6】前記ガス添加用配管の端部は大気に開放さ
れ、前記真空槽内に前記添加ガスとして大気を導入でき
るように構成されたことを特徴とする請求項5記載のス
パッタ装置。
6. The sputtering apparatus according to claim 5, wherein an end of said gas addition pipe is opened to the atmosphere so that the atmosphere can be introduced as said additional gas into said vacuum chamber.
JP24841799A 1999-09-02 1999-09-02 Copper thin film manufacturing method and sputtering apparatus used in the method Expired - Fee Related JP4360716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24841799A JP4360716B2 (en) 1999-09-02 1999-09-02 Copper thin film manufacturing method and sputtering apparatus used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24841799A JP4360716B2 (en) 1999-09-02 1999-09-02 Copper thin film manufacturing method and sputtering apparatus used in the method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008281839A Division JP4855455B2 (en) 2008-10-31 2008-10-31 Copper thin film manufacturing method and sputtering apparatus used in the method

Publications (2)

Publication Number Publication Date
JP2001073131A true JP2001073131A (en) 2001-03-21
JP4360716B2 JP4360716B2 (en) 2009-11-11

Family

ID=17177818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24841799A Expired - Fee Related JP4360716B2 (en) 1999-09-02 1999-09-02 Copper thin film manufacturing method and sputtering apparatus used in the method

Country Status (1)

Country Link
JP (1) JP4360716B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238647A (en) * 2003-02-04 2004-08-26 Furukawa Techno Research Kk Smoothened copper foil, and production method therefor
EP1862562A1 (en) * 2006-05-31 2007-12-05 Mec Company Ltd. Method for manufacturing substrate, and vapor deposition apparatus used for the same
JPWO2008018490A1 (en) * 2006-08-10 2010-01-07 株式会社アルバック Conductive film forming method, thin film transistor, thin film transistor panel, and thin film transistor manufacturing method
JPWO2008044757A1 (en) * 2006-10-12 2010-02-18 株式会社アルバック Conductive film forming method, thin film transistor, thin film transistor panel, and thin film transistor manufacturing method
WO2011007832A1 (en) * 2009-07-17 2011-01-20 株式会社アルバック Film-forming apparatus
US8299529B2 (en) 2008-04-25 2012-10-30 Ulvac, Inc. Method for producing thin film transistor and thin film transistor
JP5145225B2 (en) * 2006-07-14 2013-02-13 株式会社アルバック Manufacturing method of semiconductor device
KR101429069B1 (en) * 2009-07-17 2014-08-11 가부시키가이샤 아루박 Film-forming apparatus and film-forming method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238647A (en) * 2003-02-04 2004-08-26 Furukawa Techno Research Kk Smoothened copper foil, and production method therefor
EP1862562A1 (en) * 2006-05-31 2007-12-05 Mec Company Ltd. Method for manufacturing substrate, and vapor deposition apparatus used for the same
JP5145225B2 (en) * 2006-07-14 2013-02-13 株式会社アルバック Manufacturing method of semiconductor device
TWI397125B (en) * 2006-07-14 2013-05-21 Ulvac Inc Method for manufacturing a semiconductor device
JPWO2008018490A1 (en) * 2006-08-10 2010-01-07 株式会社アルバック Conductive film forming method, thin film transistor, thin film transistor panel, and thin film transistor manufacturing method
JP5247448B2 (en) * 2006-08-10 2013-07-24 株式会社アルバック Conductive film forming method and thin film transistor manufacturing method
JPWO2008044757A1 (en) * 2006-10-12 2010-02-18 株式会社アルバック Conductive film forming method, thin film transistor, thin film transistor panel, and thin film transistor manufacturing method
EP2091072A4 (en) * 2006-10-12 2015-07-15 Ulvac Inc Conductive film forming method, thin film transistor, panel with thin film transistor and thin film transistor manufacturing method
US8299529B2 (en) 2008-04-25 2012-10-30 Ulvac, Inc. Method for producing thin film transistor and thin film transistor
CN102471875A (en) * 2009-07-17 2012-05-23 株式会社爱发科 Film-forming apparatus
WO2011007832A1 (en) * 2009-07-17 2011-01-20 株式会社アルバック Film-forming apparatus
JP5427889B2 (en) * 2009-07-17 2014-02-26 株式会社アルバック Film forming apparatus and film forming method
KR101406341B1 (en) * 2009-07-17 2014-06-27 가부시키가이샤 아루박 Film-forming apparatus
KR101429069B1 (en) * 2009-07-17 2014-08-11 가부시키가이샤 아루박 Film-forming apparatus and film-forming method

Also Published As

Publication number Publication date
JP4360716B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
US5510011A (en) Method for forming a functional deposited film by bias sputtering process at a relatively low substrate temperature
JPS62287071A (en) Semiconductor producing apparatus
Koski et al. Voltage controlled reactive sputtering process for aluminium oxide thin films
JP4296256B2 (en) Manufacturing method of superconducting material
CN109306465B (en) To Cu3Method for realizing quantitative doping of N film
JP4360716B2 (en) Copper thin film manufacturing method and sputtering apparatus used in the method
JPH06252059A (en) Method and apparatus for forming film
JPH10330932A (en) Sputtering device
JPH02232358A (en) Production of transparent conductive film and apparatus for producing such film
Qasim et al. Effects of ion flux density and energy on the composition of TiNx thin films prepared by magnetron sputtering with an anode layer ion source
KR20130128733A (en) Apparatus and method for ion-implantation and sputtering deposition
JP4855455B2 (en) Copper thin film manufacturing method and sputtering apparatus used in the method
JPH10298748A (en) Method for depositing golden titanium nitride
JPH0799739B2 (en) Method for forming metal thin film
JP2002105618A (en) Surface structure for vacuum treatment chamber
JP2004137531A (en) Deposition method for barrier membrane
JP3727693B2 (en) TiN film manufacturing method
JP2002030432A (en) System and method for sputtering
JPH02205674A (en) Magnetron sputtering device
TW201209184A (en) Silvery white film structure and method manufacturing same
JPH09279336A (en) Formation of thin film
JPH02112112A (en) Continuous forming method of transparent conductive thin film and device therefor
EP0193338A2 (en) A method of and apparatus for producing multilayered coatings
KR100237166B1 (en) The method for tin coating using ion beam
JPH0250959A (en) Method and apparatus for forming thin film of rare earth metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090811

R150 Certificate of patent or registration of utility model

Ref document number: 4360716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees