JPH02112112A - Continuous forming method of transparent conductive thin film and device therefor - Google Patents

Continuous forming method of transparent conductive thin film and device therefor

Info

Publication number
JPH02112112A
JPH02112112A JP26487288A JP26487288A JPH02112112A JP H02112112 A JPH02112112 A JP H02112112A JP 26487288 A JP26487288 A JP 26487288A JP 26487288 A JP26487288 A JP 26487288A JP H02112112 A JPH02112112 A JP H02112112A
Authority
JP
Japan
Prior art keywords
thin film
transparent conductive
conductive thin
sputtering
spattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26487288A
Other languages
Japanese (ja)
Other versions
JP2894564B2 (en
Inventor
Tadao Hatakeyama
畠山 忠雄
Daisuke Aonuma
大介 青沼
Aoshi Horiguchi
堀口 青史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP63264872A priority Critical patent/JP2894564B2/en
Publication of JPH02112112A publication Critical patent/JPH02112112A/en
Application granted granted Critical
Publication of JP2894564B2 publication Critical patent/JP2894564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To enable the continuous formation of a large quantity of a low specific resistance ITO thin film by introducing a small amount of water during the spattering operation in the continuous formation of a transparent conductive thin film by using an oxide target such as In2O3 by means of spattering process. CONSTITUTION:After exhausting a spattering chamber 10 to the level of 10<-5> Pa, a H2O gas introducing part 5 is operated to make the inside pressure of the device to the 10<-4> Pa level. Then, an Ar gas introducing part 3 and an O2 gas introducing part 4 are opened to introduce Ar and O2 of the amount of several % of Ar, the inside pressure of the device is held at the 10<-1> Pa level, a voltage of several hundred volts is applied to a target 1 with water- cooling to start spattering, and trays 2 are continuously carried through a load lock chamber 9, the spattering chamber 10, and an unload lock chamber 11 to form a film on a base. Hence, a large quantity of a low specific resistance ITO thin film can be continuously formed. Thus, this thin film can be manufactured at low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物ターゲフトを用いて1nzo3または(
In203+5nO7)等の透明導電性薄膜を連続的に
作成する方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention uses an oxide target graft to obtain 1nzo3 or (
The present invention relates to a method and apparatus for continuously forming transparent conductive thin films such as In203+5nO7).

(従来の技術) 一般的にIn2O:lまたはIr+zO1l→−3n○
2(以下、ITOと略す)薄膜作成方法には化学的成j
模法と物理的成膜法の2種類の方法があるが、光学的特
性、大面積基板での膜厚、膜質の均−性等の点で後者の
物理的成膜法が採用されることが多く、巾でもスパンタ
リング法が注目されている。
(Prior art) Generally In2O:l or Ir+zO1l→-3n○
2 (hereinafter abbreviated as ITO) thin film production method involves chemical formation.
There are two methods: a mock method and a physical film forming method, but the latter physical film forming method is preferred in terms of optical properties, film thickness on large-area substrates, uniformity of film quality, etc. There are many cases in which the sputtering method is attracting attention in terms of width as well.

また、スパンタリング法にも1n−3n金属ターゲノ1
〜を用いる反応性スバ・ツタ法とITO酸化物クーりン
1−を用いる方法があるが、酸化物ターゲノ1−を用い
ろ方法の方が、制御性・再現性・均性の点で優れており
、クーゲット材料の低抵抗化とともに、DCマグネトロ
ン法を用いる酸化物クーケント法によるものが主流とな
ってきている。
In addition, 1n-3n metal target 1 is also used in the sputtering method.
There is a reactive Suba-Tsuta method using ~ and a method using ITO oxide Kulin 1-, but the method using oxide target No 1- is superior in terms of controllability, reproducibility, and uniformity. As the resistance of Kuget materials has decreased, the oxide Kuget method using the DC magnetron method has become mainstream.

従来の酸化物ターゲツトを用いて作られるITO膜は、
成膜時の基板温度及び成膜後のアニール温度を300〜
400°Cにすることで、2×104Ωcm程度の比抵
抗を得ることが可能となっている。
ITO films made using conventional oxide targets are
The substrate temperature during film formation and the annealing temperature after film formation are set to 300~
By setting the temperature to 400°C, it is possible to obtain a specific resistance of about 2×10 4 Ωcm.

(発明が解決しようとする問題点) しかしながら、電子部品における基板の多様化に伴い、
昨今は耐熱性の低い基板への成IIりがl(要な課題と
なってきているが、特に■ゴ0膜は成11り時の基板温
度依存性が高く、室温付近から100°C程度の低い成
膜温度でする連続スパンタ装置即ちインラインスパッタ
装置による成膜では得られた膜の比抵抗が高く1〜2X
IO−3Ω印程度のイ偵しか得られない次点がある。一
方、ハツチ処理バー1スパッタ装置におけるITO膜で
は、室IA〜100°C前後の基板温度でも、6〜8X
10 4Ω(、l1lO比抵抗が得られることがわかっ
ている。この理由は、インラインスパック装置によるド
I’ 0成11りては残留ガスの影響の少い状態でのス
パッタリングとなるが故に、残留ガスの多いハツチ処理
型スバンタ装置の場合に比べて高い抵抗の膜しか作成で
きなくなる、と考えられる。
(Problems to be solved by the invention) However, with the diversification of substrates for electronic components,
Nowadays, deposition on substrates with low heat resistance has become an important issue, but in particular, Go0 films are highly dependent on the substrate temperature during deposition, ranging from around room temperature to about 100°C. When the film is formed using a continuous sputtering device, that is, an in-line sputtering device, which uses a low film forming temperature of
There is a runner-up where you can only get a score of IO-3Ω. On the other hand, with the ITO film in the hatch processing bar 1 sputtering device, even when the substrate temperature is around 100°C in the chamber IA, 6~8X
It is known that a specific resistance of 10 4Ω (111O) can be obtained. It is thought that only a film with a higher resistance can be formed than in the case of a hatch processing type Svantar device with a large amount of gas.

(発明の目的) 本発明は、室温付近から100°C程度の低い成膜温度
で、比抵抗の低い良質のIT07#膜を17る連続スパ
ッタ法およびその装置の提供を目的とする。
(Objective of the Invention) The object of the present invention is to provide a continuous sputtering method and an apparatus for forming a high-quality IT07# film with low resistivity at a low film forming temperature of around room temperature to about 100°C.

(問題点を解決するための手段) 上記の目的を達成するために、本発明は、連続スパッタ
作業中に少量の所定量の大供≠衾#水を導入する方法を
採用する。装置はそれができるような機構を設けて構成
されている。
(Means for Solving the Problems) In order to achieve the above object, the present invention adopts a method of introducing a small amount of predetermined amount of water during continuous sputtering operations. The device is constructed with a mechanism that allows this.

(作 用) インライン型スパッタ装置による場合よりも、ハツチ処
理型スバンタ装置による場合の方が、成膜されたITO
薄膜の抵抗値がより低くなるのは、ITO膜及びターゲ
ット材料のもつ性質が次記のように関与する結果と考え
られる。
(Function) It is better to use the hatch processing type Svanta equipment than to use the in-line sputtering equipment.
The reason why the resistance value of the thin film becomes lower is considered to be the result of the properties of the ITO film and the target material being involved as described below.

(a)ITOターケノ1〜材及び装置内壁にイ・1着し
たI′「0膜は大気成分及び水の吸着を起し易く、多量
のそれらを含むようになる。
(a) The ITO film deposited on the ITO material and the inner wall of the device tends to adsorb atmospheric components and water, and contains a large amount of them.

(b)バッチ処理型の装置の場合は、真空υF気で大気
成分及び水等の吸着物が徐々に脱離し、これによって装
置内に安定した残留ガス成分及び圧力が形成される。
(b) In the case of a batch processing type device, atmospheric components and adsorbed substances such as water are gradually desorbed by vacuum υF gas, thereby forming stable residual gas components and pressure within the device.

(C)インラインスパッタ装置の場合は、1“■空室内
を高真空領域に維持するため、成膜が残留ガス成分の影
響の殆んどない状態でのスパッタリングで行なわれる。
(C) In the case of an in-line sputtering apparatus, film formation is performed by sputtering in a state where there is almost no influence of residual gas components in order to maintain a high vacuum region within the 1"■ cavity.

少量の所定量の左共妻拗#水の導入は、上記の問題を解
消する作用をもつ。
The introduction of a small, predetermined amount of water has the effect of eliminating the above problem.

(実施例) 次に、本発明を実施例を用いて図面を参照して説明する
(Example) Next, the present invention will be described using an example with reference to the drawings.

第1図は本発明の実施例のインラインスパッタ装置の概
略の断面図、第2図はその正面断面図であって、1はタ
ーゲット、2は基板を収容する1〜レー、3はArガス
導入部、4は02ガス導入部、5はH20ガス導入部、
6はクライオポンプ、7は電離真空計、8はダイヤフラ
ム式真空計、9はロードロック室、10はスパッタ室、
11はアンロードmlツク室である。Arガス導入部3
と02ガス導入部4はスパッタ室10の両クライオポン
プ6側にあり、H20ガス導入部5はターゲット1の付
近に設けられている。これらのガスを導入しながら、装
置内はクライオポンプ6で排気され、スパッタ圧力を一
定に保つように調整されている。
FIG. 1 is a schematic cross-sectional view of an in-line sputtering apparatus according to an embodiment of the present invention, and FIG. part, 4 is 02 gas introduction part, 5 is H20 gas introduction part,
6 is a cryopump, 7 is an ionization vacuum gauge, 8 is a diaphragm vacuum gauge, 9 is a load lock chamber, 10 is a sputtering chamber,
11 is an unloading ml storage room. Ar gas introduction part 3
The H20 gas introduction section 4 is located on both cryopump 6 sides of the sputtering chamber 10, and the H20 gas introduction section 5 is provided near the target 1. While introducing these gases, the inside of the apparatus is evacuated by a cryopump 6, and the sputtering pressure is adjusted to be kept constant.

尚、装置内圧力のうちIQ−2Pa台以下の圧力は電離
真空計7にて、l Q −11) a台の圧力はダイヤ
フラム式真空計8にて、それぞれモニターされている。
Incidentally, among the internal pressures of the apparatus, pressures below IQ-2Pa are monitored by an ionization vacuum gauge 7, and pressures at IQ-11)a are monitored by a diaphragm vacuum gauge 8.

この装置を動作するにはまず、スパッタ室10をIQ−
5Pa台まで排気したのち、H20ガス導入部5を動作
させて、装置内圧力をIQ−’Pa台にする。次にAr
ガス導入部3と0□ガス導入部4を開いてArと0□ 
(Arの数%)を導入し、装置内をIQ−’Pa台の圧
力に保ち、ターゲット1を水冷しながらこれに数百ボル
トの電圧を印加し゛Cスパッタリングを開始し、ロード
ロック室9、スパッタ室10、アンロードロック室11
を通って連続的にトレイを搬送することによって基板1
−に成膜する。
To operate this device, first, the sputtering chamber 10 is
After exhausting to the 5 Pa range, the H20 gas introduction section 5 is operated to bring the internal pressure of the device to the IQ-'Pa range. Next, Ar
Open the gas introduction part 3 and 0□ gas introduction part 4 and connect Ar and 0□
(several percent of Ar) was introduced, the pressure inside the apparatus was maintained at the level of IQ-'Pa, and a voltage of several hundred volts was applied to the target 1 while cooling it with water to start C sputtering. Sputtering chamber 10, unload lock chamber 11
By continuously conveying the tray through the substrate 1
- Deposit film on.

本発明の装置は上記のような構造になっているから、従
来のバッチ式装置でスパッタ室10内の残留ガス成分で
あったH、0は、ターゲット1或いはスパッタ室10内
面に付着したITO膜内に常に一定量吸収され続け、そ
のため、インライン型装置のもつ大量成膜処理能力をそ
のまま生かしながらハツチ処理型の装置と同等な成膜条
件を得ることができる。
Since the apparatus of the present invention has the above-described structure, H,0, which was a residual gas component in the sputtering chamber 10 in the conventional batch type apparatus, is removed from the ITO film attached to the target 1 or the inner surface of the sputtering chamber 10. Therefore, it is possible to obtain film formation conditions equivalent to those of hatch processing type equipment while making full use of the mass film formation processing capacity of inline type equipment.

第3図は本発明の効果を示すグラフであり、スパッタ室
10内に極少量のH,Oガスを導入して或圧力にまで排
気し、次にArガスを2003CCM一定とし、0.ガ
スの導入流量を変えたときの、0□ガス流量と比抵抗の
変化を表した図である。装置を1.0−5Pa台にまで
排気した場合はITO膜の比抵抗値は1〜2X10−3
Ωcm程度しか得られなかったが、10−’Pa台まで
排気した場合、即ち、I]20ガスが10−’Pa台で
ある場合には6〜8 X 10−’Ωcmの比抵抗が得
られている。
FIG. 3 is a graph showing the effect of the present invention, in which a very small amount of H, O gas is introduced into the sputtering chamber 10 and exhausted to a certain pressure, then Ar gas is kept constant at 2003 CCM, and 0. FIG. 2 is a diagram showing changes in 0□ gas flow rate and specific resistance when the gas introduction flow rate is changed. When the device is evacuated to a level of 1.0-5 Pa, the specific resistance value of the ITO film is 1 to 2X10-3.
Although only about Ωcm was obtained, if the gas was evacuated to the 10-'Pa level, that is, when the I]20 gas was at the 10-'Pa level, a resistivity of 6 to 8 x 10-'Ωcm could be obtained. ing.

なお、連続作業に当って、H,Oガスまたは大気の導入
は充分に流量制御されることが望ましく、サーマルマス
フローコントローラーを用いて行なうとき最高の成績が
得られた。
In continuous operation, it is desirable that the flow rate of the introduction of H, O gas or atmospheric air be sufficiently controlled, and the best results were obtained when a thermal mass flow controller was used.

11・・・アンロードロック室。11...Unload lock room.

特許出願人   日電アネルハ株式会社代 理 人  
弁理士 村上 健次 (発明の効果) 以上説明したように本発明の方法および装置によれば、
大量の低比抵抗TTO薄膜を連続的に従って安価に作成
することができる。
Patent applicant: Nichiden Anelha Co., Ltd. Agent
Patent Attorney Kenji Murakami (Effects of the Invention) As explained above, according to the method and apparatus of the present invention,
A large amount of low resistivity TTO thin films can be produced continuously and inexpensively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のインラインスパッタリング装置の概略
の平面断面図、第2図はその正面断面図である。 1・・・ターゲット、2・・・トレー 3・・・Arガス導入部、4・・・0□ガス導入部、5
・・・H20ガス導入部、6・・・クライオポンプ、7
・・・電離真空計、8・・・ダイヤフラム式真空計、9
・・・ロードロツタ室、10・・・スパッタ室、”  
200 (rI) COにりで。 平成1年G月 −10差1ts 平成1年3月10日 手続補正書(方式) %式% 1、事件の表示 昭和63年特許願第264872号 2、発明の名称 連続透明導電性薄膜作成方法および装置I3、補正をす
る者 事件との関係   特許出願人 住所 東京都府中市四谷5−8−1 平成1年3月7日(発送口) 5、補正の対象 願書の特許出願人の欄、および明細書
の図面の簡単な説明の欄。 7、補正の内容 (1)願書は、別紙(全文訂正願書)の通り。 (2)明細書の第9頁下か66行目の文末に、記の文を
追加する。 次
FIG. 1 is a schematic plan sectional view of an in-line sputtering apparatus of the present invention, and FIG. 2 is a front sectional view thereof. 1...Target, 2...Tray 3...Ar gas introduction part, 4...0□Gas introduction part, 5
... H20 gas introduction part, 6... Cryopump, 7
...Ionization vacuum gauge, 8...Diaphragm vacuum gauge, 9
...Load rotator chamber, 10...Sputter chamber,"
200 (rI) CO Niride. G month, 1999 -10 difference 1ts March 10, 1999 procedural amendment (method) % formula % 1. Indication of the case 1988 Patent Application No. 264872 2. Name of the invention Method for producing continuous transparent conductive thin film and Apparatus I3, relationship with the case of the person making the amendment Patent applicant address: 5-8-1 Yotsuya, Fuchu-shi, Tokyo March 7, 1999 (Delivery port) 5. Subject of amendment Patent applicant column in the application; and a brief description of the drawings in the specification. 7. Contents of amendment (1) The application form is as attached (application for full text correction). (2) Add the following sentence to the end of the 66th line at the bottom of page 9 of the specification. Next

Claims (5)

【特許請求の範囲】[Claims] (1)In_2O_3または(In_2O_3+SnO
_2)等の酸化物ターゲットを用いて連続的にスパッタ
リング法で透明導電性薄膜を作成する方法において、そ
のスパッタリング作業中に少量の所定量の水を導入した
ことを特徴とする連続透明導電性薄膜作成方法。
(1) In_2O_3 or (In_2O_3+SnO
A continuous transparent conductive thin film characterized in that a method of continuously creating a transparent conductive thin film by a sputtering method using an oxide target such as __2) is characterized in that a small amount of water in a predetermined amount is introduced during the sputtering operation. How to make.
(2)前記少量の所定導入量がスパッタリングに使用す
るAr又はO_2ガスの流量の5〜50%の範囲にある
ことを特徴とする特許請求の範囲第1項記載の連続透明
導電性薄膜作成方法。
(2) The method for producing a continuous transparent conductive thin film according to claim 1, characterized in that the small predetermined amount introduced is in the range of 5 to 50% of the flow rate of Ar or O_2 gas used for sputtering. .
(3)In_2O_3またはIn_2O_3+SnO_
2等の酸化物ターゲットを用いてスパッタリング法で連
続的に透明導電性薄膜を作成する連続透明導電性薄膜作
成装置において、スパッタリング作業中心に少量の所定
量のを導入する機構 をそなえたことを特徴とする連続透明導電性薄膜作成装
置。
(3) In_2O_3 or In_2O_3+SnO_
A continuous transparent conductive thin film production device that continuously creates transparent conductive thin films by a sputtering method using a grade 2 oxide target, characterized by having a mechanism for introducing a small amount of a predetermined amount into the center of the sputtering operation. A device for creating continuous transparent conductive thin films.
(4)前記導入する機構の水の導入流 量が制御可能であることを特徴とする特許請求の範囲第
3項記載の連続透明導電性薄膜作成装置。
(4) The continuous transparent conductive thin film forming apparatus according to claim 3, wherein the introduction flow rate of water in the introducing mechanism is controllable.
(5)前記導入する機構としてサーマルマスフローコン
トローラーを用いたことを特徴とする特許請求の範囲第
4項記載の連続透明導電性薄膜作成装置。
(5) The continuous transparent conductive thin film forming apparatus according to claim 4, wherein a thermal mass flow controller is used as the introducing mechanism.
JP63264872A 1988-10-20 1988-10-20 Continuous transparent conductive thin film production equipment Expired - Lifetime JP2894564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63264872A JP2894564B2 (en) 1988-10-20 1988-10-20 Continuous transparent conductive thin film production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63264872A JP2894564B2 (en) 1988-10-20 1988-10-20 Continuous transparent conductive thin film production equipment

Publications (2)

Publication Number Publication Date
JPH02112112A true JPH02112112A (en) 1990-04-24
JP2894564B2 JP2894564B2 (en) 1999-05-24

Family

ID=17409394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63264872A Expired - Lifetime JP2894564B2 (en) 1988-10-20 1988-10-20 Continuous transparent conductive thin film production equipment

Country Status (1)

Country Link
JP (1) JP2894564B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925571A (en) * 1995-07-06 1997-01-28 Canon Inc Film formation of oxide thin film
JP2013001991A (en) * 2011-06-21 2013-01-07 Ulvac Japan Ltd Deposition method
WO2018220907A1 (en) * 2017-05-31 2018-12-06 株式会社アルバック Film-formation device and film-formation method
JP2019073753A (en) * 2017-10-13 2019-05-16 キヤノントッキ株式会社 Vacuum device device, vapour deposition device and gate valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163363A (en) * 1988-03-09 1990-06-22 Ulvac Corp Production of transparent conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163363A (en) * 1988-03-09 1990-06-22 Ulvac Corp Production of transparent conductive film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925571A (en) * 1995-07-06 1997-01-28 Canon Inc Film formation of oxide thin film
JP2013001991A (en) * 2011-06-21 2013-01-07 Ulvac Japan Ltd Deposition method
WO2018220907A1 (en) * 2017-05-31 2018-12-06 株式会社アルバック Film-formation device and film-formation method
CN110678575A (en) * 2017-05-31 2020-01-10 株式会社爱发科 Film forming apparatus and film forming method
JP2019073753A (en) * 2017-10-13 2019-05-16 キヤノントッキ株式会社 Vacuum device device, vapour deposition device and gate valve

Also Published As

Publication number Publication date
JP2894564B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
JPH01268859A (en) Formation of transparent conductive film and device therefor
JP4296256B2 (en) Manufacturing method of superconducting material
CN103436849B (en) A kind of sputtering method of sull
CN111719116A (en) Apparatus for vacuum sputter deposition and method thereof
JPH02112112A (en) Continuous forming method of transparent conductive thin film and device therefor
JPH11335815A (en) Substrate with transparent conductive film and deposition apparatus
JP4360716B2 (en) Copper thin film manufacturing method and sputtering apparatus used in the method
Alam et al. High-rate reactive deposition of indium oxide films on unheated substrate using ozone gas
JP2004169138A (en) Method and apparatus for forming transparent conductive film
Lim et al. Improvement of Zr film purity by using a purified sputtering target and negative substrate bias voltage
CN107532282B (en) Method of manufacturing a layer stack for display manufacturing and apparatus therefor
TWI493060B (en) Silvery white film structure and method manufacturing same
JPH0397846A (en) Formation of thin film of silicon compound
JP2004279761A (en) Liquid crystal display panel and its manufacturing method
WO2018220907A1 (en) Film-formation device and film-formation method
TW200848534A (en) Film deposition apparatus and film deposition method
JPS63243261A (en) Production of electrically conductive transparent film having low resistance
Petitjean et al. Reactive sputtering of iron in Ar–N2 and Ar–O2 mixtures
JPH02189816A (en) Method for forming transparent conductive film
JPH1046331A (en) Sputter film deposition method and its device
JP2002294436A (en) Method for forming film of silicon oxide nitride
US3475309A (en) Method of making paramagnetic nickel ferrite thin films
JP4855455B2 (en) Copper thin film manufacturing method and sputtering apparatus used in the method
JPS5996267A (en) Magnetron sputtering device
JPH09293693A (en) Forming method for transparent conductive film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10