JP4855455B2 - Copper thin film manufacturing method and sputtering apparatus used in the method - Google Patents

Copper thin film manufacturing method and sputtering apparatus used in the method Download PDF

Info

Publication number
JP4855455B2
JP4855455B2 JP2008281839A JP2008281839A JP4855455B2 JP 4855455 B2 JP4855455 B2 JP 4855455B2 JP 2008281839 A JP2008281839 A JP 2008281839A JP 2008281839 A JP2008281839 A JP 2008281839A JP 4855455 B2 JP4855455 B2 JP 4855455B2
Authority
JP
Japan
Prior art keywords
gas
copper
thin film
sputtering
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008281839A
Other languages
Japanese (ja)
Other versions
JP2009035824A (en
Inventor
孝 小松
中村  聡
康宏 田熊
俊光 上東
靖 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2008281839A priority Critical patent/JP4855455B2/en
Publication of JP2009035824A publication Critical patent/JP2009035824A/en
Application granted granted Critical
Publication of JP4855455B2 publication Critical patent/JP4855455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、スパッタ成膜の技術分野にかかり、特に、銅または銅を主成分とするターゲットをスパッタし、銅薄膜を形成する技術分野に関する。   The present invention relates to the technical field of sputter deposition, and more particularly to the technical field of sputtering a copper or copper-based target to form a copper thin film.

近年では、アルミニウム薄膜に代わり、比抵抗の小さい銅薄膜が半導体デバイスの配線材料として注目されている。   In recent years, a copper thin film having a small specific resistance has attracted attention as a wiring material for semiconductor devices in place of an aluminum thin film.

図4(a)の符号101は、半導体デバイスを構成するシリコン基板であり、その表面にはシリコン酸化膜102が形成されている。   Reference numeral 101 in FIG. 4A denotes a silicon substrate constituting a semiconductor device, and a silicon oxide film 102 is formed on the surface thereof.

このシリコン基板101をスパッタ装置内に搬入し、アルゴンガスのプラズマを生成し、銅から成るターゲットをスパッタし、シリコン酸化膜102上に銅薄膜を形成し、パターニングして銅配線105を形成する(図4(b))。   This silicon substrate 101 is carried into a sputtering apparatus, an argon gas plasma is generated, a target made of copper is sputtered, a copper thin film is formed on the silicon oxide film 102, and patterned to form a copper wiring 105 ( FIG. 4 (b)).

このようにスパッタ成膜法で形成された銅配線105の比抵抗は、おおよそ2.2μΩcmであり、バルク状態の銅の比抵抗1.7μΩcmに比べて大きくなってしまう。   Thus, the specific resistance of the copper wiring 105 formed by the sputtering film forming method is about 2.2 μΩcm, which is larger than the specific resistance of 1.7 μΩcm in the bulk state of copper.

スパッタ装置で銅薄膜を形成した場合、銅薄膜を水素中でアニール処理すれば、形成直後の銅薄膜比抵抗を小さくできることが知られているが、1.9μΩcm程度までしか小さくならず、不十分である。 When a copper thin film is formed by a sputtering apparatus, it is known that if the copper thin film is annealed in hydrogen, the specific resistance of the copper thin film immediately after formation can be reduced, but it is only reduced to about 1.9 μΩcm. It is enough.

また、アニール処理をするためには、スパッタ装置とは別に、そのアニール処理のための装置を必要とし、コスト高になるという問題がある。
特開昭50−074534号公報
In addition, in order to perform the annealing process, an apparatus for the annealing process is required in addition to the sputtering apparatus, and there is a problem that the cost is increased.
Japanese Patent Laid-Open No. 50-074534

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、低抵抗の銅薄膜を提供することにある。   The present invention was created in order to solve the above-described disadvantages of the prior art, and an object thereof is to provide a low-resistance copper thin film.

本発明の発明者等は、スパッタリングガスのプラズマを発生させ、銅または銅を主成分とするターゲットをスパッタし、成膜対象物表面に銅薄膜を形成する場合に、スパッタ雰囲気中に大気を微少量導入すると、形成された銅薄膜の比抵抗が成膜後の時間の経過とともに低下することを見いだした。   The inventors of the present invention generate a sputtering gas plasma, sputter a copper or copper-based target, and form a copper thin film on the surface of the film formation object. It has been found that when a small amount is introduced, the specific resistance of the formed copper thin film decreases with the passage of time after film formation.

特に、添加ガスを5×10-7Torr(6.65×10-5Pa)の分圧にしてスパッタした銅薄膜では、成膜後10数時間後にはバルク状態の銅とほぼ等しい値まで比抵抗が低下することを見いだした。 In particular, in the case of a copper thin film sputtered with an additive gas having a partial pressure of 5 × 10 −7 Torr (6.65 × 10 −5 Pa), the ratio is almost equal to that of copper in a bulk state after 10 hours after film formation. I found the resistance to drop.

本発明は上記知見に基づいて創作されたものであり、請求項1記載の発明は、真空雰囲気中にスパッタガスを導入し、銅または銅を主成分とするターゲットをスパッタし、前記真空雰囲気中に置かれた成膜対象物表面に銅薄膜または銅を主成分とする薄膜を形成する銅薄膜製造方法であって、前記ターゲットをスパッタする際に、構造中に窒素原子を有するガスと、酸素原子を有するガスと、又は窒素原子と酸素原子とを有するガスとのうち、いずれか一種以上のガスから成る添加ガスを、2.66×10-5Pa以上6.65×10-5Pa以下の分圧で、前記真空雰囲気中に導入することを特徴とする。
請求項2記載の発明は、請求項1記載の銅薄膜製造方法であって、前記添加ガスは、酸素ガス、窒素ガス、水のうち、少なくともいずれか一種以上のガスが含まれていることを特徴とする。
請求項3記載の発明は、請求項1又は請求項2のいずれか1項記載の銅薄膜製造方法であって、前記添加ガスを間欠的に導入することを特徴とする。
請求項4記載の発明は、真空槽と、前記真空槽内に配置された銅または銅を主成分とするターゲットとを有し、前記真空槽内を真空雰囲気にし、スパッタガスを導入し、前記ターゲットをスパッタし、前記真空雰囲気中に配置された成膜対象物表面に薄膜を形成するスパッタ装置であって、前記真空槽にはガス添加用配管が設けられ、前記スパッタガスの雰囲気中に、構造中に窒素原子を有するガスと、酸素原子を有するガスと、又は窒素原子と酸素原子とを有するガスとのうち、いずれか一種以上のガスから成る添加ガスを、2.66×10-5Pa以上6.65×10-5Pa以下の分圧で連続またはパルス的に導入できるように構成されたことを特徴とする。
The present invention was created based on the above knowledge, and the invention according to claim 1 introduces a sputtering gas into a vacuum atmosphere, sputters copper or a copper-based target, A copper thin film manufacturing method for forming a copper thin film or a thin film containing copper as a main component on the surface of an object to be deposited placed on the surface of the film, wherein when sputtering the target, a gas having nitrogen atoms in the structure and oxygen An additive gas composed of at least one of a gas having an atom and a gas having a nitrogen atom and an oxygen atom is not less than 2.66 × 10 −5 Pa and not more than 6.65 × 10 −5 Pa. It introduce | transduces in the said vacuum atmosphere by the partial pressure of.
Invention of Claim 2 is a copper thin-film manufacturing method of Claim 1, Comprising: Said additive gas contains at least any 1 type or more gas among oxygen gas, nitrogen gas, and water. Features.
Invention of Claim 3 is a copper thin-film manufacturing method of any one of Claim 1 or Claim 2, Comprising: The said addition gas is introduce | transduced intermittently, It is characterized by the above-mentioned.
Invention of Claim 4 has a vacuum tank and the target which has copper or copper as a main component arrange | positioned in the said vacuum tank, makes the inside of the said vacuum tank a vacuum atmosphere, introduce | transduces sputtering gas, A sputtering apparatus for sputtering a target and forming a thin film on the surface of a film formation target disposed in the vacuum atmosphere, wherein the vacuum tank is provided with a gas addition pipe, and in the atmosphere of the sputtering gas, An additive gas composed of at least one of a gas having a nitrogen atom in the structure, a gas having an oxygen atom, or a gas having a nitrogen atom and an oxygen atom is 2.66 × 10 −5. characterized in that it is configured to allow continuous or pulse introduced at 6.65 × 10 -5 Pa or less of the partial pressure than Pa.

本発明は上記のように構成されており、アルゴンガス等のスパッタガス中に、化学構造中に窒素原子、酸素原子、又はその両方の原子を含む添加ガスを所定の分圧で含有させ、スパッタガス及び添加ガスのプラズマを発生させ、銅を主成分とするターゲットをスパッタしている。   The present invention is configured as described above, and an sputtering gas such as an argon gas contains an additive gas containing nitrogen atoms, oxygen atoms, or both atoms in the chemical structure at a predetermined partial pressure. Plasma of gas and additive gas is generated to sputter a target mainly composed of copper.

上記のような添加ガスの導入量は、ガス添加用配管に設けた流量制御バルブを用いて制御し、分圧を1.33×10-4Pa以下にするのが望ましい。 The introduction amount of the additive gas as described above is preferably controlled using a flow rate control valve provided in the gas addition pipe, and the partial pressure is preferably 1.33 × 10 −4 Pa or less.

流量制御バルブで制御する場合、その最小制御流量に相当する分圧よりも小さくすることは困難である。従って、添加ガスを流量制御バルブを介して導入する場合に、導入とその停止とを繰り返し、間欠的に導入するようにすると、添加ガスの実効分圧値(時間平均値)を、流量制御バルブで制御できる値よりも小さくすることができる。また、間欠的に導入するタイミングにより、膜界面の組成制御も可能となる。   When controlling with a flow control valve, it is difficult to make it smaller than the partial pressure corresponding to the minimum control flow. Therefore, when the additive gas is introduced via the flow control valve, the introduction and the stop thereof are repeated and introduced intermittently, so that the effective partial pressure value (time average value) of the additive gas is calculated as the flow control valve. It can be made smaller than the value that can be controlled by Moreover, the composition of the film interface can be controlled by the timing of intermittent introduction.

銅薄膜の比抵抗を小さくできるので、LSI配線に適している。
添加ガスを間欠的に導入する場合、流量制御バルブで制御可能な値よりも小さい分圧値にすることができる。
銅薄膜形成後、アニール処理をしなくても比抵抗を小さくすることができる。
Since the specific resistance of the copper thin film can be reduced, it is suitable for LSI wiring.
When the additive gas is introduced intermittently, the partial pressure value can be made smaller than the value controllable by the flow control valve.
After the copper thin film is formed, the specific resistance can be reduced without annealing.

本発明のスパッタ装置を、本発明の銅薄膜製造方法と共に説明する。
図1を参照し、符号1は本発明のスパッタ装置の一例であり、真空槽10を有している。真空槽10の底壁側にはカソード装置12が配置されており、天井側には基板ホルダ13が配置されている。
The sputtering apparatus of this invention is demonstrated with the copper thin film manufacturing method of this invention.
Referring to FIG. 1, reference numeral 1 is an example of the sputtering apparatus of the present invention, and has a vacuum chamber 10. A cathode device 12 is disposed on the bottom wall side of the vacuum chamber 10, and a substrate holder 13 is disposed on the ceiling side.

カソード装置12はカソード電極22を有しており、その表面(真空槽10の内部側)には銅から成るターゲット21が水平に設けられている。このターゲット21は、基板ホルダ13と対向する位置に配置されている。   The cathode device 12 has a cathode electrode 22, and a target 21 made of copper is horizontally provided on the surface (inside of the vacuum chamber 10). The target 21 is disposed at a position facing the substrate holder 13.

また、カソード電極22の裏面(真空槽10の外部側)には、ターゲット21表面に磁場を形成するマグネトロン磁石23が配置されている。ターゲット21と基板15の間の距離(T/S)は275mmのいわゆるロングスロースパッタリング(LTS)となっている。   A magnetron magnet 23 that forms a magnetic field on the surface of the target 21 is disposed on the back surface of the cathode electrode 22 (outside of the vacuum chamber 10). The distance (T / S) between the target 21 and the substrate 15 is so-called long throw sputtering (LTS) of 275 mm.

真空槽10底壁には、回転軸16が気密に挿通されており、その先端部分には、シャッタ17が取り付けられている。
基板ホルダ13には爪14が設けられており、基板ホルダ13のターゲット21側の面には、爪14によってシリコン基板15が保持されている。
A rotating shaft 16 is inserted in the bottom wall of the vacuum chamber 10 in an airtight manner, and a shutter 17 is attached to a tip portion thereof.
A claw 14 is provided on the substrate holder 13, and a silicon substrate 15 is held by the claw 14 on the surface of the substrate holder 13 on the target 21 side.

真空槽10には、真空排気系18が接続されており、このスパッタ装置1で銅薄膜を形成する際には、真空排気系18によって真空槽10内を真空排気する。
真空槽10には、ガス添加用配管31と、スパッタガス導入用配管33とを有するガス導入系3が接続されている。
A vacuum exhaust system 18 is connected to the vacuum chamber 10, and when the copper thin film is formed by the sputtering apparatus 1, the vacuum chamber 10 is evacuated by the vacuum exhaust system 18.
A gas introduction system 3 having a gas addition pipe 31 and a sputter gas introduction pipe 33 is connected to the vacuum chamber 10.

ガス添加用配管31には、流量制御バルブ32が設けられており、端部が大気中に開放されている。スパッタガス導入用配管33は、マスフローコントローラ36を介して、スパッタガスボンベ37に接続されており、真空槽10内にスパッタガスボンベ中37に充填されたスパッタガス(ここではアルゴンガス)を導入できるように構成されている。   The gas addition pipe 31 is provided with a flow rate control valve 32, and an end thereof is open to the atmosphere. The sputter gas introduction pipe 33 is connected to the sputter gas cylinder 37 via the mass flow controller 36 so that the sputter gas (in this case, argon gas) filled in the sputter gas cylinder 37 can be introduced into the vacuum chamber 10. It is configured.

真空排気系18により、真空槽10内が4×10-6Torr〜2×10-7Torrの圧力まで真空排気された後、流量制御バルブ32を操作し、真空槽10内に大気(空気)を添加ガスとして導入する。 After the inside of the vacuum chamber 10 is evacuated to a pressure of 4 × 10 −6 Torr to 2 × 10 −7 Torr by the vacuum exhaust system 18, the flow rate control valve 32 is operated, and the atmosphere (air) in the vacuum chamber 10 is operated. Is introduced as an additive gas.

このときはスパッタガスを導入せず、導入された添加ガスにより、真空槽10内の圧力が上昇し、所定分圧(例えば5×10-7Torrの分圧)で安定したところで、スパッタガスを導入する。 At this time, without introducing the sputtering gas, the pressure in the vacuum chamber 10 is increased by the introduced additive gas, and when the sputtering gas is stabilized at a predetermined partial pressure (for example, a partial pressure of 5 × 10 −7 Torr), Introduce.

スパッタガスはマスフローコントローラ36によって流量制御しながら導入する(ここでは20sccmの流量で導入した)。このとき、添加ガスの導入量は変えないでおく。   The sputtering gas is introduced while controlling the flow rate by the mass flow controller 36 (in this case, it is introduced at a flow rate of 20 sccm). At this time, the introduction amount of the additive gas is not changed.

スパッタガスの導入により、真空槽10内の圧力が上昇し、5×10-4Torrの圧力で安定したところで、カソード電極22に負電圧を印加し、ターゲット21表面近傍にプラズマを発生させる。 When the sputtering gas is introduced, the pressure in the vacuum chamber 10 rises, and when the pressure is stabilized at a pressure of 5 × 10 −4 Torr, a negative voltage is applied to the cathode electrode 22 to generate plasma near the surface of the target 21.

この状態では、シャッタ17はシリコン基板15とターゲット21の間に配置されており、3.7kW(約518V×7.18A)の電力で5分間×2回(2回の間に2分間の放電休止状態を設定する)のプレスパッタを行い、ターゲット21表面をクリーニングし、次いで、回転軸16を回転させ、シリコン基板15とターゲット21の間からシャッタ17を退け、2分後にスパッタを開始すると、シリコン基板15表面に銅薄膜が形成され始める(スパッタ電力は3.17kW)。   In this state, the shutter 17 is disposed between the silicon substrate 15 and the target 21 and is discharged for 5 minutes × 2 times (2 minutes of discharge for 2 minutes between 3.7 kW (about 518 V × 7.18 A)). Pre-sputtering (setting a resting state), cleaning the surface of the target 21, and then rotating the rotating shaft 16, withdrawing the shutter 17 from between the silicon substrate 15 and the target 21, and starting sputtering after 2 minutes, A copper thin film begins to be formed on the surface of the silicon substrate 15 (sputtering power is 3.17 kW).

スパッタを80秒間行い、シリコン基板15表面に約2000Åの銅薄膜を形成した後、カソード電極21への電圧印加を停止すると共に、添加ガス(大気)の導入とスパッタガスの導入を停止し、スパッタを終了させる。基板ホルダ13の温度は、プリスパッタ開始前では30℃であったが、スパッタ終了時には50℃程度に昇温していた。   Sputtering was performed for 80 seconds, and after forming a copper thin film of about 2000 mm on the surface of the silicon substrate 15, the voltage application to the cathode electrode 21 was stopped, the introduction of the additive gas (atmosphere) and the introduction of the sputtering gas were stopped. End. The temperature of the substrate holder 13 was 30 ° C. before the start of pre-sputtering, but was raised to about 50 ° C. at the end of sputtering.

スパッタ終了後、シリコン基板15を取り出し、形成した銅薄膜の比抵抗を測定した。その比抵抗の値は、時間経過に従い小さくなった。   After the completion of sputtering, the silicon substrate 15 was taken out and the specific resistance of the formed copper thin film was measured. The value of the specific resistance decreased with time.

図2のグラフに、真空槽10内に導入した添加ガス(ここでは大気)のスパッタガス中の分圧Pと、形成された銅薄膜の比抵抗の経時変化を示す。導入したスパッタガスの流量は20sccmであり、スパッタ雰囲気の圧力は5×10-4Torrである。添加ガスの分圧Pは、添加ガス導入前の真空槽10の到達圧力P0と、添加ガス導入後の圧力P1との差(P1−P0)で表される。
グラフ中のバルク銅は、銅塊の場合の比抵抗の値である。
The graph of FIG. 2 shows the change over time in the partial pressure P in the sputtering gas of the additive gas (in this case, the atmosphere) introduced into the vacuum chamber 10 and the specific resistance of the formed copper thin film. The flow rate of the introduced sputtering gas is 20 sccm, and the pressure in the sputtering atmosphere is 5 × 10 −4 Torr. The partial pressure P of the additive gas is represented by the difference (P 1 −P 0 ) between the ultimate pressure P 0 of the vacuum chamber 10 before the additive gas is introduced and the pressure P 1 after the additive gas is introduced.
The bulk copper in the graph is a specific resistance value in the case of a copper lump.

このグラフから、スパッタ雰囲気中に含まれる添加ガス(大気)の分圧Pを、6.65×10 -5 Pa(5×10 -7 Torr)以下の大きさにすると効果的であることが分かる。特に、2.66×10-5Pa(2×10-7Torr)以下の微小な大きさにすると、形成される銅薄膜の比抵抗は1.7〜1.8μΩcmとなり、バルク銅の値(1.7μΩcm)にほぼ等しくなることがわかる。なお、シリコン表面に熱酸化膜が形成されている基板を用いても同様の結果が得られた。
From this graph, it can be seen that it is effective to set the partial pressure P of the additive gas (atmosphere) contained in the sputtering atmosphere to 6.65 × 10 −5 Pa (5 × 10 −7 Torr) or less. . In particular, when the microscopic size is 2.66 × 10 −5 Pa (2 × 10 −7 Torr) or less, the specific resistance of the formed copper thin film is 1.7 to 1.8 μΩcm, which is the value of bulk copper ( It can be seen that it is approximately equal to 1.7 μΩcm). Similar results were obtained even when a substrate having a thermal oxide film formed on the silicon surface was used.

以上は、流量制御バルブ32により、真空槽10内に添加ガスを連続的に導入したが、添加ガスの真空槽10内での分圧Pを一層微小な値にするために、間欠的に導入することができる。   As described above, the additive gas is continuously introduced into the vacuum chamber 10 by the flow rate control valve 32. However, in order to make the partial pressure P of the additive gas in the vacuum chamber 10 smaller, it is intermittently introduced. can do.

例えば、所定の時間間隔で、真空槽10内に間欠的に添加ガス(この添加ガスは化学構造中に酸素原子を有するガス、窒素原子を有するガス、酸素原子と窒素原子を有するガス及び水のいずれか一種以上のガスである。)を微少量導入すると、その分圧を一層小さくすることができる。   For example, an additive gas is intermittently added to the vacuum chamber 10 at predetermined time intervals (this additive gas is a gas having an oxygen atom in its chemical structure, a gas having a nitrogen atom, a gas having an oxygen atom and a nitrogen atom, and water). When a very small amount of any one or more gases is introduced, the partial pressure can be further reduced.

図3のグラフは、2.5秒間の添加ガス導入を14秒間隔で繰り返し行った場合の真空槽10内の圧力変化を示している。添加ガスの導入により、真空槽10内の圧力はパルス的に2.66×10-5Pa(2×10-7Torr)だけ上昇する。 The graph of FIG. 3 shows the pressure change in the vacuum chamber 10 when the additive gas introduction for 2.5 seconds is repeated at intervals of 14 seconds. By introducing the additive gas, the pressure in the vacuum chamber 10 is increased by 2.66 × 10 −5 Pa (2 × 10 −7 Torr) in a pulse manner.

このグラフを平均すると、真空槽10内には、1×10-8〜1×10-9Torr程度の分圧で添加ガスが含まれていることになる。微小分圧の添加ガスを精度よく導入することは困難であるが、上記のように、間欠的に添加ガスを導入することで達成できる。 When this graph is averaged, the vacuum chamber 10 contains the additive gas at a partial pressure of about 1 × 10 −8 to 1 × 10 −9 Torr. Although it is difficult to accurately introduce the additive gas having a minute partial pressure, it can be achieved by intermittently introducing the additive gas as described above.

また、真空槽10内に連続的に添加ガスを導入する配管と、パルス状に添加ガスを導入する配管とを別々に設け、連続的に添加ガスを導入すると共に、そのパルス状の導入を重畳させてもよい。   In addition, a pipe for continuously introducing the additive gas into the vacuum chamber 10 and a pipe for introducing the additive gas in a pulsed manner are separately provided to continuously introduce the additive gas and superimpose the pulsed introduction. You may let them.

なお、以上は、直流電源を印加してターゲットをスパッタする場合について説明したが、本発明は、交流電圧を印加するRFスパッタ法や、直流電圧に交流電圧を重畳するスパッタ法、直流電圧の大きさを変化させるスパッタ法等、種々のスパッタ法に適用することができる。また、基板ホルダ13に電圧を印加し、シリコン基板15にバイアスを印加したり、フローティングにしてもよい。   In the above, the case where the target is sputtered by applying a DC power source has been described. However, the present invention relates to an RF sputtering method in which an AC voltage is applied, a sputtering method in which an AC voltage is superimposed on a DC voltage, and the magnitude of the DC voltage. The present invention can be applied to various sputtering methods such as a sputtering method for changing the thickness. Alternatively, a voltage may be applied to the substrate holder 13 to apply a bias to the silicon substrate 15 or to float.

また、上記の添加ガスには大気(空気)を使用したが、酸素ガス、窒素ガス、又は水分を含有するアルゴンガスであってもよい。酸素ガスと窒素ガスの混合ガスであってもよい。また、酸素ガス、窒素ガス、その混合ガスに水分が含有されるガスであってもよい。
その場合には、ガス添加用配管の端部を流量制御バルブを介して、添加ガスを充填したガスボンベに接続しておくとよい。
In addition, air (air) is used as the additive gas, but oxygen gas, nitrogen gas, or argon gas containing moisture may be used. It may be a mixed gas of oxygen gas and nitrogen gas. Further, oxygen gas, nitrogen gas, or a gas containing water in the mixed gas may be used.
In that case, the end of the gas addition pipe may be connected to a gas cylinder filled with the additive gas via a flow rate control valve.

また、上記はシリコン基板15上に銅薄膜を形成したが、成膜対象物はシリコン基板に限定されるものではない。   Moreover, although the above described formed the copper thin film on the silicon substrate 15, the film-forming target object is not limited to a silicon substrate.

更にまた、本発明に用いる銅ターゲットは銅から成るターゲット、または銅を主成分とするターゲットであり、銅を主成分とするターゲットは他の金属を含有していてもよい。   Furthermore, the copper target used in the present invention is a target made of copper or a target mainly composed of copper, and the target mainly composed of copper may contain other metals.

また、低抵抗化を促進するためにアニールを併用してもよい。ターゲット・基板間の距離は275mmの例を示したが、より短距離のスパッタ装置を用いてもよい。   Further, annealing may be used in combination in order to promote resistance reduction. Although an example in which the distance between the target and the substrate is 275 mm is shown, a shorter-distance sputtering apparatus may be used.

本発明の一例のスパッタ装置を示す図The figure which shows the sputtering device of an example of this invention 銅薄膜の比抵抗の経時変化を示すグラフGraph showing the change over time in the resistivity of copper thin film 添加ガスを間欠的に導入した場合の圧力変化を示すグラフGraph showing pressure change when additive gas is introduced intermittently (a)、(b):銅薄膜の形成方法を説明するための図(a), (b): The figure for demonstrating the formation method of a copper thin film

符号の説明Explanation of symbols

1……スパッタ装置 10……真空槽 21……ターゲット 31……ガス添加用配管 1 …… Sputtering equipment 10 …… Vacuum chamber 21 …… Target 31 …… Pipe for gas addition

Claims (4)

真空雰囲気中にスパッタガスを導入し、銅または銅を主成分とするターゲットをスパッタし、前記真空雰囲気中に置かれた成膜対象物表面に銅薄膜または銅を主成分とする薄膜を形成する銅薄膜製造方法であって、
前記ターゲットをスパッタする際に、構造中に窒素原子を有するガスと、酸素原子を有するガスと、又は窒素原子と酸素原子とを有するガスとのうち、いずれか一種以上のガスから成る添加ガスを、2.66×10-5Pa以上6.65×10-5Pa以下の分圧で、前記真空雰囲気中に導入することを特徴とする銅薄膜製造方法。
A sputtering gas is introduced into a vacuum atmosphere, a copper or copper-based target is sputtered, and a copper thin film or a copper-based thin film is formed on the surface of the film formation target placed in the vacuum atmosphere. A copper thin film manufacturing method,
When the target is sputtered, an additive gas composed of at least one of a gas having a nitrogen atom in the structure, a gas having an oxygen atom, or a gas having a nitrogen atom and an oxygen atom is used. 2. A method for producing a copper thin film, which is introduced into the vacuum atmosphere at a partial pressure of 2.66 × 10 −5 Pa to 6.65 × 10 −5 Pa.
前記添加ガスは、酸素ガス、窒素ガス、水のうち、少なくともいずれか一種以上のガスが含まれていることを特徴とする請求項1記載の銅薄膜製造方法。   2. The method for producing a copper thin film according to claim 1, wherein the additive gas contains at least one of oxygen gas, nitrogen gas, and water. 前記添加ガスを間欠的に導入することを特徴とする請求項1又は請求項2のいずれか1項記載の銅薄膜製造方法。   The method for producing a copper thin film according to claim 1, wherein the additive gas is introduced intermittently. 真空槽と、
前記真空槽内に配置された銅または銅を主成分とするターゲットとを有し、
前記真空槽内を真空雰囲気にし、スパッタガスを導入し、前記ターゲットをスパッタし、前記真空雰囲気中に配置された成膜対象物表面に薄膜を形成するスパッタ装置であって、
前記真空槽にはガス添加用配管が設けられ、前記スパッタガスの雰囲気中に、構造中に窒素原子を有するガスと、酸素原子を有するガスと、又は窒素原子と酸素原子とを有するガスとのうち、いずれか一種以上のガスから成る添加ガスを、2.66×10-5Pa以上6.65×10-5Pa以下の分圧で連続またはパルス的に導入できるように構成されたことを特徴とするスパッタ装置。
A vacuum chamber;
Having copper or a copper-based target disposed in the vacuum chamber;
A sputtering apparatus for forming a thin film on the surface of a film formation target disposed in the vacuum atmosphere by making the inside of the vacuum chamber a vacuum atmosphere, introducing a sputtering gas, sputtering the target,
The vacuum tank is provided with a gas addition pipe, and in the atmosphere of the sputtering gas, a gas having a nitrogen atom, a gas having an oxygen atom, or a gas having a nitrogen atom and an oxygen atom in the structure. among them, that one of the added gas comprising one or more gases, which is configured to introduce continuous or pulsed with the following partial pressures 2.66 × 10 -5 Pa or 6.65 × 10 -5 Pa A sputtering apparatus characterized by
JP2008281839A 2008-10-31 2008-10-31 Copper thin film manufacturing method and sputtering apparatus used in the method Expired - Lifetime JP4855455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008281839A JP4855455B2 (en) 2008-10-31 2008-10-31 Copper thin film manufacturing method and sputtering apparatus used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008281839A JP4855455B2 (en) 2008-10-31 2008-10-31 Copper thin film manufacturing method and sputtering apparatus used in the method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24841799A Division JP4360716B2 (en) 1999-09-02 1999-09-02 Copper thin film manufacturing method and sputtering apparatus used in the method

Publications (2)

Publication Number Publication Date
JP2009035824A JP2009035824A (en) 2009-02-19
JP4855455B2 true JP4855455B2 (en) 2012-01-18

Family

ID=40437985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281839A Expired - Lifetime JP4855455B2 (en) 2008-10-31 2008-10-31 Copper thin film manufacturing method and sputtering apparatus used in the method

Country Status (1)

Country Link
JP (1) JP4855455B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313115A (en) * 1986-07-02 1988-01-20 Nec Corp Magnetic recording medium and its production
JPH0443654A (en) * 1990-06-11 1992-02-13 Matsushita Electric Works Ltd Preparation of copper film laminated alumina wafer
JPH05230643A (en) * 1991-11-29 1993-09-07 Internatl Business Mach Corp <Ibm> Method for controlling stress of physically vapor- deposited thin film
JPH0681140A (en) * 1992-09-03 1994-03-22 Fujitsu Ltd Production of sputtering device and semiconductor device

Also Published As

Publication number Publication date
JP2009035824A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP6328150B2 (en) Fast reactive sputtering of dielectric stoichiometric thin films
JP6060202B2 (en) Transparent conductive film manufacturing method, sputtering apparatus, and sputtering target
JPS62287071A (en) Semiconductor producing apparatus
Koski et al. Voltage controlled reactive sputtering process for aluminium oxide thin films
JPH10255973A (en) Manufacture of organic electroluminescent element
TWI334166B (en) Silicon dot forming method and silicon dot forming apparatus
KR20190101450A (en) Dry etching method and etching apparatus
JP5901762B2 (en) Hard mask manufacturing method
CN109306465B (en) To Cu3Method for realizing quantitative doping of N film
JP4360716B2 (en) Copper thin film manufacturing method and sputtering apparatus used in the method
WO2008007732A1 (en) Method for manufacturing semiconductor device
Qasim et al. Effects of ion flux density and energy on the composition of TiNx thin films prepared by magnetron sputtering with an anode layer ion source
CN109338301A (en) A method of tantalum nitride membrane is prepared in aluminium oxide ceramics substrate
JP4855455B2 (en) Copper thin film manufacturing method and sputtering apparatus used in the method
JPS61193441A (en) Method of forming metal thin film and therefor device
US10665426B2 (en) Methods for thin film material deposition using reactive plasma-free physical vapor deposition
JPH10298748A (en) Method for depositing golden titanium nitride
JP2014192264A (en) Thin film transistor manufacturing method
JP2004137531A (en) Deposition method for barrier membrane
JP2010037565A (en) Film-depositing apparatus and film-forming method
Yakovin et al. Synthesis of thin-film Ta₂O₅ coatings by reactive magnetron sputtering
KR100800799B1 (en) Method for fabricating metal thin film on semiconductor surface using pvd
JP2005298894A (en) Method for cleaning target, and physical deposition apparatus
JP2007031815A (en) Planer magnetron sputtering apparatus and planer magnetron sputtering film deposition method
JPH02112112A (en) Continuous forming method of transparent conductive thin film and device therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110627

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110929

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4855455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term