JPS6313115A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS6313115A
JPS6313115A JP15641486A JP15641486A JPS6313115A JP S6313115 A JPS6313115 A JP S6313115A JP 15641486 A JP15641486 A JP 15641486A JP 15641486 A JP15641486 A JP 15641486A JP S6313115 A JPS6313115 A JP S6313115A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic
film
magnetic recording
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15641486A
Other languages
Japanese (ja)
Inventor
Masamichi Tagami
勝通 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15641486A priority Critical patent/JPS6313115A/en
Publication of JPS6313115A publication Critical patent/JPS6313115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To decrease the internal stress of a recording medium and to improve perpendicular anisotropy by using cobalt, chromium and nonmagnetic metal as essential components and incorporating oxygen, nitrogen and water therein. CONSTITUTION:The essential components of air (O, N, H2O) are incorporated into the recording medium essentially consisting of the Co, Cr and nonmagnetic metal (>=1 among Ta, Ti, Zr, Hf, Nb, Ho). This recording medium is formed by using a target consisting of, for example, CoCrTa and a base film 1 consisting of a polyimide, etc. and maintaining the air partial pressure in an atmosphere gas under 1X10<-6>-1X10<-5>Torr. The recording medium which is less curled by the decreased internal stress and has the excellent perpendicular anisotropy is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気記録装置に用いられる磁気記録体及びそ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic recording body used in a magnetic recording device and a method for manufacturing the same.

(従来の技術) 磁気記録装置の記録密度の向上は、斯界の変わらぬ趨勢
であり、従来の長手(面内)磁化を用いる磁気記録方式
にかわり近年原理的に高密度記録の可能な方式として垂
直磁化を用いる磁気記録方式が提案されている。ここで
用いられる垂直異方性を有する磁気記録体としてスパッ
タ及び蒸着で作製したCo−Cr合金膜に代表されるC
o合金膜が代表的である。
(Prior art) Improvement in the recording density of magnetic recording devices is a constant trend in the field, and in recent years, the conventional magnetic recording method using longitudinal (in-plane) magnetization has been replaced by a method that is theoretically capable of high-density recording. A magnetic recording method using perpendicular magnetization has been proposed. The magnetic recording material with perpendicular anisotropy used here is a Co-Cr alloy film produced by sputtering and vapor deposition.
o alloy film is typical.

(発明が解決しようとする問題点) これらの磁気記録体には、可撓性を有するフレキシブル
の基板たとえばポリエチレンテレフタ−レートまたはポ
イミド等のフィルムを用いるフレキシブル磁気ディスク
や磁気テープ等がある。垂直異方性を有するCo合金膜
をフレキシブル基板上へ形成し、これを実用化するには
いくつかの間開点があった。すなわち、スパッタ法及び
蒸着法で形成した磁性膜は、一般にお大きな内部応力、
主として引張り応力を有しており通常用いられるフレキ
シブルフィルムでは、カールが発生し、著しい場合には
膜にクラックが発生する。このようにカールした記録体
は、磁気記録装置では安定な走行が出来ず商用レベルで
は使用不可能である。そこで、ベースフィルムの両面に
磁性膜を形成するフレキシブル磁気ディスクではカール
フリーを実現するためにそれぞれの面の磁性膜の内部応
力を均衡させて形成することが試みられているが、作製
条件の微妙な変動により均衡がズしてカールが発生する
困難な間圧があった。
(Problems to be Solved by the Invention) These magnetic recording bodies include flexible magnetic disks and magnetic tapes using flexible substrates such as polyethylene terephthalate or polyimide films. There has been some progress in forming a Co alloy film with perpendicular anisotropy on a flexible substrate and putting it into practical use. In other words, magnetic films formed by sputtering and vapor deposition generally have large internal stress,
In commonly used flexible films that mainly have tensile stress, curling occurs, and in severe cases, cracks occur in the film. A recording medium curled in this manner cannot run stably in a magnetic recording device and cannot be used on a commercial level. Therefore, attempts have been made to create a flexible magnetic disk in which magnetic films are formed on both sides of a base film by balancing the internal stress of the magnetic film on each side in order to achieve curl-free formation, but the manufacturing conditions are delicate. There was a difficult gap where the balance was shifted due to fluctuations and curling occurred.

そこで、本質的にこのような内部応力を低下させる方法
が必要される。本発明者は、第8回日本応用磁気学会学
術講演会概要集p7記載の如< CoCr垂直記録媒体
においてCoCr媒体の形成時の初期真空度を低下させ
、すなわち残留する空気分圧を高め膜中へ酸素、窒素及
び水を含有させることにより内部応力が減少しカールフ
リーを実現出来ることを示した。しかしながら、CoC
r媒体の空気分圧を高めることは垂直磁化記録に要求さ
れるCoCr媒体の垂直磁気異方性を低下させ記録再生
上問題があった。本発明はかかる現状の問題点を解決し
、内部応力を低減しかつ高垂直異方性を有する高性能な
磁気記録体とその製造方法を提供することを目的とした
ものである。
Therefore, a method is essentially needed to reduce such internal stress. The present inventor has developed a technique for reducing the initial degree of vacuum at the time of forming a CoCr medium in a CoCr perpendicular recording medium, that is, increasing the residual air partial pressure and increasing the residual air partial pressure in the CoCr perpendicular recording medium, as described in p. It was shown that by incorporating oxygen, nitrogen and water into the material, internal stress can be reduced and curl-free properties can be achieved. However, CoC
Increasing the air partial pressure of the r medium lowers the perpendicular magnetic anisotropy of the CoCr medium required for perpendicular magnetization recording, which poses a problem in recording and reproduction. It is an object of the present invention to solve these current problems and provide a high-performance magnetic recording body that reduces internal stress and has high perpendicular anisotropy, and a method for manufacturing the same.

(問題点を解決するための手段) 本発明は、酸素、窒素及び水を含有し、コバルト、クロ
ム、及び非磁性金属を主成分とすることを特徴とする磁
気記録体であり、その製造方法はコバルト、クロム、非
磁性金属を主成分とする記録媒体の形成時の空気分圧が
1×10−6 トール(Torr)から1×10−5 
トール(Torr)であることを特徴とするものである
(Means for Solving the Problems) The present invention is a magnetic recording medium characterized by containing oxygen, nitrogen, and water and having cobalt, chromium, and a nonmagnetic metal as main components, and a method for manufacturing the magnetic recording medium. The air partial pressure during the formation of a recording medium whose main components are cobalt, chromium, and non-magnetic metals is 1 x 10-6 Torr to 1 x 10-5
It is characterized by being Torr.

(作用) 本方法によれば、空気の主要成分である酸素、窒素及び
水を微量含有させることにより、コバルト・クロム合金
膜の内部応力を低減させ、かつタンタルを含有させるこ
とにより垂直磁気異方性を改善させる作用を有する。
(Function) According to this method, the internal stress of the cobalt-chromium alloy film is reduced by containing small amounts of oxygen, nitrogen, and water, which are the main components of air, and the perpendicular magnetic anisotropy is reduced by containing tantalum. It has the effect of improving sex.

以下に実施例を述べる。Examples will be described below.

実施例に用いた基板には、ポリイミドフィルム、ポリエ
チレンテレフタレートフィルム(PET)を使用し、垂
直記録媒体作製にはRFマグネトロンスパッタ装置を用
いた。膜の内部応力δの測定は、カンチレバー法により
評価を行なった。
A polyimide film and a polyethylene terephthalate film (PET) were used as the substrates used in the examples, and an RF magnetron sputtering device was used to fabricate the perpendicular recording medium. The internal stress δ of the film was evaluated by the cantilever method.

(実施例1) スパッタターゲットにはCoCrTaの組成比がそれぞ
れ原子%で80:17.5:2.5の合金ターゲットを
使用した。第1表はその実験条件を示す。
(Example 1) An alloy target having a CoCrTa composition ratio of 80:17.5:2.5 in atomic % was used as a sputter target. Table 1 shows the experimental conditions.

第1表 酸素、窒素及び水を含有するCoCrTa媒体の作製は
、スパッタ開始前の残留ガスの初期真空度を種々変えて
成膜することによって行った。それぞれのスパッタガス
雰囲気を質量分析装置で測定した結果、初期真空度が低
い程、空気の主成分である酸素、窒素及び水の測定強度
が大きいことが確認された。第1図は、初期真空圧力P
iと膜の内部応力δ及びCoCrTa膜のM−Hループ
(M:磁化、H:印加磁界)から求めた垂直異方性磁界
Hkの関係を示す。比較例1として実施例1のCoCr
Ta合金ターゲットからTaを除いたCoCrTa合金
ターゲット(Co:Cr =80:20)を用いて実施
例と同一条件で成膜し、酸素、窒素及び水を含有させた
CoCr膜の垂直異方性磁界Hkを同じく第1図に示し
た。第1図より、スパッタ時の初期真空度を変え膜中へ
酸素、窒素及び水を含有させることによりCoCrTa
膜の内部応力を低減させかつ垂直磁気異方性を満足させ
る領域は空気分圧がおよそI X 1O−5Torrの
範囲である。一方、Taを含有しないCoCr媒体は、
上記の記載範囲では高垂直異方性を達成できない。
Table 1 A CoCrTa medium containing oxygen, nitrogen, and water was prepared by forming a film while varying the initial vacuum degree of the residual gas before starting sputtering. As a result of measuring each sputtering gas atmosphere with a mass spectrometer, it was confirmed that the lower the initial degree of vacuum, the greater the measured intensity of oxygen, nitrogen, and water, which are the main components of air. Figure 1 shows the initial vacuum pressure P
The relationship between i, the internal stress δ of the film, and the perpendicular anisotropy magnetic field Hk obtained from the M-H loop (M: magnetization, H: applied magnetic field) of the CoCrTa film is shown. CoCr of Example 1 as Comparative Example 1
Perpendicular anisotropy magnetic field of a CoCr film containing oxygen, nitrogen, and water, which was formed under the same conditions as in the example using a CoCrTa alloy target (Co:Cr = 80:20) with Ta removed from the Ta alloy target. Hk is also shown in FIG. From Figure 1, it can be seen that by changing the initial vacuum degree during sputtering and incorporating oxygen, nitrogen, and water into the film, CoCrTa
The region where the internal stress of the film can be reduced and the perpendicular magnetic anisotropy can be satisfied is in a range where the air partial pressure is about I x 1O-5 Torr. On the other hand, CoCr medium that does not contain Ta,
High perpendicular anisotropy cannot be achieved within the range described above.

(実施例2) ベースフィルムにポリイミドフィルムを用い、磁性膜作
製には第9図に示す連続成膜用のスパッタ装置を使用し
た。ターゲットにはCoCrTaの組成比が原子%でそ
れぞれ80:16:4である合金ターゲットを用いた。
(Example 2) A polyimide film was used as the base film, and a sputtering apparatus for continuous film formation shown in FIG. 9 was used to fabricate the magnetic film. An alloy target having a CoCrTa composition ratio of 80:16:4 in atomic % was used as the target.

ベースフィルムは予め吸蔵ガスを放出させるため加熱し
たキャンに治せて巻き返し十分ガス出しを行い、残留ガ
ス圧力を3X10−7Torr以下に保持した。スパッ
タガス導入部から空気を導入し種々の圧力に設定し、こ
れにスパッタガスとしてアルゴンを導入してスパッタし
て磁性膜を作製した。これらのスパッタガス雰囲気を質
量分析装置で測定した結果、アルゴンの他に酸素、窒素
及び水を主成分であった。スパッタ条件でスパッタ圧力
、スパッタパワー、膜厚は第1表と同様にし、スパッタ
装置は第9図中のフィルム1と膜の防着用マスク5の間
隔は極力狭くした。フィルム1はフィルム送り出しボビ
ン2からキャン4に沿わせて巻き取りボビン3に巻き取
られる。
In order to release the occluded gas, the base film was cured in a heated can in advance, and the film was rolled back to release the gas sufficiently, and the residual gas pressure was maintained at 3×10 −7 Torr or less. Air was introduced from the sputtering gas inlet and set at various pressures, and argon was introduced as a sputtering gas and sputtered to produce a magnetic film. As a result of measuring these sputtering gas atmospheres with a mass spectrometer, the main components were oxygen, nitrogen, and water in addition to argon. As for the sputtering conditions, the sputtering pressure, sputtering power, and film thickness were the same as those shown in Table 1, and the spacing between the film 1 and the film protection mask 5 in FIG. 9 in the sputtering apparatus was set as narrow as possible. A film 1 is wound from a film feeding bobbin 2 onto a winding bobbin 3 along a can 4.

第2図は、スパッタ装置内へ導入した空気の分圧Pとそ
の条件下で成膜した膜の内部応力δと垂直磁気磁界Hk
の関係を示す。図にはCoCr(Co80at%。
Figure 2 shows the partial pressure P of air introduced into the sputtering equipment, the internal stress δ of the film formed under that condition, and the perpendicular magnetic field Hk.
shows the relationship between The figure shows CoCr (Co80at%).

Cr2O%)の場合の比較例を示す。A comparative example in the case of Cr2O%) is shown below.

第2図に示される如く、空気の分圧を大きくするにつれ
て膜の内部応力が低減し、カールが減少する。一方、垂
直磁気異方性は、CoCrTa合金膜では多少減少する
が、CoCrTa合金膜と較べて格段に改善され磁気特
性の観点から空気分圧は I X 1O−6Torrから1×10−5Torrが
好ましい。
As shown in FIG. 2, as the partial pressure of air is increased, the internal stress of the membrane is reduced and curling is reduced. On the other hand, although the perpendicular magnetic anisotropy decreases somewhat in the CoCrTa alloy film, it is much improved compared to the CoCrTa alloy film, and from the viewpoint of magnetic properties, the air partial pressure is preferably I x 10-6 Torr to 1 x 10-5 Torr. .

(実施例3) ターゲットにCoCrCCo(80at%、 Cr20
at%)合金を用いその他の非磁性金属MとしてAr、
 Ti、 Hf、 Hb。
(Example 3) CoCrCCo (80at%, Cr20
at%) alloy and other non-magnetic metal M as Ar,
Ti, Hf, Hb.

Ho小片をターゲット上にCoCrMが原子%で80:
18:2となるように配置した。作製条件は、実施例2
の条件(ターゲットの条件を除く)のもとで行った。
CoCrM is 80 atomic% on the target with Ho pieces:
The ratio was 18:2. The production conditions are as in Example 2.
(excluding target conditions).

実施例2と同様に第3から第7図までにそれぞれCoC
rMのMがZr、 Ti、 Hf、 Nb、 Hoであ
る実験結果である。それぞれの図に示される如く、空気
分厚を大きくするにつれて膜の内部応力が低減し、垂直
異邦性は、非磁性金属を含有させることによってCoC
r合金膜より改善され、磁気特性の観点から空気分圧は
1×10−6TorrからI X 1O−5Torrが
好ましい。
As in Example 2, CoC
These are experimental results in which M in rM is Zr, Ti, Hf, Nb, or Ho. As shown in each figure, as the air thickness increases, the internal stress of the film decreases, and the vertical heterogeneity decreases due to the inclusion of non-magnetic metal.
From the viewpoint of magnetic properties, the air partial pressure is preferably from 1 x 10-6 Torr to I x 10-5 Torr.

(実施例4) ターゲットにCoCr(Co80at%、 Cr20a
t%)合金を用いその他の非磁性金属としてTa、 Z
rの小片をターゲット上に配置しCoCrTaZrが原
子%で80二18:1:1となる合金媒体を実施例2の
条件(ターゲットの条件を除く)のもとで作製した。
(Example 4) CoCr (Co80at%, Cr20a
t%) alloy and other non-magnetic metals such as Ta and Z.
A small piece of CoCrTaZr was placed on a target to produce an alloy medium having a CoCrTaZr content of 80218:1:1 in atomic % under the conditions of Example 2 (excluding the target conditions).

第8図は、作製した合金媒体の内部応力と垂直異方性と
空気分圧の関係を示す。図には CoCr(Co80at%、 Cr20at%)の比較
例も示す。図の如く、非磁性合金が2つ以上でも実施例
2,3と同様の効果が得られた。
FIG. 8 shows the relationship between internal stress, perpendicular anisotropy, and air partial pressure of the produced alloy medium. The figure also shows a comparative example of CoCr (80 at% Co, 20 at% Cr). As shown in the figure, the same effects as in Examples 2 and 3 were obtained even when two or more nonmagnetic alloys were used.

(発明の効果) 以上の説明のように、コバルト・クロム・タンタルを主
成分とする記録媒体の形成時の雰囲気の空気分圧をlX
1O−6TorrからlX1O−5Torrとすること
により、膜中に酸素、窒素及び水を含有させ、膜の内部
応力を低減することによりカールを少なくもしくはカー
ルフリーを実現出来る。またタンタルを含有させること
に磁気特性とくに垂直磁気異方性を向上させる。
(Effect of the invention) As explained above, the partial pressure of air in the atmosphere at the time of forming a recording medium mainly composed of cobalt, chromium, and tantalum is
By adjusting the pressure from 10-6 Torr to 1X10-5 Torr, oxygen, nitrogen, and water are contained in the film, and by reducing the internal stress of the film, curling can be reduced or curl-free can be realized. Furthermore, containing tantalum improves magnetic properties, especially perpendicular magnetic anisotropy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第8図は本発明の実施例の結果を示す図、第
9図は、実験に用いたスパッタ装置の概略図である。図
中1はフィルム、2は送り出しボビン、3は巻き取りボ
ビン、4はキャン、5は膜防着マスクである。    
              ・ 、こ。 代理人弁理士内原 、晋:、7′ \、。 第  1  図 第  2  図 第  3  図 P (Torr) 第  4  図 P (Torr) 第  5  図 10 ’       10 ” 第  6  図 1o−610−5 第  7  図 1O−610−5 P (Torr) 第  8  図 P (Torr)
1 to 8 are diagrams showing the results of Examples of the present invention, and FIG. 9 is a schematic diagram of the sputtering apparatus used in the experiment. In the figure, 1 is a film, 2 is a delivery bobbin, 3 is a take-up bobbin, 4 is a can, and 5 is a membrane protection mask.
· ,child. Representative Patent Attorney Susumu Uchihara: 7′ \. Fig. 1 Fig. 2 Fig. 3 P (Torr) Fig. 4 P (Torr) Fig. 5 Fig. 10 '10'' Fig. 6 Fig. 1o-610-5 Fig. 7 Fig. 1O-610-5 P (Torr) Fig. 8 P (Torr)

Claims (4)

【特許請求の範囲】[Claims] (1)空気の主成分元素を含有し、コバルト、クロム、
および非磁性金属を主成分とすることを特徴とする磁気
記録体。
(1) Contains the main constituent elements of air, including cobalt, chromium,
and a magnetic recording material characterized by containing a non-magnetic metal as a main component.
(2)非磁性金属がタンタル(Ta)、チタン(Ti)
、ジルコニュウム(Zr)、バフニュウム(Hf)、ニ
オビュウム(Nb)、ホロニュウム(Ho)の一つもし
くは二つ以上である特許請求の範囲第1項記載の磁気記
録体。
(2) Non-magnetic metals are tantalum (Ta) and titanium (Ti)
The magnetic recording body according to claim 1, which is one or more of the following: , zirconium (Zr), buffnium (Hf), niobium (Nb), and holonium (Ho).
(3)空気の主成分は酸素、窒素、水分である特許請求
の範囲第1項または第2項記載の磁気記録体。
(3) The magnetic recording medium according to claim 1 or 2, wherein the main components of air are oxygen, nitrogen, and moisture.
(4)コバルト、クロムとその他の非磁性金属を主成分
とする記録媒体の形成時の雰囲気ガス中の空気の分圧が
1×10^−^6トール(Torr)から1×10^−
^5トール(Torr)であることを特徴とする磁気記
録体の製造方法。
(4) The partial pressure of air in the atmospheric gas when forming a recording medium mainly composed of cobalt, chromium, and other non-magnetic metals ranges from 1 x 10^-^6 Torr (Torr) to 1 x 10^-
A method for manufacturing a magnetic recording medium, characterized in that the magnetic recording medium is ^5 Torr.
JP15641486A 1986-07-02 1986-07-02 Magnetic recording medium and its production Pending JPS6313115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15641486A JPS6313115A (en) 1986-07-02 1986-07-02 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15641486A JPS6313115A (en) 1986-07-02 1986-07-02 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS6313115A true JPS6313115A (en) 1988-01-20

Family

ID=15627227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15641486A Pending JPS6313115A (en) 1986-07-02 1986-07-02 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS6313115A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233274A (en) * 1989-03-08 1990-09-14 Canon Inc Printer
JPH02285507A (en) * 1989-04-26 1990-11-22 Hitachi Metals Ltd Magnetic recording medium
JPH06196323A (en) * 1992-10-30 1994-07-15 Nec Corp Magnetic recording medium
JP2009035824A (en) * 2008-10-31 2009-02-19 Ulvac Japan Ltd Copper film production method, and sputtering device used for the method
JP2009295929A (en) * 2008-06-09 2009-12-17 Alps Electric Co Ltd Magnetic substrate and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233274A (en) * 1989-03-08 1990-09-14 Canon Inc Printer
JPH02285507A (en) * 1989-04-26 1990-11-22 Hitachi Metals Ltd Magnetic recording medium
JPH06196323A (en) * 1992-10-30 1994-07-15 Nec Corp Magnetic recording medium
JP2009295929A (en) * 2008-06-09 2009-12-17 Alps Electric Co Ltd Magnetic substrate and manufacturing method thereof
JP2009035824A (en) * 2008-10-31 2009-02-19 Ulvac Japan Ltd Copper film production method, and sputtering device used for the method

Similar Documents

Publication Publication Date Title
JPH0262890B2 (en)
JPS6313115A (en) Magnetic recording medium and its production
JP2761859B2 (en) Magnetic recording media
JPH0546013B2 (en)
JPS62208412A (en) Magnetic recording medium and its production
JPS61276124A (en) Production of vertical magnetic recording medium
JPS5877027A (en) Magnetic recording medium
JPS59167830A (en) Magnetic recording medium
JP3230212B2 (en) Magnetic recording media
JP3304382B2 (en) Magnetic recording medium and method of manufacturing the same
JPS63197026A (en) Magnetic recording medium
JPS63183608A (en) Magnetic recording medium
JPH0572015B2 (en)
JPH0352115A (en) Metallic thin film type magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS6059729B2 (en) Method for manufacturing magnetic recording media
JPS59191130A (en) Base material for magnetic recording medium and magnetic recording medium
JPS63124213A (en) Perpendicular magnetic recording medium
JPS5898843A (en) Manufacture of magnetic recording medium
JPH03224119A (en) Magnetic recording medium
JPS6226637A (en) Manufacture of vertical magnetic recording medium having thin soft magnetic &#39;permalloy(r)&#39; film
JPS58118033A (en) Production of magnetic recording medium
JPS6190321A (en) Magnetic recording medium
JPS6047893B2 (en) CO-based alloy for magnetic recording media
JPS5877028A (en) Magnetic recording medium