JP2004279761A - Liquid crystal display panel and its manufacturing method - Google Patents

Liquid crystal display panel and its manufacturing method Download PDF

Info

Publication number
JP2004279761A
JP2004279761A JP2003071393A JP2003071393A JP2004279761A JP 2004279761 A JP2004279761 A JP 2004279761A JP 2003071393 A JP2003071393 A JP 2003071393A JP 2003071393 A JP2003071393 A JP 2003071393A JP 2004279761 A JP2004279761 A JP 2004279761A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
display panel
substrate
transparent film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003071393A
Other languages
Japanese (ja)
Other versions
JP2004279761A5 (en
JP4316265B2 (en
Inventor
Tomoo Akiyama
倫雄 秋山
Noriaki Tani
典明 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2003071393A priority Critical patent/JP4316265B2/en
Publication of JP2004279761A publication Critical patent/JP2004279761A/en
Publication of JP2004279761A5 publication Critical patent/JP2004279761A5/ja
Application granted granted Critical
Publication of JP4316265B2 publication Critical patent/JP4316265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display panel having a transparent film which has conductivity and aligning property given during forming the film, and to provide a method for manufacturing the panel. <P>SOLUTION: A transparent film which regulates alignment of a liquid crystal and which has conductivity is formed on the surface in the substrate side of the liquid crystal layer disposed between a pair of substrates opposing to each other. The film comprises metals selected from In or the like, oxides of the metals, or oxides of alloys composed of at least two kinds of the metals, and the film has a columnar structure having a specified tilt angle as the cross-sectional structure. The transparent film is deposited/formed by a sputtering method or the like by injecting particles of the film material at 0 to 85° incident angle onto the substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示パネル及びその製造方法に関し、特に液晶の配向を規制する機能と導電性とを有する透明膜を備えた液晶表示パネル及びその製造方法。
【0002】
【従来の技術】
従来から、液晶表示装置の構成要素である液晶パネルには、互いに対抗する一対の透明基板間に液晶を充填し、この液晶に一様な分子配列状態を与えるため、各基板の液晶に接する側に配向膜を設けたものが知られている。
例えば、基板を搬送しながらその表面にSiOのような絶縁膜を形成し、これにより基板の搬送方向とほぼ直角の方向であってティルト角がほぼ0°である水平配向膜を形成するようにした水平配向膜の製造方法が知られている(例えば、特許文献1参照。)。この場合、基板と配向膜との間には導電性膜を設けることが必要である。
【0003】
また、液晶装置において、一対の基板の液晶層側の表面に2種の無機斜方蒸着膜からなる無機配向膜をそれぞれ設けてたものが知られており、この各基板と無機配向膜との間にはITO膜等の透明導電性膜が設けられている(例えば、特許文献2参照。)。
【0004】
【特許文献1】
特開昭63−151926号公報(特許請求項の範囲)
【特許文献2】
特開2002−277879号公報(特許請求の範囲、段落番号(0036)及び(0070))
【0005】
【発明が解決しようとする課題】
上記従来技術の場合、基板全面の柱状構造のティルト角と傾斜方位は均一となり難く、また、ティルト角の制御性を大きくするためには成膜中複雑なプロセスを要し、さらに、大面積基板への成膜が困難であるという問題がある。
本発明の課題は、従来技術の諸問題を解決することにあり、成膜と同時に配向性付与を行うと共に、この膜に導電性をも兼ねさせた透明膜を備えた液晶表示パネル及びその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明の液晶表示パネルは、互いに対抗する一対の基板間に液晶層を有する液晶表示パネルにおいて、一対の基板の液晶層側の表面に液晶の配向を規制しかつ導電性を有する透明膜が設けられていることを特徴とする。
この液晶の配向を規制しかつ導電性を有する透明膜は、In、Sn及びZnから選ばれた金属、これらの金属を主成分とする酸化物、並びにこれらの金属の二種又は三種からなる合金の酸化物の少なくとも一種からなる膜であることを特徴とする。
【0007】
上記透明膜の断面構造は、0〜85°、好ましくは10〜80°のティルト角を有する柱状構造であることを特徴とする。この角度範囲外であると、所望の柱状構造を有する透明膜を形成することが困難である。
上記透明膜は、導電性を有する第1の層と均一な配向規制力を有する第2の層とから一体的に構成されている。
本発明の液晶表示パネルの製造方法は、互いに対抗する一対の基板間に液晶層を有する液晶表示パネルの製造方法において、透明膜用材料から、一対の基板の液晶層側の表面に設けられた液晶の配向を規制しかつ導電性を有する透明膜を形成する際に、この透明膜用材料の粒子を、蒸発源から所定の入射角で基板上に入射して堆積せしめ、該透明膜を形成することを特徴とする。
【0008】
この透明膜用材料粒子を、入射角0〜85°、好ましくは10〜80°で、基板上に入射せしめることが好ましい。
上記製造方法において、透明膜用材料粒子を、蒸発源と基板との間に配置された遮蔽板の開口を通して、所定の入射角で基板に入射して堆積せしめ、透明膜を形成することが好ましい。
また、上記製造方法において、基板を加熱して第一カソードの放電により導電性を有する第1の層を形成し、又は基板を加熱せずに第一カソードの放電により成膜した後に基板を加熱し、成膜された膜を結晶化して導電性を有する第1の層を形成し、次いで室温で第二カソードの放電により均一な配向規制力を有する第2の層を一体的に形成して、均一な配向規制力を有しかつ導電性を有する透明膜を製造することができる。
【0009】
さらに、上記製造方法において、室温で第二カソードの放電により成膜し、次いで加熱して、導電性を有しかつ均一な配向規制力を有しかつする透明膜を形成することができる。
なお、上記製造方法は、スパッタリング法又は真空蒸着法により実施することができる。
【0010】
【発明の実施の形態】
本発明の液晶表示パネルは、上記したように、互いに対抗する一対の基板間に液晶層を有する液晶表示パネルにおいて、一対の基板の液晶層側の表面に、液晶の配向を規制しかつ透明電極等として機能するための導電性を有する一体的な透明膜を備えたものである。この場合、一対の基板のそれぞれの液晶層側に液晶の配向を規制しかつ導電性を有する一体的な透明膜を設けることが好ましいが、一方の基板の液晶側の表面に液晶の配向を規制しかつ導電性を有する一体的な透明膜を設け、他方の基板の液晶側には配向膜と透明導電性膜との別々の膜を設けても良い。
【0011】
この基板としては、透明な基板であって、成膜プロセス中の基板温度で損傷しないものであれば特に制限はなく、例えば、各種のガラス基板、石英基板、合成樹脂基板等を用いることができる。その形状も特に制限はなく、平板状であっても立体形状を持つものであっても良い。
本発明に係わる液晶表示パネルの製造方法の実施の形態によれば、基板表面に対して所定の角度を持たせて配置されている固体蒸発源、例えばスパッタリングターゲット等の表面から反跳された透明膜材料の原子、イオンを、基板表面と蒸発源との間に基板表面と平行に配置された遮蔽板の開口を通して、基板表面上に所定の傾斜角で入射せしめる。
【0012】
以下、本発明に係わる液晶表示パネルの製造方法を実施するための各種成膜装置の実施の形態について、スパッタリング装置を例にとり、図1〜3を参照して説明する。
【0013】
図1〜3において、1は真空成膜装置の基板仕込み/取出し室、2は成膜室、3は基板、4は基板を保持し矢印A方向に移動可能な搬送用トレー、5はトレーの搬送機構、また、6は基板を所定の温度まで加熱するヒータ、7と8は例えばITO、ZnO、SnOその他の酸化物等からなる液晶の配向を規制しかつ導電性を有する透明膜を形成するための材料ターゲットを備えたスパッタリングカソード、9はスパッタされた粒子の入射方向、入射角度を規定する遮蔽板である。遮蔽板9には、スパッタリングカソード7、8の放電によりターゲットより反跳した粒子を所定の角度を持って基板へ入射せしめるように構成された開口が2カ所に設けられている。成膜室2は真空排気装置10によって排気され、各カソードの放電中はバルブ11、12を開いて所定量のAr、Oが導入されるように構成されている。図1〜3において、カソード7はターゲットの表面と基板の表面とが平行になるように配置されており、また、カソード8は、ターゲットの表面と基板3の表面とが、図1では45°の角度をなすように、図2では平行となるように、また、図3では90°の角度をなすように配置されている。図1〜3において、カソード以外の構成要素は全て同じように配置されている。なお、基板仕込み/取出し室1として、成膜室2の片側に配置したが、成膜装置の配置や成膜プロセスに応じて、成膜室の両側に設け片側を基板仕込み室とし、反対側を基板取出し室としても良い。
【0014】
図1の例では、例えば、カソード8に取り付けたターゲットの中心からこのターゲットにより表面に成膜される基板3までの垂直距離hを100mm、このターゲットの表面から遮蔽板9のカソード8に近い開口の中心までの水平距離Lを155mmとすると、このような遮蔽板9を設けたことにより、膜材料粒子の入射角θ1、θ2は、それぞれ、60°、65°になる。成膜室2の上方には、ターゲットが固定されたカソード8が取り付けられており、成膜室2内にターゲットと45°の角度をなして基板3を載置することにより、ターゲットからの粒子が、遮蔽板9のカソード8に近い開口を通って所定の角度(θ1、θ2)を有する経路でこの基板上に入射され、成膜されるようになっている。トレー4はレール等の搬送機構5上に置かれており、スパッタリングしつつ、トレー4及び基板3をA方向又は逆方向に一定速度で搬送することができるように構成されている。このため、基板3全面に均一性のよい斜め入射成膜が行え、充分な導電性を有しかつ液晶分子のプレティルト角又は傾斜角度が所定の値に制御された柱状構造を有する透明膜を形成できる。この場合、入射角は0〜85°、好ましくは10〜80°であれば、所望の透明膜を形成できる。
【0015】
図2及び図3の成膜装置の場合も、図1の場合と同様に、カソード8に設けたターゲットの中心からこのターゲットにより表面が成膜される基板3までの垂直距離、このターゲットの表面から遮蔽板9のカソード8に近い開口の中心までの水平距離、その他に遮蔽板の開口幅等を適切に組み合わせることにより、任意の入射角度で基板3全面に均一性のよい斜め入射成膜を行え、充分な導電性を有しかつ液晶分子のプレティルト角又は傾斜角度が所定の値に制御された柱状構造を有する透明膜を形成できる。
【0016】
しかるに、例えば、図2において、遮蔽板9の開口位置を蒸発源の直下に設けると、入射角θ1、θ2は0〜10°となり、この場合、通常のスパッタと同様となるため、膜構造は柱状とならない。また、図3において、粒子の入射角θ1、θ2を80°より大きい角度に限定する場合、遮蔽板9の開口中心までの水平距離は200mm以上となり、粒子は実質的に基板3には殆ど入射しない。この時の動的成膜速度は、100nm・mm/minと低くあまり実用的ではない。また、膜自体が薄く、断面の電子顕微鏡写真では柱状構造を確認できなかった。これらの事態を避け、適切な入射角0〜85°、好ましくは10〜80°を与える開口位置を設定することで柱状構造を持った膜を得ることができる。
【0017】
なお、遮蔽板を設けなかったこと以外は上記成膜装置と同じ構成の成膜装置を用いて、上記と同様の成膜プロセスを実施した時に形成される透明膜の場合、基板上の位置によって粒子の入射角θ1、θ2が大きく異なり、ティルト角の均一性を揃えるのは難しい。また、基板を搬送させつつ成膜する場合、ティルト角の制御性は悪くなる。
従って、ターゲット中心より反跳され、基板上へと入射する粒子の経路に遮蔽板を設け、また、この遮蔽板の適切な位置に所定の開口幅の開口を配することにより、任意に制御されたティルト角を有する柱状構造を均一性よく形成することが可能となる。
【0018】
上記成膜装置を用いて得られた透明膜は、液晶表示パネルにおいて、対向して設けられた一対の透明基板間に充填した液晶に一様な分子配列状態を与えるように機能すると共に、導電性としての機能も兼ねることができるので、配向膜としてかつ電極膜としての機能を同時に満足することができる。
なお、上記製造方法は、スパッタリング法又は真空蒸着法により実施することができ、このスパッタリング法及び真空蒸着法のプロセスは公知の条件で実施できる。
【0019】
【実施例】
以下、本発明の実施例を図面を参照して説明する。
(実施例1)
図l〜3に示す成膜装置を用い、表1に示す条件で成膜を行った。
真空排気装置10を稼働させ、成膜室2内を所定の圧力になるまで排気し、基板仕込み/取出し室1から取り出した基板3を成膜室2内のトレー4上に載置した。成膜室2中の基板3をヒータ6によって所定の温度に加熱した。この加熱の間、カソード7用電源から所定の電圧、電流をかけてカソード7を放電させておき、また、成膜室2内へ所定の流量のアルゴンガス及び酸素ガスを流し、基板3が加熱された後、トレー4を所定の搬送速度で矢印A方向に搬送した。基板3が遮蔽板9の開口部分を通過する際に、スパッタリングにより膜材料粒子を基板に入射せしめ、所定の基板温度の下で結晶化しつつ堆積せしめた。このプロセスにより、透明電極として充分な導電性を有する膜が第1層として形成されたが、結晶の配向は微小なドメイン単位でランダムな方向性を示した。
【0020】
次に、カソード7の放電を停止し、基板3をその待機位置13に停止させて、基板温度を室温へと低下せしめた。室温になったら、カソード8に所定の電圧、電流をかけて放電させ、再び基板を矢印A方向に搬送した。膜材料粒子を、遮蔽板9の開口を通して、入射角をθ1=10°からθ2=80°までに規定して基板に入射せしめた。この時の基板温度は室温であるため、第1層上に形成された膜は、結晶化せず、セルフシャドウイング効果により膜面全面に渡り均一な異方性を有する柱状構造断面を呈しつつ堆積した。柱状構造のティルト角0〜85°の透明電極膜がそれぞれ液晶に対し配向規制力を示した。
以上のプロセスにより、充分な導電性を有する第lの層と、均一な配向規制力をもつ第2の層から成る透明導電性配向膜を得ることができた。
【0021】
(表l)

Figure 2004279761
【0022】
(実施例2)
図l〜3に示す成膜装置を用い、上記表1に示す条件で以下の通り成膜を行った。
真空排気装置10を稼働させ、成膜室2内を所定の圧力になるまで排気し、基板仕込み/取出し室1から取り出した基板3を成膜室2内のトレー4上に載置した。成膜開始前にはヒータ6には通電せずに、すなわち基板3を加熱せずに、室温状態でヒータ6の位置に待機させた。カソード7用電源から所定の電圧、電流をかけてカソードを放電させておき、また、成膜室2内へ所定の流量のアルゴンガス及び酸素ガスを流し、トレー4を所定の搬送速度で矢印A方向に搬送した。基板3が遮蔽板9の開口部分を通過する際に、スパッタリングにより膜材料粒子を基板に入射せしめ、非晶質状態で堆積せしめた。成膜後、カソード7の放電を停止し、基板3をヒータ6の位置に移動し、ヒータ6を通電して基板3加熱した。この加熱により基板3上に形成された膜は結晶化し、このプロセスにより、透明電極として充分な導電性を有する膜が第1層として形成されたが、結晶の配向は微小なドメイン単位でランダムな方向性を示した。
【0023】
次に、基板3をその待機位置13に移動させて待機させた。基板温度が室温へ低下したら、カソード8を放電させ、再び基板を矢印A方向に搬送した。膜材料粒子を、遮蔽板9の開口を通して、入射角をθ1=10°からθ2=80°までに規定して基板3上に入射せしめた。この時の基板温度は室温であるため、第1層上に形成された膜は、結晶化せず、セルフシャドウイング効果により膜面全面に渡り均一な異方性を有する柱状構造断面を呈しつつ堆積した。
以上のプロセスにより、充分な導電性を有する第1の層と、均一な配向規制力をもつ第2の層から成る透明導電性配向膜を得ることができた。
【0024】
(実施例3)
図l〜3に示す成膜装置を用い、上記表1に示す条件で以下の通り成膜を行った。
真空排気装置10を稼働させ、成膜室2内を所定の圧力になるまで排気し、基板仕込み/取出し室1から取り出した基板3を成膜室2内のトレー4上に載置した。成膜開始前にはヒータ6には通電せず、すなわち基板3を加熱せずに、室温状態でヒータ6の位置に待機させた。カソード8用電源から所定の電圧、電流をかけてカソード8を放電させ、また、成膜室2内へ所定の流量のアルゴンガス及び酸素ガスを流し、トレー4を所定の搬送速度で矢印A方向に搬送した。基板3が遮蔽板9の開口部分を通過する際に、スパッタリングにより膜材料粒子を基板に所定の入射角で入射せしめた。膜材料粒子は、基板が室温のため結晶化せず、セルフシャドウイング効果により、膜面全面に渡り均一な異方性を有する柱状構造断面を呈しつつ堆積した。
【0025】
成膜終了後、カソード8の放電を停止し、基板3をヒータ6の位置に移動し、ヒータ6を通電して基板3加熱した。この加熱により基板上に形成された膜は結晶化し、このプロセスにより、膜は全体で柱状構造を保ちつつ、カラム中で結晶化し、全体として充分な導電性を示し且つ液晶に対する均一な配向規制力を有する透明導電性配向膜を得ることができた。また、基板3をヒータ6により加熱する代わりに、成膜室2から取出し室1を経て取出した基板を大気中にて所定の温度で加熱したところ、成膜室内で加熱した場合と同様の結果が得られた。
【0026】
【発明の効果】
本発明の液晶表示パネルによれば、配向性が付与されかつ導電性を有する透明膜を用いているので、従来の配向膜と導電性膜とを用いる液晶表示パネルに比べて、省力化に役立つ。
また、本発明の液晶表示パネルの製造方法によれば、基板上に、所定の材料を用い、膜材料として特定の導電性材料の粒子を所定の入射角で基板上に入射して形成しているので、基板全面の柱状構造のティルト角と傾斜方位とが均一になり、また、液晶分子のプレティルト角の制御性を簡単な製造プロセスで行うことができる。さらには、単純な成膜プロセスにより、大面積基板上にティルト角・傾斜方向とも均一性のよい柱状の微細構造を有する透明導電性配向膜を形成することができる。
【図面の簡単な説明】
【図1】本発明に係わる液晶表示パネル製造方法を実施するための一成膜装置の概略の構成を示す断面図。
【図2】本発明に係わる液晶表示パネル製造方法を実施するための別の成膜装置の概略の構成を示す断面図。
【図3】本発明に係わる液晶表示パネル製造方法を実施するためのさらに別の成膜装置の概略の構成を示す断面図。
【符号の説明】
1 基板仕込み/取出し室 2 成膜室
3 基板 4 基板搬送用トレー
5 トレーの搬送機構 6 ヒータ
7、8 スパッタリングカソード 9 遮蔽板
10 真空排気装置 11、12 バルブ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal display panel and a method of manufacturing the same, and more particularly, to a liquid crystal display panel including a transparent film having a function of regulating the alignment of liquid crystal and conductivity.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a liquid crystal panel, which is a component of a liquid crystal display device, is filled with liquid crystal between a pair of transparent substrates opposed to each other, and in order to give the liquid crystal a uniform molecular alignment state, a side of each substrate in contact with the liquid crystal Is provided with an alignment film.
For example, an insulating film such as SiO 2 is formed on the surface of the substrate while the substrate is being conveyed, so that a horizontal alignment film having a direction substantially perpendicular to the direction in which the substrate is conveyed and having a tilt angle of approximately 0 ° is formed. A method of manufacturing a horizontal alignment film is known (for example, see Patent Document 1). In this case, it is necessary to provide a conductive film between the substrate and the alignment film.
[0003]
Further, in a liquid crystal device, it is known that an inorganic alignment film composed of two types of inorganic obliquely deposited films is provided on the surface of a pair of substrates on the liquid crystal layer side, respectively. A transparent conductive film such as an ITO film is provided between them (for example, see Patent Document 2).
[0004]
[Patent Document 1]
JP-A-63-151926 (Claims)
[Patent Document 2]
JP-A-2002-277879 (Claims, paragraph numbers (0036) and (0070))
[0005]
[Problems to be solved by the invention]
In the case of the above prior art, the tilt angle and the inclination direction of the columnar structure on the entire surface of the substrate are difficult to be uniform, and a complicated process is required during film formation to increase the controllability of the tilt angle. There is a problem that it is difficult to form a film on the substrate.
An object of the present invention is to solve the problems of the prior art. In addition to providing orientation at the same time as film formation, a liquid crystal display panel having a transparent film that also serves as a conductive film and manufacturing the same. It is to provide a method.
[0006]
[Means for Solving the Problems]
In the liquid crystal display panel of the present invention, in a liquid crystal display panel having a liquid crystal layer between a pair of substrates opposed to each other, a transparent film having a conductive property that regulates liquid crystal alignment and is provided on a surface of the pair of substrates on a liquid crystal layer side. It is characterized by having been done.
The transparent film that regulates the orientation of the liquid crystal and has conductivity is made of a metal selected from In, Sn, and Zn, an oxide containing these metals as main components, and an alloy of two or three kinds of these metals. Characterized by a film comprising at least one oxide of
[0007]
The cross-sectional structure of the transparent film is a columnar structure having a tilt angle of 0 to 85 °, preferably 10 to 80 °. If the angle is out of this range, it is difficult to form a transparent film having a desired columnar structure.
The transparent film is integrally formed of a first layer having conductivity and a second layer having uniform alignment regulating force.
The method for manufacturing a liquid crystal display panel according to the present invention is the method for manufacturing a liquid crystal display panel having a liquid crystal layer between a pair of substrates opposed to each other, wherein the transparent film material is provided on the surface of the pair of substrates on the liquid crystal layer side. When forming a transparent film having conductivity by regulating the orientation of the liquid crystal, particles of the material for the transparent film are incident on a substrate at a predetermined incident angle from an evaporation source and deposited to form the transparent film. It is characterized by doing.
[0008]
The material particles for a transparent film are preferably incident on a substrate at an incident angle of 0 to 85 °, preferably 10 to 80 °.
In the above production method, it is preferable to form the transparent film by causing the transparent film material particles to be deposited on the substrate at a predetermined incident angle through an opening of the shielding plate arranged between the evaporation source and the substrate, thereby forming a transparent film. .
Further, in the above manufacturing method, the substrate is heated to form a first layer having conductivity by discharging the first cathode, or the substrate is heated after the film is formed by discharging the first cathode without heating the substrate. Then, the formed film is crystallized to form a first layer having conductivity, and then a second layer having uniform alignment control force is formed integrally by discharging the second cathode at room temperature. In addition, a transparent film having uniform alignment regulating force and conductivity can be manufactured.
[0009]
Furthermore, in the above-described manufacturing method, a film can be formed by discharging the second cathode at room temperature and then heated to form a transparent film having conductivity and having a uniform alignment regulating force.
Note that the above manufacturing method can be performed by a sputtering method or a vacuum evaporation method.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, in the liquid crystal display panel of the present invention, in a liquid crystal display panel having a liquid crystal layer between a pair of substrates opposed to each other, a surface of the pair of substrates on the liquid crystal layer side regulates liquid crystal orientation and has a transparent electrode. It is provided with an integral transparent film having conductivity for functioning as an element. In this case, it is preferable to provide an integral transparent film having conductivity and restricting the liquid crystal alignment on each liquid crystal layer side of the pair of substrates, but restricting the liquid crystal alignment on the liquid crystal side surface of one substrate. And an integrated transparent film having conductivity may be provided, and a separate film of an alignment film and a transparent conductive film may be provided on the liquid crystal side of the other substrate.
[0011]
The substrate is not particularly limited as long as it is a transparent substrate and does not damage at the substrate temperature during the film formation process. For example, various glass substrates, quartz substrates, synthetic resin substrates, and the like can be used. . The shape is not particularly limited, and may be flat or three-dimensional.
According to the embodiment of the method for manufacturing a liquid crystal display panel according to the present invention, a solid evaporation source disposed at a predetermined angle with respect to the substrate surface, for example, a transparent recoiled from the surface of a sputtering target or the like. Atoms and ions of the film material are made incident on the substrate surface at a predetermined inclination angle through an opening of a shielding plate arranged between the substrate surface and the evaporation source in parallel with the substrate surface.
[0012]
Hereinafter, embodiments of various film forming apparatuses for performing a method of manufacturing a liquid crystal display panel according to the present invention will be described with reference to FIGS.
[0013]
1 to 3, reference numeral 1 denotes a substrate loading / unloading chamber of a vacuum film forming apparatus, 2 denotes a film forming chamber, 3 denotes a substrate, 4 denotes a transfer tray which holds the substrate and is movable in the direction of arrow A, and 5 denotes a tray. A transport mechanism, 6 is a heater for heating the substrate to a predetermined temperature, and 7 and 8 are a transparent film which regulates the orientation of liquid crystal made of, for example, ITO, ZnO, SnO or other oxides and has conductivity. A sputtering target provided with a material target for the sputtering, and 9 is a shielding plate for defining an incident direction and an incident angle of sputtered particles. The shielding plate 9 is provided with two openings configured so that particles recoiled from the target by the discharge of the sputtering cathodes 7 and 8 are made incident on the substrate at a predetermined angle. The film forming chamber 2 is evacuated by a vacuum evacuation device 10, and during discharge of each cathode, the valves 11 and 12 are opened to introduce a predetermined amount of Ar and O 2 . 1 to 3, the cathode 7 is arranged so that the surface of the target and the surface of the substrate are parallel to each other, and the cathode 8 is arranged such that the surface of the target and the surface of the substrate 3 are at 45 ° in FIG. In FIG. 2, they are arranged so as to be parallel, and in FIG. 3, they are arranged so as to form an angle of 90 °. 1 to 3, all components other than the cathode are arranged in the same manner. The substrate loading / unloading chamber 1 is arranged on one side of the film forming chamber 2, but it is provided on both sides of the film forming chamber and one side is used as a substrate loading chamber, and the opposite side is provided depending on the arrangement of the film forming apparatus and the film forming process. May be used as a substrate extraction chamber.
[0014]
In the example of FIG. 1, for example, the vertical distance h from the center of the target attached to the cathode 8 to the substrate 3 formed on the surface by this target is 100 mm, and an opening close to the cathode 8 of the shielding plate 9 from the surface of this target. Assuming that the horizontal distance L to the center of the film material is 155 mm, the incidence angles θ1 and θ2 of the film material particles become 60 ° and 65 °, respectively, by providing such a shielding plate 9. Above the film forming chamber 2, a cathode 8 to which a target is fixed is attached. When the substrate 3 is placed at an angle of 45 ° with the target in the film forming chamber 2, particles from the target are formed. Is incident on this substrate through a path having a predetermined angle (θ1, θ2) through an opening of the shielding plate 9 close to the cathode 8, and a film is formed. The tray 4 is placed on a transfer mechanism 5 such as a rail, and is configured to be able to transfer the tray 4 and the substrate 3 at a constant speed in the direction A or in the opposite direction while sputtering. For this reason, oblique incidence film formation with good uniformity can be performed on the entire surface of the substrate 3, and a transparent film having sufficient conductivity and having a columnar structure in which the pretilt angle or tilt angle of liquid crystal molecules is controlled to a predetermined value is formed. it can. In this case, if the incident angle is 0 to 85 °, preferably 10 to 80 °, a desired transparent film can be formed.
[0015]
Also in the case of the film forming apparatus shown in FIGS. 2 and 3, the vertical distance from the center of the target provided on the cathode 8 to the substrate 3 on which the surface is formed by this target, the surface of this target, as in FIG. By appropriately combining the horizontal distance from the center of the opening close to the cathode 8 of the shielding plate 9 to the center of the shielding plate 9 and the width of the opening of the shielding plate, uniform oblique incidence film formation can be performed over the entire surface of the substrate 3 at an arbitrary incident angle. It is possible to form a transparent film having sufficient conductivity and having a columnar structure in which the pretilt angle or tilt angle of liquid crystal molecules is controlled to a predetermined value.
[0016]
However, for example, in FIG. 2, when the opening position of the shielding plate 9 is provided immediately below the evaporation source, the incident angles θ1 and θ2 become 0 to 10 °, and in this case, it becomes the same as ordinary sputtering, so the film structure is It does not become columnar. In FIG. 3, when the incident angles θ1 and θ2 of the particles are limited to angles larger than 80 °, the horizontal distance to the center of the opening of the shielding plate 9 is 200 mm or more, and the particles substantially enter the substrate 3 substantially. do not do. The dynamic film formation rate at this time is as low as 100 nm · mm / min, which is not very practical. Further, the film itself was thin, and a columnar structure could not be confirmed in an electron micrograph of the cross section. By avoiding these situations and setting an opening position that gives an appropriate incident angle of 0 to 85 °, preferably 10 to 80 °, a film having a columnar structure can be obtained.
[0017]
In the case of a transparent film formed when a film forming process similar to the above is performed using a film forming apparatus having the same configuration as the above film forming apparatus except that the shielding plate is not provided, depending on the position on the substrate. The incident angles θ1 and θ2 of the particles are greatly different, and it is difficult to make the tilt angles uniform. Further, when the film is formed while the substrate is being transported, the controllability of the tilt angle is deteriorated.
Therefore, by providing a shielding plate in the path of particles that are recoiled from the center of the target and enter the substrate, and by arranging an opening having a predetermined opening width at an appropriate position on the shielding plate, it is arbitrarily controlled. It is possible to form a columnar structure having a tilt angle with good uniformity.
[0018]
The transparent film obtained by using the above film forming apparatus functions to give a uniform molecular alignment state to the liquid crystal filled between a pair of transparent substrates provided opposite to each other in a liquid crystal display panel, and has a conductive property. Since it can also have a function as a property, the function as an alignment film and as an electrode film can be satisfied at the same time.
The above manufacturing method can be performed by a sputtering method or a vacuum deposition method, and the processes of the sputtering method and the vacuum deposition method can be performed under known conditions.
[0019]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Example 1)
Film formation was performed under the conditions shown in Table 1 using the film forming apparatus shown in FIGS.
The evacuation device 10 was operated to evacuate the inside of the film forming chamber 2 to a predetermined pressure, and the substrate 3 taken out of the substrate charging / unloading chamber 1 was placed on a tray 4 in the film forming chamber 2. The substrate 3 in the film forming chamber 2 was heated to a predetermined temperature by the heater 6. During this heating, a predetermined voltage and current are applied from the power supply for the cathode 7 to discharge the cathode 7, and a predetermined flow rate of argon gas and oxygen gas is flowed into the film forming chamber 2 to heat the substrate 3. After that, the tray 4 was transported in the direction of arrow A at a predetermined transport speed. When the substrate 3 passed through the opening of the shielding plate 9, the film material particles were incident on the substrate by sputtering, and were deposited while crystallizing at a predetermined substrate temperature. By this process, a film having sufficient conductivity as a transparent electrode was formed as the first layer, but the crystal orientation showed random direction in units of minute domains.
[0020]
Next, the discharge of the cathode 7 was stopped, the substrate 3 was stopped at its standby position 13, and the substrate temperature was lowered to room temperature. When the temperature reached room temperature, a predetermined voltage and current were applied to the cathode 8 to discharge it, and the substrate was transported again in the direction of arrow A. The film material particles were allowed to enter the substrate through the opening of the shielding plate 9 at an incident angle of θ1 = 10 ° to θ2 = 80 °. Since the substrate temperature at this time is room temperature, the film formed on the first layer does not crystallize, and exhibits a columnar structure cross section having uniform anisotropy over the entire film surface due to the self-shadowing effect. Deposited. The transparent electrode films having a columnar structure with a tilt angle of 0 to 85 ° each exhibited an alignment regulating force for the liquid crystal.
Through the above process, a transparent conductive alignment film composed of the first layer having sufficient conductivity and the second layer having uniform alignment control force was obtained.
[0021]
(Table l)
Figure 2004279761
[0022]
(Example 2)
Using the film forming apparatus shown in FIGS. 1 to 3, film formation was performed under the conditions shown in Table 1 above as follows.
The evacuation device 10 was operated to evacuate the inside of the film forming chamber 2 to a predetermined pressure, and the substrate 3 taken out of the substrate charging / unloading chamber 1 was placed on a tray 4 in the film forming chamber 2. Before the start of film formation, the heater 6 was not energized, that is, without heating the substrate 3, and was kept at the position of the heater 6 at room temperature. A predetermined voltage and current are applied from the power source for the cathode 7 to discharge the cathode, and a predetermined amount of argon gas and oxygen gas are flowed into the film forming chamber 2 to move the tray 4 at a predetermined conveying speed by an arrow A. Transported in the direction. When the substrate 3 passed through the opening of the shielding plate 9, the film material particles were incident on the substrate by sputtering, and were deposited in an amorphous state. After the film formation, the discharge of the cathode 7 was stopped, the substrate 3 was moved to the position of the heater 6, and the heater 6 was energized to heat the substrate 3. By this heating, the film formed on the substrate 3 is crystallized, and by this process, a film having sufficient conductivity as a transparent electrode is formed as the first layer, but the crystal orientation is random in fine domain units. The direction was shown.
[0023]
Next, the substrate 3 was moved to the standby position 13 and was made to stand by. When the substrate temperature dropped to room temperature, the cathode 8 was discharged, and the substrate was transported again in the direction of arrow A. The film material particles were allowed to enter the substrate 3 through the opening of the shielding plate 9 at an incident angle of θ1 = 10 ° to θ2 = 80 °. Since the substrate temperature at this time is room temperature, the film formed on the first layer does not crystallize, and exhibits a columnar structure cross section having uniform anisotropy over the entire film surface due to the self-shadowing effect. Deposited.
Through the above process, a transparent conductive alignment film including the first layer having sufficient conductivity and the second layer having uniform alignment control force was obtained.
[0024]
(Example 3)
Using the film forming apparatus shown in FIGS. 1 to 3, film formation was performed as follows under the conditions shown in Table 1 above.
The evacuation device 10 was operated to evacuate the inside of the film forming chamber 2 to a predetermined pressure, and the substrate 3 taken out of the substrate charging / unloading chamber 1 was placed on a tray 4 in the film forming chamber 2. Before the start of film formation, the heater 6 was not energized, that is, without heating the substrate 3, and was kept at the position of the heater 6 at room temperature. A predetermined voltage and current are applied from a power source for the cathode 8 to discharge the cathode 8, and a predetermined flow of argon gas and oxygen gas are flowed into the film forming chamber 2, and the tray 4 is moved at a predetermined conveyance speed in the direction of arrow A. Transported to When the substrate 3 passed through the opening of the shielding plate 9, the film material particles were incident on the substrate at a predetermined incident angle by sputtering. The film material particles did not crystallize because the substrate was at room temperature, and were deposited while exhibiting a columnar structure cross section having uniform anisotropy over the entire film surface due to the self-shadowing effect.
[0025]
After the film formation, the discharge of the cathode 8 was stopped, the substrate 3 was moved to the position of the heater 6, and the heater 6 was energized to heat the substrate 3. By this heating, the film formed on the substrate is crystallized, and by this process, the film is crystallized in the column while maintaining the columnar structure as a whole, showing sufficient conductivity as a whole and a uniform alignment regulating force for the liquid crystal. Was obtained. Further, instead of heating the substrate 3 by the heater 6, the substrate taken out from the film forming chamber 2 through the take-out chamber 1 was heated at a predetermined temperature in the atmosphere, and the same result as when the substrate 3 was heated in the film forming chamber was obtained. was gotten.
[0026]
【The invention's effect】
According to the liquid crystal display panel of the present invention, since a transparent film having orientation and conductivity is used, it contributes to labor saving as compared with a conventional liquid crystal display panel using an alignment film and a conductive film. .
According to the method of manufacturing a liquid crystal display panel of the present invention, a predetermined material is used on a substrate, and particles of a specific conductive material are formed as a film material by being incident on the substrate at a predetermined incident angle. Therefore, the tilt angle and the tilt direction of the columnar structure on the entire surface of the substrate become uniform, and the controllability of the pretilt angle of the liquid crystal molecules can be performed by a simple manufacturing process. Further, a transparent conductive alignment film having a columnar fine structure with good uniformity in both the tilt angle and the tilt direction can be formed on a large-area substrate by a simple film forming process.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a schematic configuration of a film forming apparatus for performing a liquid crystal display panel manufacturing method according to the present invention.
FIG. 2 is a cross-sectional view showing a schematic configuration of another film forming apparatus for performing the liquid crystal display panel manufacturing method according to the present invention.
FIG. 3 is a cross-sectional view showing a schematic configuration of still another film forming apparatus for carrying out a method of manufacturing a liquid crystal display panel according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate loading / unloading chamber 2 Deposition chamber 3 Substrate 4 Substrate transport tray 5 Tray transport mechanism 6 Heater 7, 8 Sputtering cathode 9 Shielding plate 10 Vacuum exhaust device 11, 12 Valve

Claims (11)

互いに対抗する一対の基板間に液晶層を有する液晶表示パネルにおいて、該一対の基板の液晶層側の表面に液晶の配向を規制しかつ導電性を有する透明膜が設けられていることを特徴とする液晶表示パネル。In a liquid crystal display panel having a liquid crystal layer between a pair of substrates opposed to each other, a transparent film having conductivity that regulates liquid crystal alignment and is provided on a surface of the pair of substrates on the liquid crystal layer side is provided. Liquid crystal display panel. 前記液晶の配向を規制しかつ導電性を有する透明膜が、In、Sn及びZnから選ばれた金属、これらの金属を主成分とする酸化物、並びにこれらの金属の二種又は三種からなる合金の酸化物の少なくとも一種からなる膜であることを特徴とする請求項1に記載の液晶表示パネル。The transparent film that regulates the orientation of the liquid crystal and has conductivity is a metal selected from In, Sn, and Zn, an oxide containing these metals as main components, and an alloy containing two or three of these metals. The liquid crystal display panel according to claim 1, wherein the liquid crystal display panel is a film made of at least one of the following oxides. 前記透明膜の断面構造が、0〜85°のティルト角を有する柱状構造であることを特徴とする請求項l又は2に記載の液晶表示パネル。3. The liquid crystal display panel according to claim 1, wherein a cross-sectional structure of the transparent film is a columnar structure having a tilt angle of 0 to 85 [deg.]. 前記透明膜の断面構造が、10〜80°のティルト角を有する柱状構造であることを特徴とする請求項l又は2に記載の液晶表示パネル。3. The liquid crystal display panel according to claim 1, wherein the cross-sectional structure of the transparent film is a columnar structure having a tilt angle of 10 to 80 [deg.]. 前記透明膜が、導電性を有する第1の層と均一な配向規制力を有する第2の層とから一体的に形成された膜であることを特徴とする請求項1〜4のいずれかに記載の液晶表示パネル。The method according to any one of claims 1 to 4, wherein the transparent film is a film integrally formed from a first layer having conductivity and a second layer having uniform alignment regulating force. Liquid crystal display panel as described. 互いに対抗する一対の基板間に液晶層を有する液晶表示パネルの製造方法において、該一対の基板の液晶層側の表面に設けられた液晶の配向を規制しかつ導電性を有する透明膜を形成する際に、この透明膜用材料の粒子を、蒸発源から所定の入射角で基板上に入射して堆積せしめ、該透明膜を形成することを特徴とする液晶表示パネルの製造方法。In a method for manufacturing a liquid crystal display panel having a liquid crystal layer between a pair of substrates opposed to each other, a transparent film having a conductive property is formed by regulating the orientation of liquid crystal provided on the liquid crystal layer side surface of the pair of substrates. At this time, a method of manufacturing a liquid crystal display panel, characterized in that particles of the material for a transparent film are incident on a substrate at a predetermined incident angle from an evaporation source and are deposited to form the transparent film. 前記透明膜用材料粒子の入射角が基板に対して0〜85°であることを特徴とする請求項6に記載の液晶表示パネルの製造方法。The method for manufacturing a liquid crystal display panel according to claim 6, wherein the incident angle of the transparent film material particles is 0 to 85 with respect to the substrate. 前記透明膜用材料粒子の入射角が基板に対して10〜80°であることを特徴とする請求項6に記載の液晶表示パネルの製造方法。The method for manufacturing a liquid crystal display panel according to claim 6, wherein the incident angle of the transparent film material particles is 10 to 80 with respect to the substrate. 前記透明膜用材料粒子を、該蒸発源と基板との間に配置された遮蔽板の開口を通して、所定の入射角で基板に入射して堆積せしめ、透明膜を形成することを特徴とする請求項6〜8のいずれかに記載の液晶表示パネルの製造方法。The transparent film material particles are incident on a substrate at a predetermined angle of incidence through an opening of a shielding plate disposed between the evaporation source and the substrate and are deposited, thereby forming a transparent film. Item 10. The method for manufacturing a liquid crystal display panel according to any one of Items 6 to 8. 互いに対抗する一対の基板間に液晶層を有する液晶表示パネルの製造方法において、透明膜用材料から、該一対の基板の液晶層側の表面に設けられた液晶の配向を規制しかつ導電性を有する透明膜を形成する際に、該基板を加熱して第一カソードの放電により導電性を有する第1の層を形成し、又は該基板を加熱せずに第一カソードの放電により成膜した後基板を加熱して導電性を有する第1の層を形成し、次いで室温で第二カソードの放電により均一な配向規制力を有する第2の層を一体的に形成して、均一な配向規制力を有しかつ導電性を有する透明膜を製造することを特徴とする請求項6〜9のいずれかに記載の液晶表示パネルの製造方法。In a method for manufacturing a liquid crystal display panel having a liquid crystal layer between a pair of substrates opposed to each other, a method for controlling the orientation of a liquid crystal provided on a surface of the pair of substrates on a liquid crystal layer side and controlling conductivity from a material for a transparent film. When forming a transparent film having, the substrate was heated to form a first layer having conductivity by discharging the first cathode, or a film was formed by discharging the first cathode without heating the substrate. After the substrate is heated, a first layer having conductivity is formed, and then a second layer having a uniform alignment control force is formed integrally by discharging the second cathode at room temperature to form a uniform alignment control. The method for manufacturing a liquid crystal display panel according to any one of claims 6 to 9, wherein a transparent film having power and conductivity is manufactured. 互いに対抗する一対の基板間に液晶層を有する液晶表示パネルの製造方法において、透明膜用材料から、該一対の基板の液晶層側の表面に設けられた液晶の配向を規制しかつ導電性を有する透明膜を形成する際に、室温で第二カソードの放電により成膜し、次いで加熱して、導電性を有しかつ均一な配向規制力を有する透明膜を形成することを特徴とする請求項6〜9のいずれかに記載の液晶表示パネルの製造方法。In a method for manufacturing a liquid crystal display panel having a liquid crystal layer between a pair of substrates opposed to each other, a method for controlling the orientation of a liquid crystal provided on a surface of the pair of substrates on a liquid crystal layer side and controlling conductivity from a material for a transparent film. When forming a transparent film having a film, the film is formed by discharging the second cathode at room temperature, and then heated to form a transparent film having conductivity and uniform alignment regulating force. Item 10. The method for manufacturing a liquid crystal display panel according to any one of Items 6 to 9.
JP2003071393A 2003-03-17 2003-03-17 Manufacturing method of liquid crystal display panel Expired - Fee Related JP4316265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071393A JP4316265B2 (en) 2003-03-17 2003-03-17 Manufacturing method of liquid crystal display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071393A JP4316265B2 (en) 2003-03-17 2003-03-17 Manufacturing method of liquid crystal display panel

Publications (3)

Publication Number Publication Date
JP2004279761A true JP2004279761A (en) 2004-10-07
JP2004279761A5 JP2004279761A5 (en) 2006-02-02
JP4316265B2 JP4316265B2 (en) 2009-08-19

Family

ID=33287840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071393A Expired - Fee Related JP4316265B2 (en) 2003-03-17 2003-03-17 Manufacturing method of liquid crystal display panel

Country Status (1)

Country Link
JP (1) JP4316265B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108502A (en) * 2005-10-14 2007-04-26 Seiko Epson Corp Manufacturing apparatus of liquid crystal device, manufacturing method of liquid crystal device, liquid crystal device and electronic equipment
JP2007286401A (en) * 2006-04-18 2007-11-01 Seiko Epson Corp Device for manufacturing liquid crystal device and method for manufacturing liquid crystal device
JP2010020094A (en) * 2008-07-10 2010-01-28 Seiko Epson Corp Sputtering apparatus, and apparatus for manufacturing liquid crystal device
JP2015180097A (en) * 2011-10-14 2015-10-08 株式会社日立製作所 Method for generating signature of data, method for verifying signature of data, and management calculator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108502A (en) * 2005-10-14 2007-04-26 Seiko Epson Corp Manufacturing apparatus of liquid crystal device, manufacturing method of liquid crystal device, liquid crystal device and electronic equipment
JP4736702B2 (en) * 2005-10-14 2011-07-27 セイコーエプソン株式会社 Liquid crystal device manufacturing apparatus, liquid crystal device manufacturing method, liquid crystal device, and electronic apparatus
JP2007286401A (en) * 2006-04-18 2007-11-01 Seiko Epson Corp Device for manufacturing liquid crystal device and method for manufacturing liquid crystal device
JP2010020094A (en) * 2008-07-10 2010-01-28 Seiko Epson Corp Sputtering apparatus, and apparatus for manufacturing liquid crystal device
JP4631940B2 (en) * 2008-07-10 2011-02-16 セイコーエプソン株式会社 Sputtering apparatus and liquid crystal device manufacturing apparatus
JP2015180097A (en) * 2011-10-14 2015-10-08 株式会社日立製作所 Method for generating signature of data, method for verifying signature of data, and management calculator

Also Published As

Publication number Publication date
JP4316265B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
US20160215381A1 (en) Method of growing aluminum oxide onto substrates by use of an aluminum source in an environment containing partial pressure of oxygen to create transparent, scratch-resistant windows
TWI428464B (en) A sputtering apparatus, a thin film forming method, and a method of manufacturing the field effect transistor
US9732419B2 (en) Apparatus for forming gas blocking layer and method thereof
US9127353B2 (en) Film-Forming apparatus and Film-Forming method
TWI496919B (en) Film manufacturing method and film manufacturing apparatus
JP2004279761A (en) Liquid crystal display panel and its manufacturing method
US20050016834A1 (en) Method of forming film by sputtering, optical member, and sputtering apparatus
JP2000129436A (en) Inline type sputtering device and sputtering method
JP5334984B2 (en) Sputtering apparatus, thin film forming method, and field effect transistor manufacturing method
WO2008018500A1 (en) Film forming device, film forming system, and film forming method
JP4775968B2 (en) Alignment film forming apparatus and method
JPH11335815A (en) Substrate with transparent conductive film and deposition apparatus
JP2008097969A (en) Zinc oxide based transparent conductive film, and its manufacturing method
JPH0329216A (en) Formation of transparent conductive film
TWI714836B (en) Deposition apparatus and deposition method
JPH11260724A (en) Method and device for manufacturing compound semiconductor thin film
JP2002339061A (en) Thin film depositing method
WO2024143399A1 (en) Film formation device
JPH02112112A (en) Continuous forming method of transparent conductive thin film and device therefor
JPH03133009A (en) Transparent conductive film manufacture
JP5256466B2 (en) Film forming apparatus and oxide thin film forming substrate manufacturing method
KR20240013471A (en) Film forming apparatus
JPH07216547A (en) Inline-type sputtering device
JP2008216994A (en) Method and apparatus for alignment film, alignment film, and liquid crystal device
JPS61263008A (en) Method and apparatus for manufacturing transparent conductive film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Ref document number: 4316265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees