JPH07207378A - Device for refining aluminum scrap, method for refining aluminum scrap using the device, and method for using refined aluminum - Google Patents

Device for refining aluminum scrap, method for refining aluminum scrap using the device, and method for using refined aluminum

Info

Publication number
JPH07207378A
JPH07207378A JP1780194A JP1780194A JPH07207378A JP H07207378 A JPH07207378 A JP H07207378A JP 1780194 A JP1780194 A JP 1780194A JP 1780194 A JP1780194 A JP 1780194A JP H07207378 A JPH07207378 A JP H07207378A
Authority
JP
Japan
Prior art keywords
molten metal
container
aluminum scrap
refining
primary crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1780194A
Other languages
Japanese (ja)
Inventor
Hideaki Kudo
秀明 工藤
Toshihito Komata
利仁 小又
Takayuki Saotome
貴之 五月女
Mitsuhiro Otaki
光弘 大滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1780194A priority Critical patent/JPH07207378A/en
Publication of JPH07207378A publication Critical patent/JPH07207378A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To provide a device to efficiently refine scrap such as aluminum brazing sheet to high purity. CONSTITUTION:In a fractional crystallizing device of aluminum scrap the liquid phase metal of high concentration is efficiently separated from primarily crystallized particles by satisfying the inequality: 0.95A>=S>=0.75A, where S is the sectional area of a pressing part of a pressing stamp 7, and A is the sectional area inside a molten metal holding container 1. The rest of the molten metal is easily discharged outside from a discharging passage 4 by satisfying the inequality: L>=H-(h), where L is the height of the pressing part of the pressing stamp 7, H is the height inside the molten metal holding container 1, and (h) is the height of the primarily crystallized particles which are pressed, and forming the discharging passage 4 to the upper part of the container 1 to dip the pressing stamp 7 in the molten metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミスクラップ、特
にアルミブレージングシートのスクラップを高純度に効
率よく精製する装置、その装置を用いた精製方法、及び
得られた精製アルミの有効な利用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for efficiently refining aluminum scrap, particularly aluminum brazing sheet scrap, to a high purity, a refining method using the apparatus, and an effective method of using the obtained refined aluminum. .

【0002】[0002]

【従来の技術】FeやSi等の元素を含有するアルミス
クラップの効率的精製技術の開発は、資源の有効活用並
びに原料費削減に対する最重要課題である。例えば自動
車用のアルミ製ラジエータの冷媒を通すチューブには、
Al−1wt%Mn合金(JIS−3003等)の芯材にAl−10
wt% Si合金(JIS−4043等)をクラッドした複合材が用
いられており、その製造過程で圧延材のスリッティング
屑等が大量に発生する。このようなアルミスクラップ
は、大半がそのまゝ鋳物用低級地金として再利用されて
いる。この複合材が展伸材の原料に転回できれば原料費
が大幅に削減され、延いては資源の有効活用に繋がる。
2. Description of the Related Art The development of efficient refining technology for aluminum scrap containing elements such as Fe and Si is the most important issue for effective use of resources and reduction of raw material costs. For example, for tubes that pass the refrigerant of aluminum radiators for automobiles,
Al-1 wt% Mn alloy (JIS-3003 etc.)
A composite material in which a wt% Si alloy (JIS-4043, etc.) is clad is used, and a large amount of slitting scraps and the like of the rolled material are generated during the manufacturing process. Most of such aluminum scrap is reused as low grade metal for casting. If this composite material can be turned into a raw material for wrought material, the raw material cost will be significantly reduced, which will lead to effective use of resources.

【0003】アルミスクラップの精製方法として結晶分
別法がある。この方法は、先に、本発明者等が提案した
もので(特願平5-202361) 、その要旨は、容器内にアル
ミスクラップ溶湯を保持し、この溶湯の液相線以下、固
相線以上の温度範囲内で、この溶湯のほぼ全域を20℃/
min.以下の速度で冷却して、純化された初晶粒子を生成
させ、次に上方から加圧スタンプを降下させて前記容器
下部に初晶粒子を押圧して、初晶粒子から高濃度液相金
属を絞り出し、これを初晶粒子から分離する方法であ
る。初晶粒子は、樹枝状を呈し、高濃度液相金属はこの
樹枝間にトラップされているので、高濃度液相金属の絞
り出しには2〜15MPa の高圧力が必要である。
As a method for refining aluminum scrap, there is a crystal fractionation method. This method was previously proposed by the inventors of the present invention (Japanese Patent Application No. 5-202361), and its gist is to hold a molten aluminum scrap in a container and to keep the solidus line below the liquidus line of this molten metal. Within the above temperature range, almost all of this melt is 20 ℃ /
It is cooled at a rate of min. or less to produce purified primary crystal particles, and then the pressure stamp is lowered from above to press the primary crystal particles to the lower portion of the container, and the high concentration liquid from the primary crystal particles is generated. This is a method in which the phase metal is squeezed out and separated from the primary crystal grains. Since the primary crystal grains have a dendritic shape and the high-concentration liquid phase metal is trapped between the dendritic branches, a high pressure of 2 to 15 MPa is required to squeeze out the high-concentration liquid phase metal.

【0004】[0004]

【発明が解決しようとする課題】ところで、初晶粒子押
圧体を高濃度液相金属から分離するには、初晶粒子押圧
体の上に残部溶湯を凝固させ、境界部分を鋸で切断して
行っていた。しかし、この方法では、残部溶湯が凝固
し、更に鋸切断できるまでに温度が降下するのに長時間
を要し、生産性が低かった。そこで容器を傾動して残部
溶湯を排出する方法が提案されたが(特開昭62-15883
0)、傾動に手間を要し又安全面に問題があった。又容器
に両端開放の筒状容器を用い、容器下方を初晶粒子の押
圧体で塞ぎ、容器上方から原料溶湯を補給し、板状体で
初晶粒子を押圧しつつ、初晶粒子の押圧体を容器下方か
ら引出す方法(特開昭63−42336)が提案された。この方
法は生産性に劣るばかりでなく、押圧後の溶湯が容器内
に残存する為、経時的に溶湯濃度が高まり、精製効率が
次第に低下するという問題があった。
By the way, in order to separate the primary crystal particle pressing body from the high-concentration liquid-phase metal, the remaining molten metal is solidified on the primary crystal particle pressing body, and the boundary portion is cut with a saw. I was going. However, in this method, the remaining molten metal solidified, and it took a long time for the temperature to drop until the saw could be cut, resulting in low productivity. Therefore, a method of tilting the container to discharge the remaining molten metal has been proposed (Japanese Patent Laid-Open No. 62-15883).
0), tilting was troublesome and there was a problem in safety. Also, using a cylindrical container with both ends open, the lower part of the container is closed by a pressing body for primary crystal particles, the molten metal is replenished from above the container, and the primary crystal particles are pressed while pressing the primary crystal particles with a plate-shaped body. A method has been proposed in which the body is pulled out from the lower part of the container (JP-A-63-42336). This method has a problem that not only the productivity is inferior, but also the molten metal after pressing remains in the container, so that the concentration of the molten metal increases with time and the purification efficiency gradually decreases.

【0005】[0005]

【課題を解決する為の手段】本発明は、このような状況
の中で鋭意研究を行いなされたものでその目的とすると
ころは、アルミスクラップを高純度に効率よく精製する
装置及びその精製方法及び得られた精製アルミの有効な
利用方法を提供することにある。即ち、請求項1の発明
は、アルミスクラップ溶湯を保持する溶湯保持容器、前
記容器内に保持された前記溶湯を、前記溶湯の液相線以
下、固相線以上の温度範囲内で徐冷して初晶粒子を生成
させる初晶粒子生成器具、溶湯中に生成した初晶粒子を
容器底部に高圧力で押圧する加圧スタンプからなるアル
ミスクラップの精製装置において、加圧スタンプの加圧
部の横断面形状と溶湯保持容器内側の横断面形状とが相
似関係にあり、加圧スタンプの加圧部の横断面積Sと溶
湯保持容器内側の横断面積Aとが0.95A≧S≧0.75Aの
関係式を満足し、又加圧スタンプの加圧部の高さLと溶
湯保持容器内側の高さHとがL≧H−h(但し、hは押
圧された初晶粒子の高さ)の関係式を満足し、且つ容器
上部に溶湯排出通路が設けられていることを特徴とする
ものである。
DISCLOSURE OF THE INVENTION The present invention has been earnestly studied in such a situation, and an object thereof is an apparatus for efficiently purifying aluminum scrap to high purity and a method for purifying the same. And to provide an effective method of utilizing the obtained purified aluminum. That is, the invention of claim 1 is a molten metal holding container for holding molten aluminum scrap, and the molten metal held in the container is gradually cooled in a temperature range below the liquidus line of the molten metal and above the solidus line. In an aluminum scrap refining device that consists of a pressure stamp that presses the primary crystal particles generated in the molten metal with high pressure to the primary crystal particle generation equipment that generates primary crystal particles, The cross-sectional shape and the cross-sectional shape inside the molten metal holding container have a similar relationship, and the cross-sectional area S of the pressing portion of the pressure stamp and the cross-sectional area A inside the molten metal holding container are 0.95A ≧ S ≧ 0.75A. Satisfying the formula, and the height L of the pressure portion of the pressure stamp and the height H of the inside of the molten metal holding container are L ≧ H−h (where h is the height of the pressed primary crystal grains). It is characterized by satisfying the formula and having a molten metal discharge passage at the upper part of the container. It is intended.

【0006】以下に、本発明装置を図を参照して具体的
に説明する。図1は本発明装置の実施例を示す側面図で
ある。図中、1は溶湯保持容器で、SUS製の殻2にキ
ャスタブル耐火物3を内張りした筒状の有底体からな
る。この容器1の上部に残部溶湯の排出通路4が設けら
れている。排出通路4の先に樋5が取付けられている。
前記容器1の外周に電磁誘導加熱器6が配備されてい
る。この電磁誘導加熱器6は、溶湯の昇温のみならず、
出力を低めることにより溶湯の徐冷にも適用される。更
に電磁力により溶湯を誘導攪拌する作用も果たす。前記
容器1の上方に加圧スタンプ7が配置されている。この
加圧スタンプ7は油圧シリンダ8により上下する。
The device of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a side view showing an embodiment of the device of the present invention. In the figure, 1 is a molten metal holding container, which is composed of a cylindrical bottomed body in which a castable refractory 3 is lined in a SUS shell 2. A discharge passage 4 for the remaining molten metal is provided above the container 1. A gutter 5 is attached to the tip of the discharge passage 4.
An electromagnetic induction heater 6 is provided on the outer circumference of the container 1. This electromagnetic induction heater 6 not only raises the temperature of the molten metal,
It can also be applied to the slow cooling of molten metal by lowering the output. Further, it also serves to induce and stir the molten metal by electromagnetic force. A pressure stamp 7 is arranged above the container 1. The pressure stamp 7 is moved up and down by a hydraulic cylinder 8.

【0007】図2は本発明装置を構成する溶湯保持容器
と加圧スタンプの関係説明図である。加圧スタンプ7の
加圧部9の横断面形状と溶湯保持容器1内側の横断面形
状とが相似関係にあり、前記加圧部9の横断面積Sと溶
湯保持容器1内側の横断面積Aとが0.95A≧S≧0.75A
の関係式を満足し、又前記加圧部9の高さLと溶湯保持
容器内側の高さHとがL≧H−h(但し、hは押圧され
た初晶粒子の高さ)の関係式を満足している。
FIG. 2 is an explanatory view of the relationship between the molten metal holding container and the pressure stamp which constitute the apparatus of the present invention. The cross-sectional shape of the pressurizing part 9 of the pressurizing stamp 7 and the cross-sectional shape of the inside of the molten metal holding container 1 have a similar relationship, and the cross-sectional area S of the pressurizing part 9 and the cross-sectional area A inside the molten metal holding container 1 are the same. Is 0.95A ≧ S ≧ 0.75A
And the height H of the pressurizing portion 9 and the height H inside the molten metal holding container are L ≧ H−h (where h is the height of the pressed primary crystal grains). I am satisfied with the formula.

【0008】本発明装置において、溶湯保持容器内側の
横断面積Aと加圧スタンプの加圧部の横断面積Sの間
で、0.95A≧S≧0.75Aの関係式が満足されるようにし
たのは、Sが0.95Aを超えると、溶湯保持容器内周面と
加圧スタンプの加圧部外周面の間隔が狭くなり、高濃度
液相金属が前記間隙を通過し難くなり高濃度液相金属が
初晶粒子押圧体内に多量に取込まれる為である。又Sが
0.75A未満では、加圧スタンプに押圧されない初晶粒子
が多くなり、やはり高濃度液相金属が初晶粒子内に多量
に残る為である。加圧スタンプの加圧部の横断面形状を
溶湯保持容器内側の横断面形状とは相似関係にしておく
と、溶湯保持容器内周面と加圧スタンプの加圧部外周面
の間隔が均等になり、初晶粒子から絞り出される高濃度
液相金属を効率よく移動・排出させることができる。又
溶湯保持容器内高さHと加圧スタンプの加圧部の高さL
との間にL≧H−h(但し、hは押圧された初晶粒子の
高さ)の関係式が満足されるようにしたのは、加圧スタ
ンプの加圧部を浸漬することにより残部溶湯を容器から
できるだけ多く排出させる為である。
In the apparatus of the present invention, the relational expression of 0.95A ≧ S ≧ 0.75A is satisfied between the cross-sectional area A inside the molten metal holding container and the cross-sectional area S of the pressure portion of the pressure stamp. When S exceeds 0.95A, the gap between the inner peripheral surface of the molten metal holding container and the outer peripheral surface of the pressurizing portion of the pressurizing stamp becomes narrow, and it becomes difficult for the high-concentration liquid phase metal to pass through the gap, and the high-concentration liquid phase metal This is because a large amount of is taken into the primary crystal particle pressing body. Also S
If it is less than 0.75 A, the number of primary crystal particles that are not pressed by the pressure stamp increases, and a large amount of high-concentration liquid phase metal remains in the primary crystal particles. If the cross-sectional shape of the pressurizing part of the pressurizing stamp is made similar to the cross-sectional shape of the inside of the molten metal holding container, the gap between the inner peripheral surface of the molten metal holding container and the outer peripheral surface of the pressurizing part of the pressurizing stamp becomes even. Therefore, the high-concentration liquid phase metal squeezed out from the primary crystal particles can be efficiently moved and discharged. Also, the height H in the molten metal holding container and the height L of the pressing portion of the pressing stamp
The relational expression of L ≧ H−h (where h is the height of the pressed primary crystal particles) is satisfied so that the balance is obtained by immersing the pressure part of the pressure stamp. This is to discharge as much molten metal as possible from the container.

【0009】本発明装置において、初晶粒子生成器具に
は、溶湯保持容器の外周に密着配備させて用いる冷却ジ
ャケットや溶湯中に浸漬させる内部通水型冷却子等が用
いられる。溶湯を十分に徐冷させるときは、冷却器は用
いず、加熱器の出力を低めて行う。加熱器には、前述の
ように電磁誘導加熱器が好都合である。溶湯の攪拌に
は、溶湯中に浸漬して用いるプロペラ式攪拌器等も適用
される。溶湯保持容器は、SUS製の殻にキャスタブル
耐火物等を内張りしたもの等、高押圧力に耐えられるも
のが好適である。内張材としては、黒鉛が離型性にも優
れ好ましい。溶湯保持容器の内側の横断面形状は円形、
角形等任意である。本発明装置では、溶湯保持容器上部
に溶湯排出通路が設けられており、残部溶湯はこの通路
を通って排出される。排出通路は複数設けてもよく、又
前記容器の上部外周に湯受け樋を巡らせておくと、大量
の残部溶湯を迅速に排出できて好ましい。
In the apparatus of the present invention, the primary crystal grain producing device includes a cooling jacket which is closely attached to the outer periphery of the molten metal holding container and is used as an internal water flow type cooling element immersed in the molten metal. When cooling the melt sufficiently slowly, do not use a cooler, but lower the output of the heater. For the heater, an electromagnetic induction heater is convenient as mentioned above. For stirring the molten metal, a propeller type stirrer used by immersing the molten metal in the molten metal is also applied. The molten metal holding container is preferably one that can withstand a high pressing force, such as a SUS shell with a castable refractory lined therein. As the lining material, graphite is preferable because of its excellent releasability. The cross-sectional shape inside the molten metal holding container is circular,
The shape such as a prism is arbitrary. In the apparatus of the present invention, a molten metal discharge passage is provided above the molten metal holding container, and the remaining molten metal is discharged through this passage. A plurality of discharge passages may be provided, and it is preferable to circulate a hot water receiving trough around the upper part of the container because a large amount of the remaining molten metal can be quickly discharged.

【0010】請求項2の発明は、請求項1記載の精製装
置を用いてアルミスクラップを精製する方法であり、そ
の構成は、溶湯保持容器内に保持されたアルミスクラッ
プ溶湯を20℃/min. 以下の速度で徐冷して初晶粒子を所
定量生成させる工程、生成した初晶粒子を加圧スタンプ
で容器底部に2〜15MPa の押圧力で押圧するととも
に、残部溶湯を容器上部の溶湯排出通路から排出させる
工程、加圧スタンプを前記容器外に引き上げる工程、前
記容器から初晶粒子押圧体を取り出す工程を順次施すこ
とを特徴とするものである。
A second aspect of the present invention is a method for refining aluminum scrap using the refining apparatus according to the first aspect, which has a structure in which the aluminum scrap molten metal held in the molten metal holding container is 20 ° C./min. Slowly cool at the following rate to generate a certain amount of primary crystal particles, press the generated primary crystal particles to the bottom of the container with a pressing force of 2 to 15 MPa, and discharge the remaining molten metal at the top of the container The method is characterized in that a step of discharging from the passage, a step of pulling the pressure stamp out of the container, and a step of taking out the primary crystal particle pressing body from the container are sequentially performed.

【0011】請求項2の発明方法を、図を参照して具体
的に説明する。図3イ〜ニは、請求項1記載の発明装置
を用いたアルミスクラップの精製方法の実施例を示す工
程説明図である。溶湯保持容器1内にアルミスクラップ
溶湯10を、その液相線以上の温度に加熱して保持する
(図3イ)。前記容器1外周の電磁誘導加熱器6の出力
を低めて容器内の溶湯を徐冷し、液相線以下、固相線以
上の所定温度に保持して、初晶粒子11を生成させる。こ
の間、残部溶湯13は前記加熱器6により電磁誘導攪拌さ
れる(図3ロ)。次に所定温度に予熱した加圧スタンプ
7を降下させて加圧部9にて前記初晶粒子を溶湯保持容
器1下部に押圧する。初晶粒子から高濃度液相金属が絞
り出され、残部溶湯13に混入する。残部溶湯13は加圧部
9が容器1内に占める体積分だけ、容器1上部の排出通
路4から樋5を通って排出され、図示しない貯留槽に貯
留される(図3ハ)。次に加圧スタンプ7を引上げる。
容器底部の初晶粒子押圧体12上に少量の残部溶湯13が残
る(図3ニ)。前記初晶粒子押圧体12を容器1から取り
出し、縁端部に付着した残部溶湯13の凝固層を引き剥が
した。
The invention method of claim 2 will be described in detail with reference to the drawings. 3A to 3D are process explanatory diagrams showing an embodiment of a method for refining aluminum scrap using the invention apparatus according to claim 1. The molten aluminum scrap 10 is heated and held in the molten metal holding container 1 at a temperature above its liquidus line (FIG. 3A). The output of the electromagnetic induction heater 6 around the outer periphery of the container 1 is lowered to gradually cool the molten metal in the container and hold the liquid at a predetermined temperature below the liquidus and above the solidus to generate primary crystal grains 11. During this period, the remaining molten metal 13 is electromagnetically induction stirred by the heater 6 (FIG. 3B). Next, the pressure stamp 7 preheated to a predetermined temperature is lowered, and the primary crystal particles are pressed to the lower portion of the molten metal holding container 1 by the pressure unit 9. A high-concentration liquid-phase metal is squeezed out from the primary crystal particles and mixed into the remaining molten metal 13. The remaining molten metal 13 is discharged from the discharge passage 4 in the upper part of the container 1 through the gutter 5 and stored in a storage tank (not shown) according to the volume of the pressurizing part 9 in the container 1 (FIG. 3C). Next, the pressure stamp 7 is pulled up.
A small amount of the remaining molten metal 13 remains on the primary crystal grain pressing body 12 at the bottom of the container (Fig. 3D). The primary crystal grain pressing body 12 was taken out of the container 1, and the solidified layer of the remaining molten metal 13 attached to the edge was peeled off.

【0012】請求項2の発明方法において、溶湯の冷却
速度を20℃/min. 以下に限定した理由は、冷却速度が20
℃/min. を超えると、生成する初晶粒子の純度が低下す
る為である。又初晶粒子の加圧力を2〜15MPaに限定
した理由は、2MPa 未満では初晶粒子にトラップされ
た高濃度液相金属を十分に絞り出せず、又15MPa を超
えては高濃度液相金属の絞り出しが飽和する為である。
In the method of the second aspect of the present invention, the reason why the cooling rate of the molten metal is limited to 20 ° C./min.
This is because if the temperature exceeds ° C / min., The purity of the primary crystal particles produced will decrease. The reason for limiting the pressure of the primary crystal particles to 2 to 15 MPa is that the high-concentration liquid phase metal trapped in the primary crystal particles cannot be sufficiently squeezed out below 2 MPa, and the high-concentration liquid phase metal above 15 MPa. This is because the squeezing out of is saturated.

【0013】本発明は、Siを0.5 〜10wt%含有するア
ルミスクラップのSiを除去するのに特に適している。
又本発明方法により排出された残部溶湯を原料として用
い、これを本発明方法により繰り返し精製して純化する
ことができる。又本発明方法により精製した初晶粒子押
圧体は、他の原料とブレンドして展伸材の原料等として
広く利用できる。
The present invention is particularly suitable for removing Si from aluminum scrap containing 0.5 to 10 wt% of Si.
Further, the remaining molten metal discharged by the method of the present invention can be used as a raw material, and this can be repeatedly refined and purified by the method of the present invention. Further, the pressed primary crystal particles purified by the method of the present invention can be widely used as a raw material for wrought materials by blending with other raw materials.

【0014】[0014]

【作用】本発明装置では、加圧スタンプの加圧部の横断
面積Sと溶湯保持容器内側の横断面積Aとが0.95A≧S
≧0.75Aの関係式を満足するので、初晶粒子から高濃度
液相金属が効率よく分離される。又加圧スタンプの加圧
部の高さLと溶湯保持容器内側の高さHとがL≧H−h
(但し、hは押圧された初晶粒子の高さ)の関係式を満
足し、且つ容器上部に溶湯排出通路が設けられているの
で、残部溶湯は、溶湯中に加圧スタンプを浸漬すること
により前記通路を通って外方へ容易に排出される。又、
前記装置を用い、溶湯の冷却速度を20℃/min. 以下、初
晶粒子の加圧力を2〜15MPaに限定して精製すること
により、純度の高い初晶粒子が生成され、又初晶粒子か
ら高濃度液相金属を効率よく絞り出すことができる。
In the apparatus of the present invention, the cross-sectional area S of the pressure portion of the pressure stamp and the cross-sectional area A inside the molten metal holding container are 0.95 A ≧ S.
Since the relational expression of ≧ 0.75 A is satisfied, the high-concentration liquid phase metal is efficiently separated from the primary crystal grains. Further, the height L of the pressing portion of the pressing stamp and the height H of the inside of the molten metal holding container are L ≧ H−h.
(However, h is the height of the pressed primary crystal grains) and the molten metal discharge passage is provided in the upper part of the container. For the remaining molten metal, dip the pressure stamp into the molten metal. Is easily discharged to the outside through the passage. or,
Using the above apparatus, the cooling rate of the molten metal is 20 ° C./min. Or less, and by refining by limiting the pressure of the primary crystal particles to 2 to 15 MPa, high-purity primary crystal particles are produced, and the primary crystal particles are also produced. Therefore, the high concentration liquid phase metal can be efficiently squeezed out.

【0015】[0015]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 Al−1wt%Mn合金(JIS-3003系)の芯材の両側に、A
l−7.5wt%Si合金(JIS-4343系)の皮材を被せたアル
ミブレージングシートの製造時に発生した種々のスクラ
ップ(鋳屑を含む)をブレンドして大量に精製した。溶
湯の徐冷速度、加圧スタンプの押圧力は種々に変化させ
た。加圧スタンプには加圧部の横断面積の異なるものを
数種類用いた。加圧スタンプの加圧部の長さLは、溶湯
保持容器内高さHと同じにした。溶湯保持容器は、内径
300mmφ、内側高さ 500mmのものを用いた。スタンプ加
圧時の溶湯温度は液相線温度以下10Kに設定して初晶粒
子押圧体のSi濃度が1wt%以下になるようにした。得
られた初晶粒子押圧体のSi濃度を分析した。又1週間
の生産量を計量した。結果を表1に示した。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 On both sides of the core material of Al-1 wt% Mn alloy (JIS-3003 series), A
Various scraps (including casting scraps) generated during the production of an aluminum brazing sheet covered with a 1-7.5 wt% Si alloy (JIS-4343 series) skin material were blended and purified in a large amount. The slow cooling rate of the molten metal and the pressing force of the pressure stamp were variously changed. Several kinds of pressure stamps having different cross-sectional areas of the pressure portion were used. The length L of the pressure portion of the pressure stamp was the same as the height H in the molten metal holding container. The molten metal holding container has an inner diameter
The one with 300 mmφ and the inner height of 500 mm was used. The molten metal temperature at the time of pressurizing the stamp was set to 10 K or lower than the liquidus temperature so that the Si concentration of the primary crystal particle pressing body was 1 wt% or lower. The Si concentration of the obtained primary crystal particle pressing body was analyzed. Moreover, the production amount for one week was measured. The results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】表1より明らかなように、本発明例品(N
o.1〜7)は、いずれもSiの除去率が高かった。Siの
除去率は、徐冷速度が遅い程、押圧力が大きい程、S/
A比が大きい程、良好な結果であった。Mnの分析値は
0.6〜0.9wt%であった。他方、比較例品(No.8〜11) は
徐冷速度、押圧力、S/A比のいずれかが、本発明条件
を外れた為に、高濃度液相金属が初晶粒子押圧体に取込
まれてSi除去率が低下した。生産量は高濃度液相金属
が取込まれた分増加した。上記製造工程において、作業
はスムーズになされ、安全上も問題がなかった。
As is clear from Table 1, the product of the present invention (N
o.1 to 7) all had a high Si removal rate. The removal rate of Si is S / S when the slow cooling rate is slower or the pressing force is higher.
The larger the A ratio, the better the result. The analysis value of Mn is
It was 0.6 to 0.9 wt%. On the other hand, since the comparative example products (No. 8 to 11) were out of the conditions of the present invention in any of the slow cooling rate, the pressing force, and the S / A ratio, the high-concentration liquid phase metal became the primary crystal particle pressing body. After being incorporated, the Si removal rate decreased. The production increased due to the incorporation of high-concentration liquid metal. In the above manufacturing process, the work was performed smoothly and there was no problem in safety.

【0018】実施例2 実施例1で排出された残部溶湯を、実施例1と同じ方法
により精製し、得られた初晶粒子を再度精製した。得ら
れた精製物のSiを分析した。結果を表2に示した。
Example 2 The residual molten metal discharged in Example 1 was refined by the same method as in Example 1, and the obtained primary crystal particles were refined again. The obtained purified product was analyzed for Si. The results are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】表2より明らかなように、精製の際に排出
された残部溶湯でも、本発明方法で2回繰り返し精製す
ることにより、実施例1での結果以上の純度に精製する
ことができた。2回目精製後のMnの分析値は 0.7〜1.
0wt%であった。
As is clear from Table 2, even the residual molten metal discharged during the refining could be refined to a purity higher than the result of Example 1 by repeatedly refining twice by the method of the present invention. . The analysis value of Mn after the second purification is 0.7 to 1.
It was 0 wt%.

【0021】実施例3 Al−3wt%Si−1wt%Mn合金のブレージングシートス
クラップについて、実施例1のNo.1又はNo.3と同じ条件
で精製を行った。精製後の組成は、No.1はSi0.77wt%
Mn0.65wt% 残部Al、No.3はSi0.84wt% Mn0.75wt
% 残部Alであった。各々溶解後、Mnを添加し、JIS-
1000系合金スクラップをブレンドして、ともにブレージ
ングシートの芯材(JIS-3003系合金)として再利用し
た。いずれもバージン原料のみで製造した製品と同等の
良好な性能及び品質を示した。
Example 3 A brazing sheet scrap of Al-3 wt% Si-1 wt% Mn alloy was refined under the same conditions as No. 1 or No. 3 of Example 1. No. 1 composition after purification is Si 0.77 wt%
Mn0.65wt% balance Al, No.3 is Si0.84wt% Mn0.75wt
% The balance was Al. After melting each, add Mn, JIS-
1000 series alloy scrap was blended and reused together as the core material (JIS-3003 series alloy) of the brazing sheet. All of them showed the same good performance and quality as products manufactured only from virgin raw materials.

【0022】以上、Si及びMnを含有するアルミラジ
エータスクラップを精製する場合について説明したが、
本発明は、他の元素を含有するアルミスクラップの精製
に適用しても、同様の効果が得られる。
The case of refining the aluminum radiator task trap containing Si and Mn has been described above.
Even if the present invention is applied to the refining of aluminum scrap containing other elements, the same effect can be obtained.

【0023】[0023]

【効果】以上述べたように、本発明によれば、アルミス
クラップを効率よく精製することができ、又得られた精
製物を有効に再利用することができ、工業上顕著な効果
を奏する。
As described above, according to the present invention, aluminum scrap can be efficiently refined, and the obtained refined product can be effectively reused, which is a significant industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の実施例を示す側面図である。FIG. 1 is a side view showing an embodiment of the device of the present invention.

【図2】本発明装置を構成する溶湯保持容器と加圧スタ
ンプの関係説明図である。
FIG. 2 is an explanatory view of a relationship between a molten metal holding container and a pressure stamp which constitute the device of the present invention.

【図3】本発明装置を用いたアルミスクラップの精製方
法の実施例を示す工程説明図である。
FIG. 3 is a process explanatory view showing an embodiment of a method for refining aluminum scrap using the device of the present invention.

【符号の説明】[Explanation of symbols]

1 溶湯保持容器 2 SUS製の殻 3 耐火キャスタブル 4 排出通路 5 樋 6 電磁誘導加熱器 7 加圧スタンプ 8 油圧シリンダ 9 加圧スタンプの加圧部 10 アルミスクラップ溶湯 11 初晶粒子 12 初晶粒子押圧体 13 残部溶湯 1 Molten metal holding container 2 SUS shell 3 Fireproof castable 4 Discharge passage 5 Gutter 6 Electromagnetic induction heater 7 Pressurizing stamp 8 Hydraulic cylinder 9 Pressurizing part of pressurizing stamp 10 Aluminum scrap molten metal 11 Primary crystal grain 12 Primary crystal grain pressing Body 13 remainder molten metal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大滝 光弘 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── --Continued front page (72) Inventor Mitsuhiro Otaki 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミスクラップ溶湯を保持する溶湯保
持容器、前記容器内に保持された前記溶湯を、前記溶湯
の液相線以下、固相線以上の温度範囲内で徐冷して初晶
粒子を生成させる初晶粒子生成器具、溶湯中に生成した
初晶粒子を容器底部に高圧力で押圧する加圧スタンプか
らなるアルミスクラップの精製装置において、加圧スタ
ンプの加圧部の横断面積Sと溶湯保持容器内側の横断面
積Aとが0.95A≧S≧0.75Aの関係式を満足し、又加圧
スタンプの加圧部の高さLと溶湯保持容器内側の高さH
とがL≧H−h(但し、hは押圧された初晶粒子の高
さ)の関係式を満足し、且つ容器上部に溶湯排出通路が
設けられていることを特徴とするアルミスクラップの精
製装置。
1. A molten metal holding container for holding an aluminum scrap molten metal, the molten metal held in the container is gradually cooled within a temperature range below a liquidus line of the molten metal and above a solidus line thereof, and primary crystal particles are obtained. In a device for purifying aluminum scrap, which comprises a primary-crystal particle producing device for producing a primary-crystal particle, and a primary-pressure stamp for pressing primary-crystal particles produced in a molten metal against the bottom of a container with a high pressure, a cross-sectional area S of the pressing portion of the pressing stamp and The cross-sectional area A inside the molten metal holding container satisfies the relational expression of 0.95A ≧ S ≧ 0.75A, and the height L of the pressing portion of the pressure stamp and the height H of the inside of the molten metal holding container.
And L satisfy the relational expression of L ≧ H−h (where h is the height of the pressed primary crystal grains), and a molten metal discharge passage is provided in the upper part of the container for refining aluminum scrap. apparatus.
【請求項2】 溶湯保持容器内に保持されたアルミスク
ラップ溶湯を20℃/min. 以下の速度で徐冷して初晶粒子
を所定量生成させる工程、生成した初晶粒子を加圧スタ
ンプで容器底部に2〜15MPa の押圧力で押圧するとと
もに、残部溶湯を容器上部の溶湯排出通路から排出させ
る工程、加圧スタンプを前記容器外に引き上げる工程、
前記容器から初晶粒子押圧体を取り出す工程を順次施す
ことを特徴とする請求項1記載のアルミスクラップ精製
装置を用いたアルミスクラップの精製方法。
2. A step of gradually cooling an aluminum scrap molten metal held in a molten metal holding container at a rate of 20 ° C./min. Or less to generate a predetermined amount of primary crystal particles, the generated primary crystal particles by a pressure stamp. Pressing the bottom of the container with a pressing force of 2 to 15 MPa and discharging the remaining molten metal from the molten metal discharge passage at the upper part of the container, pulling the pressure stamp out of the container,
The method for refining aluminum scrap using the apparatus for refining aluminum scrap according to claim 1, wherein steps of taking out the pressed primary crystal particles from the container are sequentially performed.
【請求項3】 アルミスクラップ溶湯が、少なくともS
iを0.5 〜10wt%含有していることを特徴とする請求項
2記載のアルミスクラップの精製方法。
3. The molten aluminum scrap is at least S.
3. The method of refining aluminum scrap according to claim 2, wherein i is contained in an amount of 0.5 to 10 wt%.
【請求項4】 請求項2記載のアルミスクラップの精製
方法により排出された残部溶湯をアルミスクラップ溶湯
として用いることを特徴とする請求項2又は請求項3記
載のアルミスクラップの精製方法。
4. The method for refining aluminum scrap according to claim 2 or 3, wherein the residual molten metal discharged by the method for refining aluminum scrap according to claim 2 is used as molten aluminum scrap.
【請求項5】 請求項2乃至請求項4記載のアルミスク
ラップ精製方法により得られた初晶粒子押圧体を、他の
原料とブレンドして展伸材用原料として利用することを
特徴とする精製アルミの利用方法。
5. A refinement characterized by using the pressed primary crystal particles obtained by the aluminum scrap refining method according to any one of claims 2 to 4 as a raw material for wrought material after blending with other raw materials. How to use aluminum.
JP1780194A 1994-01-17 1994-01-17 Device for refining aluminum scrap, method for refining aluminum scrap using the device, and method for using refined aluminum Pending JPH07207378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1780194A JPH07207378A (en) 1994-01-17 1994-01-17 Device for refining aluminum scrap, method for refining aluminum scrap using the device, and method for using refined aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1780194A JPH07207378A (en) 1994-01-17 1994-01-17 Device for refining aluminum scrap, method for refining aluminum scrap using the device, and method for using refined aluminum

Publications (1)

Publication Number Publication Date
JPH07207378A true JPH07207378A (en) 1995-08-08

Family

ID=11953829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1780194A Pending JPH07207378A (en) 1994-01-17 1994-01-17 Device for refining aluminum scrap, method for refining aluminum scrap using the device, and method for using refined aluminum

Country Status (1)

Country Link
JP (1) JPH07207378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147962A2 (en) 2006-06-23 2007-12-27 Alcan Rhenalu Process for recycling aluminium alloy scrap coming from the aeronautical industry

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147962A2 (en) 2006-06-23 2007-12-27 Alcan Rhenalu Process for recycling aluminium alloy scrap coming from the aeronautical industry
FR2902800A1 (en) * 2006-06-23 2007-12-28 Alcan Rhenalu Sa PROCESS FOR RECYCLING SCRAP OF ALUMINUM ALLOY FROM THE AERONAUTICAL INDUSTRY
WO2007147962A3 (en) * 2006-06-23 2008-02-07 Alcan Rhenalu Process for recycling aluminium alloy scrap coming from the aeronautical industry
US8202347B2 (en) 2006-06-23 2012-06-19 Constellium France Process for recycling aluminum alloy scrap coming from the aeronautical industry

Similar Documents

Publication Publication Date Title
CA2723075C (en) Magnesium alloy cast material
EP0701002A1 (en) Process for moulding aluminium- or magnesiumalloys in semi-solidified state
EP1777309A1 (en) Master alloy for use in modifying copper alloy and casting method using the same
GB2027743A (en) Continuous strip casting of aluminium alloy for container components
GB2027744A (en) Aluminium Alloy Compositions and Sheets
CN102114579A (en) High-strength aluminum alloy welding wire and preparation method thereof
CN111876637B (en) Heat-resistant and wear-resistant Al-Si-Cu-Ni aluminum alloy and preparation method and application thereof
JPS5912731B2 (en) Method for refining aluminum or aluminum alloy
JPH07207378A (en) Device for refining aluminum scrap, method for refining aluminum scrap using the device, and method for using refined aluminum
US3197862A (en) Method and apparatus for producing a fine-grain solder
JPH0635624B2 (en) Manufacturing method of high strength aluminum alloy extruded material
JP2003183756A (en) Aluminum alloy for semi-solid molding
JP3491468B2 (en) Method for forming semi-solid metal
JPH07197141A (en) Apparatus for refining aluminum scrap
JP5662857B2 (en) Al scrap refining method
JP3533433B2 (en) Metal purification method
JPH05222480A (en) Aluminum alloy for extruding cross section with fine structure
JP3473214B2 (en) Forming method of semi-molten metal
JPH08325652A (en) Method for molding semisolid metal
JP3490808B2 (en) Metal purification method and apparatus
JPH0770664A (en) Method for refining and reusing al scrap
JPH0754065A (en) Refining method and recycling method for aluminum scrap
JPH0754061A (en) Refining method and recycling method for al scarp
JP2012201917A (en) Refining method of al scrap
JPH07258770A (en) Aluminum alloy and its production