JPH07207310A - Operation of protecting side wall of furnace bottom of blast furnace - Google Patents

Operation of protecting side wall of furnace bottom of blast furnace

Info

Publication number
JPH07207310A
JPH07207310A JP1880894A JP1880894A JPH07207310A JP H07207310 A JPH07207310 A JP H07207310A JP 1880894 A JP1880894 A JP 1880894A JP 1880894 A JP1880894 A JP 1880894A JP H07207310 A JPH07207310 A JP H07207310A
Authority
JP
Japan
Prior art keywords
side wall
brick
thermocouple
furnace
furnace bottom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1880894A
Other languages
Japanese (ja)
Inventor
Osamu Anzai
修 安西
Kazumoto Kakiuchi
一元 柿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1880894A priority Critical patent/JPH07207310A/en
Publication of JPH07207310A publication Critical patent/JPH07207310A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Blast Furnaces (AREA)

Abstract

PURPOSE:To prevent the generation of succeeding corrosion of a brick protecting layer and the erosion of the brick itself, etc., by taking the protecting countermeasure for the side wall part of a furnace bottom in accordance with the absolute value of the temp. indicated by a thermocouple. CONSTITUTION:The temp. at the side wall part of the furnace bottom is continuously measured by the thermocouple, and at the time of recognizing the temp. rising, the residual amount of the brick protecting layer is estimated from the relation between the indicated temp. before starting the temp. rising and temp. variable per the unit time. As the protecting countermeasure for the side wall of the furnace bottom, either one of the increase of charged TiO2, blast reduction and blowing down is executed in accordance with the residual amount.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉の炉底側壁部を保
護するための操業方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operating method for protecting a bottom wall of a blast furnace.

【0002】[0002]

【従来の技術】高炉の寿命を律速する要因は炉底側壁部
耐火煉瓦残存厚であり、その保護を効率良く行えれば寿
命の延長が可能になり、固定費の大幅な削減や高炉改修
に伴う生産への影響を低減することが出来る。従来よ
り、炉底側壁部耐火煉瓦を保護するため各種の対策がな
されており、それらを炉底側壁煉瓦保護対策を操業・作
業・設備面の各観点から見ると、以下のように分類され
る。
2. Description of the Related Art A factor that determines the life of a blast furnace is the remaining thickness of the refractory bricks on the side wall of the furnace bottom. If the protection can be done efficiently, the life can be extended, and the fixed cost can be greatly reduced and the blast furnace can be repaired. It is possible to reduce the influence on the production. Conventionally, various measures have been taken to protect the refractory bricks on the bottom wall of the furnace bottom, and these are classified as follows when the measures for protecting the bottom wall of the furnace bottom are viewed from the viewpoints of operation, work, and equipment. .

【0003】まず操業面からの対策としては、生産レベ
ルの低下やチタンベア(TiC・TiN)による炉底側
壁煉瓦保護層(以下、煉瓦保護層と称す)の生成促進を
指向した装入TiO2 量の増加等が挙げられる。TiO
2 量の増加に関する具体的な手段としては、特開平4−
297512号公報に開示されているような羽口からの
微粉化TiO2 含有物吹き込みや高TiO2 含有鉱石使
用による装入TiO2量の増加等がある。また特開昭6
4−39310号公報には、出銑口閉塞時に使用する充
填材中にTiO2 を添加する方法が開示されている。
First, as a measure from an operational aspect, the amount of TiO 2 charged is aimed at lowering the production level and promoting the production of a furnace bottom side wall brick protective layer (hereinafter referred to as a brick protective layer) by titanium bare (TiC / TiN). And the like. TiO
2 As a concrete means for increasing the amount, Japanese Patent Laid-Open No.
There is an increase in the amount of charged TiO 2 due to the blowing of finely divided TiO 2 -containing material from the tuyere or the use of high TiO 2 -containing ore as disclosed in Japanese Patent No. 297512. In addition, JP-A-6
Japanese Patent Laid-Open No. 4-39310 discloses a method of adding TiO 2 to a filler used when closing a tap hole.

【0004】設備面では炉底側壁部での冷却能率向上を
目的に、送水ポンプの増設による冷却水量の増加や冷凍
機の設置による冷却水温の低下等の対策がなされてい
る。また作業面では、出銑口を閉塞する際の充填材挿入
量の増加や炉底側壁煉瓦損耗部位近傍における出銑口の
負荷軽減を指向した変則的な出銑口使用方法の実施等が
挙げられる。
In terms of equipment, measures are taken such as increasing the amount of cooling water by adding a water pump and lowering the cooling water temperature by installing a refrigerator in order to improve the cooling efficiency at the side wall of the furnace bottom. In terms of work, it is possible to increase the amount of filler inserted when closing the taphole and to implement an irregular taphole usage method aimed at reducing the load on the taphole in the vicinity of the furnace bottom sidewall brick wear site. To be

【0005】上述した炉底側壁煉瓦の保護対策を実行し
た場合、生産レベルの低下は生産余力のない製鉄所では
大きな問題となり、設備面の対策も多大な費用が必要に
なる。また、作業面からの対策も炉前作業者の負荷を増
大させるという問題を持っている。そのため最も簡便な
手段として、炉底側壁煉瓦や煉瓦保護層の損耗度合い、
即ち熱電対の指示温度に応じて装入TiO2 量を増量さ
せる対策を講じている。
When the above-mentioned protection measures for the bottom wall bricks of the furnace bottom are carried out, the decrease of the production level becomes a serious problem in a steel mill having no production capacity, and a large amount of cost is required for the measures for the facilities. In addition, work-related measures also have the problem of increasing the load on workers in front of the furnace. Therefore, as the simplest means, the degree of wear of the bottom wall bricks and brick protection layer,
That is, measures are taken to increase the amount of charged TiO 2 according to the temperature indicated by the thermocouple.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、高炉内
溶融物と煉瓦保護層の境界面から熱電対への熱伝達は、
煉瓦保護層や炉底側壁煉瓦等を介してなされており、従
来より煉瓦保護層損耗後に熱電対の指示温度が定常状態
に到達するには幾時間かの遅れが生じていることが知ら
れていた。従って、熱電対の指示温度に応じた炉底側壁
部の保護対策を講じても、高炉内部(炉底側壁内部)で
は更なる煉瓦保護層の損耗が発生している懸念があっ
た。また、煉瓦保護層の消滅は炉底側壁煉瓦自体の溶損
につながることから、炉底側壁煉瓦も溶損しやすい状況
にあった。本発明の課題とするところは、上記した熱電
対指示温度絶対値に応じた炉底側壁部保護対策による煉
瓦保護層の更なる浸食や煉瓦自体の溶損等の発生を防止
するための具体的手段を提供することにある。
However, the heat transfer from the interface between the melt in the blast furnace and the brick protection layer to the thermocouple is
It is done through a brick protection layer and furnace bottom side wall bricks, etc., and it has been conventionally known that there is a delay of several hours before the indicated temperature of the thermocouple reaches a steady state after the wear of the brick protection layer. It was Therefore, there is a concern that further brick protection layer wear may occur inside the blast furnace (inside the bottom wall of the furnace) even if the furnace bottom side wall is protected according to the temperature indicated by the thermocouple. Further, since the disappearance of the brick protection layer leads to melting damage of the furnace bottom side wall bricks, the furnace bottom side wall bricks are also easily melted. The place to be the subject of the present invention is to prevent further erosion of the brick protection layer by the furnace bottom side wall protection measures according to the above-mentioned thermocouple indicated temperature absolute value and the occurrence of melting damage of the brick itself, etc. To provide the means.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するものであって、炉底側壁部に熱電対を有する高炉に
おいて、該熱電対温度を連続的に測定し、その測定によ
り温度上昇が認められた際に、上昇開始前の指示温度と
単位時間当たりの温度変化量の関係から、炉底側壁煉瓦
保護層の残存量を推定し、その残存量が基準値以下とな
った際に予め定めておく装入TiO2 の増量・減風・休
風のいずれかの操業対策を図ることを特徴とする。
Means for Solving the Problems The present invention is to solve the above problems, and in a blast furnace having a thermocouple on the side wall of the furnace bottom, the temperature of the thermocouple is continuously measured, and the temperature rises by the measurement. If the residual amount of the brick protection layer on the bottom wall of the furnace bottom was estimated from the relationship between the indicated temperature before the start of temperature rise and the temperature change amount per unit time, and when the residual amount became less than the standard value, It is characterized by taking a predetermined operation measure such as increasing the amount of charged TiO 2 , reducing the air flow, or taking a rest air.

【0008】[0008]

【作用】前述したように、高炉炉内溶融物と煉瓦保護層
の境界面から熱電対への熱伝達は、煉瓦保護層や炉底側
壁煉瓦を介してなされている。そのため、煉瓦保護層が
損耗した後に熱電対指示温度が定常状態に達するまでに
は、幾らかの時間が必要である。従って、確実に炉底側
壁部煉瓦を保護するためには、熱電対指示温度を管理す
るのではなく、煉瓦保護層が損耗する過程、即ち熱電対
指示温度が上昇する過程を管理する必要がある。そこ
で、後述する事前検討により得られた知見とともに図1
に示す煉瓦保護層損耗前の熱電対指示温度と指示温度の
単位時間当たりの変化量の関係を導出した。同図は、非
定常伝熱計算の結果を煉瓦保護層の残存量により層別し
ている。
As described above, heat transfer from the boundary surface between the molten material in the blast furnace and the brick protection layer to the thermocouple is performed through the brick protection layer and the furnace bottom side wall brick. Therefore, it takes some time for the thermocouple indicated temperature to reach a steady state after the brick protective layer is worn. Therefore, in order to reliably protect the bottom wall of the furnace bottom wall, it is necessary to manage not the thermocouple indicated temperature but the process of wear of the brick protective layer, that is, the process of increasing the thermocouple indicated temperature. . Therefore, along with the findings obtained from the preliminary study described later,
The relationship between the thermocouple indicated temperature before wear of the brick protective layer and the amount of change in the indicated temperature per unit time was derived as shown in Fig. In the figure, the results of unsteady heat transfer calculation are stratified by the remaining amount of the brick protection layer.

【0009】非定常伝熱計算を行うため、図2に示す計
算モデルを構築した。計算モデルは、以下に示す一般的
に非定常伝熱計算を行う際に用いられている式(1)〜
(4)を基礎式として、各セル毎に計算を行うモデルと
した。 q(n+1)=λ(n+1)×[T(n+1)−T(n)]/ΔL……(1) q(n)=λ(n)×[T(n)−T(n−1)]/ΔL ……(2) 但し、q(0)=κ×[T(0)−Tw]/ΔL ……(3) T(n’)=T(n)+[q(n+1)−q(n)]/(Cp×ρ×ΔL)× Δt ……(4) 但し、q:熱流束[kcal/m2 ・hr] λ:熱伝導率[kcal/m・hr・℃] T:温度[℃] ΔL:微小長さ[m] κ:総括熱伝達係数[kcal/m2 ・hr・℃] Cp:熱容量[kcal/m・hr・℃] ρ:密度[kg/m3 ] ΔT:微小時間[hr]
In order to perform unsteady heat transfer calculation, the calculation model shown in FIG. 2 was constructed. The calculation model is represented by the following formulas (1) to (1) that are generally used when performing unsteady heat transfer calculation.
Using (4) as a basic formula, a model for calculating each cell was used. q (n + 1) = λ (n + 1) × [T (n + 1) -T (n)] / ΔL (1) q (n) = λ (n) × [T (n) -T (n-1) ] / ΔL (2) where q (0) = κ × [T (0) −Tw] / ΔL (3) T (n ′) = T (n) + [q (n + 1) -q (N)] / (Cp × ρ × ΔL) × Δt (4) where q: heat flux [kcal / m 2 · hr] λ: thermal conductivity [kcal / m · hr · ° C] T: temperature [° C] ΔL: Minute length [m] κ: Overall heat transfer coefficient [kcal / m 2 · hr · ° C] Cp: Heat capacity [kcal / m · hr · ° C] ρ: Density [kg / m 3 ] ΔT: Minute time [hr]

【0010】計算モデルを用いて過去に炉底側壁部にお
いて熱電対の指示温度が上昇した際の温度変化をシミュ
レートした結果、実績の温度推移と計算結果とが精度良
く合致することが確認された、その結果を図3に示す
(図中の丸数字は煉瓦保護層の剥離発生回数を示す)。
またシミュレート結果から、炉底側壁煉瓦の溶損が発生
する以前に煉瓦保護層が数回に渡り、層状且つ段階的に
損耗していることが確認された、その結果を図4に示し
た(図上部の回数は図3の丸数字と対応する)。即ち、
煉瓦保護層が損耗する過程を管理することにより、煉瓦
保護層の消滅や煉瓦自体の溶損を防止することが可能で
あるとの知見が得られた。
As a result of simulating the temperature change when the indicated temperature of the thermocouple increased in the side wall of the furnace bottom in the past using the calculation model, it was confirmed that the actual temperature transition and the calculation result accurately match. The results are shown in FIG. 3 (the circled numbers in the figure indicate the number of times the brick protective layer peeled off).
Further, from the simulation results, it was confirmed that the brick protective layer was worn several times before the melting damage of the furnace bottom side wall bricks occurred, and the brick protective layer was worn in layers and in stages. The results are shown in FIG. (The numbers at the top of the figure correspond to the circled numbers in Figure 3). That is,
It was found that it is possible to prevent the brick protection layer from disappearing and the brick itself from melting by controlling the process of wear of the brick protection layer.

【0011】以上の知見をもとに、図1に示した煉瓦保
護層損耗前の熱電対指示温度と単位時間当たりの温度変
化量の関係を導出し、それを実存する高炉操業に適用す
るために煉瓦保護層の残存厚に応じた炉底側壁保護操業
基準として表1を策定した。
Based on the above knowledge, in order to derive the relationship between the thermocouple indicated temperature before wear of the brick protective layer and the temperature change amount per unit time shown in FIG. 1, and to apply it to the existing blast furnace operation. Table 1 was established as the operation standard for furnace bottom side wall protection according to the remaining thickness of the brick protection layer.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【実施例】炉内容積2884m3 の高炉操業において、
炉底側壁部の熱電対指示温度が図5に示すように8時間
の間に230℃から290℃に上昇した。これにより、
煉瓦保護層の残存厚は図1より25mm以下であると推
定され、表1に示す操業基準に従い、臨時的な操業停
止、即ち休風を実施した。その結果、図5に見られるよ
うに炉底側壁部の熱電対指示温度は低下した。
[Example] In a blast furnace operation with a furnace internal volume of 2884 m 3 ,
The thermocouple indicated temperature on the side wall of the furnace bottom increased from 230 ° C to 290 ° C in 8 hours as shown in Fig. 5. This allows
The residual thickness of the brick protection layer was estimated to be 25 mm or less from FIG. 1, and according to the operation standard shown in Table 1, the operation was temporarily stopped, that is, the air was blown off. As a result, the thermocouple indicated temperature on the side wall of the furnace bottom decreased as shown in FIG.

【0014】[0014]

【比較例】上記高炉において、実施例とほぼ同等な温度
上昇が見られた際の温度推移を図6に示す。この場合、
図1及び表1に示す操業基準には従わず、従来から存在
する熱電対指示温度の絶対値に応じた炉底保護対策(表
2)を実施した。その結果、実施途中も熱電対指示温度
は上昇し、煉瓦保護層が消滅した後に煉瓦自体の溶損に
至った。
[Comparative Example] FIG. 6 shows the temperature transition when the temperature rise in the above blast furnace was almost equal to that in the example. in this case,
In accord with the operation standard shown in FIG. 1 and Table 1, the bottom protection measures (Table 2) were implemented according to the absolute value of the thermocouple indicated temperature that has existed conventionally. As a result, the thermocouple indicated temperature increased even during the implementation, and the brick itself melted after the protective layer of the brick disappeared.

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】以上に述べたように、本発明によれば従
来の熱電対指示温度の絶対値による管理基準と比較して
迅速な対応が可能となり、煉瓦保護層の更なる消滅や煉
瓦自体の溶損を事前に回避することができる。
As described above, according to the present invention, a quick response can be made as compared with the conventional control standard based on the absolute value of the thermocouple indicated temperature, further disappearance of the brick protective layer and the brick itself. Can be avoided in advance.

【図面の簡単な説明】[Brief description of drawings]

【図1】煉瓦保護層が剥離する前の熱電対指示温度と8
時間当たりの熱電対指示温度の上昇量を煉瓦保護層の残
存量により層別した図
1] Thermocouple indicated temperature and 8 before the brick protective layer peels off
Figure that stratifies the amount of rise in thermocouple indicated temperature per hour by the remaining amount of the brick protection layer

【図2】非定常伝熱計算を行うために構築した計算モデ
ルを模式的に示した図
FIG. 2 is a diagram schematically showing a calculation model constructed to perform unsteady heat transfer calculation.

【図3】煉瓦保護層の剥離量を推定するための計算モデ
ルによる計算結果と実際の熱電対の指示温度推移を比較
した図
FIG. 3 is a diagram comparing the calculation result by a calculation model for estimating the amount of peeling of the brick protective layer and the actual temperature transition of the thermocouple.

【図4】計算結果より確認された煉瓦保護層が剥離する
様相を模式的に示した図
FIG. 4 is a diagram schematically showing an aspect in which the brick protective layer is peeled off, which is confirmed by calculation results.

【図5】実施例における熱電対指示温度推移及び操業対
策を示した図
FIG. 5 is a diagram showing a thermocouple instruction temperature transition and an operation countermeasure in an example.

【図6】比較例における熱電対指示温度推移及び操業対
策を示した図
FIG. 6 is a diagram showing a thermocouple instruction temperature transition and an operation countermeasure in a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉底側壁部に熱電対を有する高炉におい
て、該熱電対温度を連続的に測定し、その測定により温
度上昇が認められた際に、上昇開始前の指示温度と単位
時間当たりの温度変化量の関係から、炉底側壁煉瓦保護
層の残存量を推定し、その残存量が基準値以下となった
際に、予め定めておく装入TiO2 の増量・減風・休風
のいずれかの操業対策を図ることを特徴とする高炉の炉
底側壁部保護操業方法。
1. A blast furnace having a thermocouple on the side wall of the bottom of the furnace, the thermocouple temperature is continuously measured, and when a temperature rise is observed by the measurement, the indicated temperature before the start of the rise and per unit time The remaining amount of the furnace bottom side wall protective layer is estimated from the relationship of the temperature change amount, and when the remaining amount becomes less than the reference value, the increase / decrease / quiescent amount of the charged TiO 2 is determined in advance. The operation method for protecting the bottom side wall of the blast furnace, characterized in that any one of the above operation measures is taken.
JP1880894A 1994-01-20 1994-01-20 Operation of protecting side wall of furnace bottom of blast furnace Withdrawn JPH07207310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1880894A JPH07207310A (en) 1994-01-20 1994-01-20 Operation of protecting side wall of furnace bottom of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1880894A JPH07207310A (en) 1994-01-20 1994-01-20 Operation of protecting side wall of furnace bottom of blast furnace

Publications (1)

Publication Number Publication Date
JPH07207310A true JPH07207310A (en) 1995-08-08

Family

ID=11981895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1880894A Withdrawn JPH07207310A (en) 1994-01-20 1994-01-20 Operation of protecting side wall of furnace bottom of blast furnace

Country Status (1)

Country Link
JP (1) JPH07207310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013118A (en) * 2001-07-05 2003-01-15 Nippon Steel Corp Method of controlling lower part of blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013118A (en) * 2001-07-05 2003-01-15 Nippon Steel Corp Method of controlling lower part of blast furnace
JP4634660B2 (en) * 2001-07-05 2011-02-16 新日本製鐵株式会社 Management method for the bottom of the blast furnace

Similar Documents

Publication Publication Date Title
JP4752021B2 (en) Reduced blast operation method of blast furnace
JP5482615B2 (en) Blowing control method in converter
JPH07207310A (en) Operation of protecting side wall of furnace bottom of blast furnace
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
JP3146907B2 (en) Converter end point control method for converter
JP2669279B2 (en) Blast furnace operation method
JP4081248B2 (en) Control method of the lower part of the blast furnace
JPH09272905A (en) Method for repairing side wall brick of furnace bottom part in blast furnace
JP7448101B1 (en) Blast furnace control method and control device
JP7107050B2 (en) Blast furnace operation method
JP3858285B2 (en) Blast furnace operation method
JP2859691B2 (en) How to repair cracks in blast furnace steel
JP2007254897A (en) Method for lowered level operation in blast furnace
JPH08127810A (en) Method for cooling refractory at furnace bottom of blast furnace
JP2008309461A (en) Control method of plasma type ash melting furnace and plasma type ash melting furnace
JP2718305B2 (en) Estimation method of erosion line at blast furnace bottom
JP2002194406A (en) Method for protecting furnace bottom part in blast furnace
JPH09227911A (en) Operation of blast furnace
JPH09133468A (en) Method and apparatus for judgement of time for additional instruction of stock material into electric furnace or tapping of molten metal
CN115896369A (en) Tapping method, device, equipment and storage medium after blast furnace reblowing
Coetzee et al. Application of UCAR® Chill Kote™ lining to ilmenite smelting
JPH0978112A (en) Method for protecting furnace bottom of blast furnace
JPH0625722A (en) Method for protecting furnace bottom surface in blast furnace
JPH0967607A (en) Method for monitoring furnace bottom of blast furnace
JPS6137327B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403