JP2003013118A - Method of controlling lower part of blast furnace - Google Patents

Method of controlling lower part of blast furnace

Info

Publication number
JP2003013118A
JP2003013118A JP2001204732A JP2001204732A JP2003013118A JP 2003013118 A JP2003013118 A JP 2003013118A JP 2001204732 A JP2001204732 A JP 2001204732A JP 2001204732 A JP2001204732 A JP 2001204732A JP 2003013118 A JP2003013118 A JP 2003013118A
Authority
JP
Japan
Prior art keywords
furnace
heat transfer
blast furnace
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001204732A
Other languages
Japanese (ja)
Other versions
JP4634660B2 (en
Inventor
Kenichi Yatsugayo
健一 八ケ代
Junichi Nakagawa
淳一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001204732A priority Critical patent/JP4634660B2/en
Publication of JP2003013118A publication Critical patent/JP2003013118A/en
Application granted granted Critical
Publication of JP4634660B2 publication Critical patent/JP4634660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of controlling the lower part of blast furnace, which can stabilize the operation of a blast furnace, by using the readings of a pyrometer which is buried in a refractory to exclude disturbance on the cooling side of the pyrometer, precisely grasping the heat transfer amount in the furnace, and operating the blast furnace according to the conditions presumed from the heat transfer amount in the furnace. SOLUTION: This method comprises burying two or more pyrometers M1 and M2 perpendicularly into the refractories 14 and 16 in the lower part 12 of the blast furnace 11, grasping the progression of actual temperature based on a pair of measured values with pyrometers M1 and M2 , calculating the unsteady heat transfer amount while assuming the heat transfer amount in the furnace toward the operating side and the heat removal amount on the cooling side on the basis of the temperature of the molten pig iron, and determining simultaneously the heat transfer amount inside the furnace and the heat removal amount on the cooling side, by calculating the above obtained progression values so as to substantially match with the actual progression values measured with the pyrometers M1 and M2 , by a heat-transfer reverse analysis method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高炉の炉下部にお
ける熱負荷の予測を正確に行い、炉底や側壁の耐火物の
損耗を防止して長寿命化を図る高炉炉下部の管理方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the lower part of a blast furnace, which accurately predicts the heat load in the lower part of the blast furnace, prevents wear of refractory material on the bottom and side walls of the blast furnace, and prolongs its life. .

【0002】[0002]

【従来の技術】従来、高炉の炉底及び炉底近傍の側壁に
おける炉内から構成される高炉下部は、溶融した溶銑が
溜り、この溶銑溜りにコークスの充填層が浸漬した状態
と考えられており、更に、出銑やコークスの充填層の動
きによって、溶銑の流れ(溶銑流)が形成されている。
この溶銑流は、側壁の内部側に局所的な大きな流れが生
じる場合があり、この局所的な流れによって、側壁部を
構成する耐火物への熱負荷が上昇し、耐火物が損耗す
る。この耐火物の損耗が極端に進行すると炉壁損傷事故
となり、操業が不可能となる。一方、炉底では、コーク
ス充填層が炉底に接地したり、コークス充填密度が高く
なることがあり、この場合は、炉底の中央部の熱負荷が
軽減されるが、炉底の外周近傍で、局所的な溶銑の大き
な流れが生じ、耐火物への熱負荷が上昇して耐火物が損
耗される。いずれの場合においても、高炉の安定操業や
長寿命化が行えない。この炉底や側壁の耐火物の損耗状
態を管理するため、耐火物内に埋め込んだ複数の温度計
によって、測温された温度を見ながら各耐火物の熱負荷
状態を管理することが行われている。しかし、耐火物の
厚みが1.5m以上になるため、炉底や側壁の耐火物の
稼働面の状態を把握するのに時間遅れが大きく、外部の
冷却状態による外乱等が発生し、しかも、測定された温
度に対する操業のアクションをリアルタイムに行えない
等の問題がある。この対策として、特開平9−6760
7号公報に記載されているように、炉底の耐火物内及び
耐火物外表面に、複数の熱流量計を配置し、測定された
熱流量計(温度計)の値を用い、有限要素法、境界要素
法、又は有限差分法を使用して3次元の伝熱解析を行
い、炉底の耐火物の浸食形状を求め、この浸食形状を過
去の最大の浸食形状と比較して浸食が進行した面形状を
更新し、更に、前記した炉底の温度計値からの熱流量を
基に、有限要素法、境界要素法、又は有限差分法を使用
して3次元の伝熱解析を行い、炉底の耐火物の浸食形
状、及び凝固層の形状を推定し、高炉の耐火物の損耗を
防止して寿命の延長を図る方法が行われている。
2. Description of the Related Art Conventionally, it has been considered that molten iron is accumulated in the lower part of the blast furnace, which is composed of the bottom of the blast furnace and the side wall near the bottom of the blast furnace, and a bed of coke is immersed in the molten pig iron. In addition, the hot metal flow (hot metal flow) is formed by the movement of the tapping layer and the coke packed layer.
In this hot metal flow, a large local flow may occur on the inner side of the side wall, and the local flow increases the heat load on the refractory material forming the side wall portion, and the refractory material is worn. If the wear of the refractory material progresses extremely, a furnace wall damage accident occurs, and the operation becomes impossible. On the other hand, in the bottom of the furnace, the coke packed bed may come into contact with the bottom of the furnace or the coke packing density may become high. In this case, the heat load at the center of the bottom is reduced, but near the outer circumference of the bottom. At this point, a large hot metal flow locally occurs, and the heat load on the refractory increases, causing the refractory to wear. In either case, stable operation and long life of the blast furnace cannot be achieved. In order to manage the wear state of the refractory on the bottom and side walls, the heat load state of each refractory is managed by observing the measured temperature with multiple thermometers embedded in the refractory. ing. However, since the thickness of the refractory material is 1.5 m or more, there is a large time delay in grasping the state of the working surface of the refractory material on the furnace bottom and side walls, and external disturbances and the like due to cooling conditions occur. There is a problem that the action of the operation for the measured temperature cannot be performed in real time. As measures against this, Japanese Patent Laid-Open No. 9-6760
As described in Japanese Patent Publication No. 7, a plurality of heat flow meters are arranged on the inside of the refractory and the outer surface of the refractory at the bottom of the furnace, and the measured values of the heat flow meter (thermometer) are used. Method, boundary element method, or finite difference method is used to perform a three-dimensional heat transfer analysis to find the erosion shape of the refractory at the bottom of the furnace, and compare this erosion shape with the largest erosion shape in the past. The advanced surface shape is updated, and three-dimensional heat transfer analysis is performed using the finite element method, boundary element method, or finite difference method based on the heat flow rate from the thermometer value of the furnace bottom described above. , A method of estimating the erosion shape of the refractory material at the bottom of the furnace and the shape of the solidified layer to prevent the refractory material of the blast furnace from being worn and extending the life.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
9−67607号公報に記載された方法では、高炉の炉
底を模擬的な熱的定常状態に仮定したものであり、炉内
の温度が急激に変化する非定常性の高い実操業への適用
を考慮していないため、計算により推定された炉底の耐
火物の浸食形状及び凝固層の形状を非定常時のアクショ
ンに用いることができない。例えば、前記した耐火物の
浸食形状及び凝固層の形状等を基に、炉内への送風条
件、出銑口制約等の操業のアクションを実施した際、そ
の操業のアクションが本来望ましい操業のアクションと
異なる場合を招く。その結果、浸食形状及び凝固層の形
状等をより悪化させることになる。更に、実操業では、
温度計により測定される熱負荷に応じた冷却側(炉外
側)の条件を考慮していないため、計算により推定され
た炉底の耐火物の浸食形状及び凝固層の形状の外乱要因
となり、浸食形状、凝固層の形状等が不正確になり、適
正な操業のアクションを実施することができない。しか
も、炉内への送風条件、出銑口制約等の操業のアクショ
ンが不正確になると、一層炉底の耐火物の浸食の進行や
凝固層の形状が悪くなり、高炉の操業の不安定化が進行
して出銑量の低下等の問題がある。
However, in the method described in Japanese Patent Laid-Open No. 9-67607, the bottom of the blast furnace is assumed to be in a simulated thermal steady state, and the temperature inside the furnace is suddenly increased. It is not possible to use the erosion shape of the furnace bottom refractory and the shape of the solidified layer, which are estimated by calculation, for the action during unsteady state, because the application to the actual operation with high unsteadyness that changes to 1 is not considered. For example, based on the erosion shape of the refractory and the shape of the solidified layer, etc., when carrying out operation actions such as blowing conditions into the furnace, restrictions on tap hole, etc., the action of the operation is the originally desirable operation action. Invites when different from. As a result, the eroded shape and the shape of the solidified layer are further deteriorated. Furthermore, in actual operation,
Since the condition on the cooling side (outside the furnace) according to the heat load measured by the thermometer is not considered, it becomes a disturbance factor of the erosion shape of the furnace bottom refractory and the shape of the solidified layer estimated by calculation, and erosion The shape, the shape of the solidified layer, etc. become inaccurate, and proper operation actions cannot be performed. Moreover, if the operation actions such as the conditions for blowing air into the furnace and restrictions on the tap hole become inaccurate, the progress of erosion of the refractory at the bottom of the furnace and the shape of the solidified layer will worsen, and the operation of the blast furnace will become unstable. However, there is a problem such as a decrease in the amount of tapped metal.

【0004】本発明はかかる事情に鑑みてなされたもの
で、耐火物の内部に埋設した温度計の冷却側の外乱を無
くした温度計値を用い、炉内伝熱量を正確に把握し、炉
内伝熱量から推定される炉内状況に応じた高炉の操業ア
クションを行い、高炉の操業を安定させることができる
高炉炉下部の管理方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and accurately measures the amount of heat transfer in the furnace by using a thermometer value that eliminates disturbance on the cooling side of a thermometer embedded in a refractory, It is an object of the present invention to provide a management method for the lower part of a blast furnace that can stabilize the operation of the blast furnace by performing a blast furnace operation action according to the in-furnace condition estimated from the internal heat transfer amount.

【0005】[0005]

【課題を解決するための手段】前記目的に沿う本発明の
高炉炉下部の管理方法は、高炉の炉下部の耐火物内の厚
み方向に2点以上の温度計を埋設し、該温度計により測
定された温度を対として実績の温度推移を把握し、この
時の溶銑温度から、稼働面への炉内伝熱量と冷却側抜熱
量を仮定した非定常伝熱計算を行い、求められた温度計
の温度の推移値が前記温度計により実測された温度に実
質的に一致するように伝熱逆解析法を用いて計算し、炉
内伝熱量と冷却側抜熱量を同時に決定する。なお、炉内
伝熱量とは、稼働面部からの炉内熱伝達率Up、又は、
稼働面部からの熱貫流量qpであり、冷却側抜熱量と
は、冷却側熱伝達率Uw又は、冷却側熱貫流量qwを用
いることができる。この方法により、温度計の実測値に
ほぼ一致するように伝熱逆解析法を用いて稼働面への炉
内伝熱量である炉内熱伝達率Up、あるいは稼働面側へ
の熱貫流量qpを決定するため、温度が急激に変化する
非定常時の炉底や側壁の耐火物の熱負荷状態を正確に把
握することができ、供給燃料、炉底の外側の冷却条件、
支管送風、出銑口の使用等の操業アクションを適正に行
うことができ、高炉の操業の安定化が可能になる。
According to the method for controlling the lower part of a blast furnace of the present invention which meets the above-mentioned object, two or more thermometers are embedded in the refractory at the lower part of the blast furnace in the thickness direction, and the thermometer is used. Grasping the actual temperature transition with the measured temperature as a pair, performing unsteady heat transfer calculation assuming the heat transfer amount in the furnace and the heat removal amount on the cooling side from the hot metal temperature at this time, and obtain the calculated temperature. The heat transfer inverse analysis method is used for calculation so that the transition value of the temperature of the meter substantially matches the temperature actually measured by the thermometer, and the heat transfer amount in the furnace and the heat removal amount on the cooling side are simultaneously determined. The in-furnace heat transfer amount is the in-reactor heat transfer coefficient Up from the operating surface part, or
It is a heat transmission flow rate qp from the operating surface portion, and the cooling side heat transfer coefficient Uw or the cooling side heat transmission flow rate qw can be used as the cooling side heat removal amount. By this method, the heat transfer inverse analysis method is used so that the heat transfer coefficient Up is the amount of heat transfer in the furnace to the operating surface, or the heat transmission flow rate qp to the operating surface side is almost equal to the measured value of the thermometer. Therefore, it is possible to accurately grasp the heat load state of the refractory on the bottom and side walls of the furnace at unsteady times when the temperature changes abruptly, the supply fuel, the cooling conditions on the outside of the bottom,
Operational actions such as branch pipe ventilation and use of tap holes can be properly performed, and the operation of the blast furnace can be stabilized.

【0006】ここで、前記炉下部の耐火物を複数の計算
メッシュに分割し、最内メッシュは、所定温度を融点と
する凝固層(凝固物)であるとし、該凝固層の表面と溶
銑間の熱伝達率を仮定した炉内伝熱量と熱収支を求め、
凝固層の凝固融解潜熱を用いて、該凝固層の表面が融点
温度となる凝固層厚みを決定すると良い。これにより、
複数の計算メッシュに分割して求めた炉内伝熱量から凝
固融解潜熱を用いて凝固層の厚みを算出するため、炉下
部に形成される凝固層の厚みを正確に把握することがで
きる。
Here, the refractory material in the lower part of the furnace is divided into a plurality of calculation meshes, and the innermost mesh is a solidified layer (solidified material) having a melting point at a predetermined temperature, and the space between the surface of the solidified layer and the hot metal is defined. The heat transfer amount and heat balance in the furnace were calculated assuming the heat transfer coefficient of
It is preferable to use the latent heat of solidification and melting of the solidification layer to determine the thickness of the solidification layer at which the surface of the solidification layer has the melting point temperature. This allows
Since the thickness of the solidified layer is calculated using the latent heat of solidification and fusion from the amount of heat transfer in the furnace obtained by dividing into a plurality of calculation meshes, the thickness of the solidified layer formed in the lower part of the furnace can be accurately grasped.

【0007】更に、前記炉下部は、炉底、又は側壁であ
ることが好ましい。これにより、高炉の熱負荷の変動が
大きく、しかも、耐火物の溶損の激しい部位の熱収支を
管理でき、耐火物の溶損や凝固層の状態を的確に把握す
るとができる。
Further, the lower part of the furnace is preferably a bottom or a side wall of the furnace. As a result, it is possible to manage the heat balance of a portion where the heat load of the blast furnace is large and the melting loss of the refractory is severe, and it is possible to accurately grasp the melting loss of the refractory and the state of the solidified layer.

【0008】[0008]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。図1は本発明の一実施の形態に係る
高炉炉下部の管理方法に適用される測定装置の断面図、
図2は同高炉炉下部の熱伝達率の測定部位の概要図、図
3は高炉の炉底耐火物の経過日数と温度の関係を表すグ
ラフ、図4は炉底耐火物の経過日数と炉内熱伝達率の関
係を表すグラフ、図5は炉底耐火物の経過日数と凝固層
厚みの関係を表すグラフ、図6は炉底耐火物の経過日数
と底盤冷却アクションの関係を表すグラフ、図7は炉底
耐火物の経過日数と温度の関係を表すグラフ、図8は炉
底耐火物の経過日数と炉内熱伝達率の関係を表すグラ
フ、図9は炉底耐火物の経過日数と冷却熱伝達率の関係
を表すグラフ、図10は炉底耐火物の経過日数と凝固層
厚みの関係を表すグラフ、図11は炉底耐火物の経過日
数と側壁耐火物残存厚みの関係を表すグラフ、図12は
炉底耐火物の経過日数と稼働面温度の関係を表すグラフ
である。図1に示すように、本発明の一実施の形態に係
る高炉炉下部の管理方法に用いられる測定装置10は、
高炉11の炉下部12を構成する鉄皮からなる側壁13
と、この側壁13に内張りした側壁耐火物14と、炉底
を構成する底盤15と、この底盤15に内張りした炉底
耐火物16を有している。この炉底耐火物16には、温
度計M1 とM2 が埋設されており、各M1 、M2 の温度
が測定され、図示しない計算機に入力される。更に、底
盤15の内部には、冷却水供給管17が配置され、冷却
水の供給弁18と、冷却水の排水弁19を備えている。
また、炉底耐火物16の表面には、一般的な凝固層20
が形成され、この凝固層20の上には、酸化鉄が還元さ
れて溶解した溶銑21の溜まり部が形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, referring to the attached drawings, an embodiment in which the present invention is embodied will be described to provide an understanding of the present invention. FIG. 1 is a cross-sectional view of a measuring apparatus applied to a method for managing a lower part of a blast furnace according to an embodiment of the present invention,
Fig. 2 is a schematic diagram of the measurement site of the heat transfer coefficient in the lower part of the blast furnace, Fig. 3 is a graph showing the relationship between the elapsed days and the temperature of the bottom refractory of the blast furnace, and Fig. 4 is the elapsed days of the bottom refractory and the furnace. Fig. 5 is a graph showing the relationship between the internal heat transfer coefficient, Fig. 5 is a graph showing the relationship between the elapsed days of the furnace bottom refractory and the solidified layer thickness, and Fig. 6 is a graph showing the relationship between the elapsed days of the furnace bottom refractory and the bottom plate cooling action. 7 is a graph showing the relationship between the elapsed days and the temperature of the bottom refractory, FIG. 8 is a graph showing the relationship between the elapsed days of the bottom refractory and the heat transfer coefficient in the furnace, and FIG. 9 is the elapsed days of the bottom refractory. And the cooling heat transfer coefficient, FIG. 10 is a graph showing the relationship between the elapsed days of the furnace bottom refractory and the solidified layer thickness, and FIG. 11 is the relationship between the elapsed days of the furnace bottom refractory and the sidewall refractory remaining thickness. FIG. 12 is a graph showing the relationship between the elapsed days and the operating surface temperature of the furnace bottom refractory. As shown in FIG. 1, the measuring apparatus 10 used in the method for controlling the lower part of a blast furnace according to an embodiment of the present invention is
Side wall 13 made of iron skin that constitutes the lower part 12 of the blast furnace 11.
The side wall refractory 14 lined on the side wall 13, the bottom plate 15 constituting the furnace bottom, and the furnace bottom refractory 16 lined on the bottom plate 15. The furnace bottom refractory 16, a thermometer M 1 and M 2 is embedded, the temperature of the M 1, M 2 is measured and input to the computer (not shown). Further, a cooling water supply pipe 17 is arranged inside the bottom plate 15, and is provided with a cooling water supply valve 18 and a cooling water drain valve 19.
Further, on the surface of the furnace bottom refractory 16, a general solidified layer 20
Is formed, and a pooled portion of the hot metal 21 in which iron oxide is reduced and dissolved is formed on the solidified layer 20.

【0009】次に、本発明の一実施の形態に係る高炉炉
下部の管理方法について測定装置10を用いて炉内伝熱
量として炉内熱伝達率Upを、冷却側抜熱量として冷却
側熱伝達率Uwを求める場合について説明する。高炉1
1の炉底耐火物16内に、この炉底耐火物16の厚み方
向に所定の距離を有して温度計M1 とM2 を埋設し、炉
底耐火物16の2.5mの厚み方向における温度をそれ
ぞれ測定する。この温度計M1 とM2 は、炉内に溜まる
溶銑21の温度が約1500℃であるため、凝固層20
及び炉底耐火物16の上方から下方に伝わる熱の熱伝達
率と、供給管17に供給される冷却水等の熱伝達率の影
響を受け、所定の温度が測定されて表示される。この熱
伝達率は、図2に示すように、高炉11の底盤15に内
張りされた炉底耐火物16の厚み方向をT3 〜T7 に5
分割し、更に、底盤15の冷却水供給管17により抜熱
された底盤15の温度TW と、凝固層20と炉底耐火物
16の境界温度T2 、溶銑21と凝固層20との境界温
度T1 及び溶銑21の温度TP について、ぞれぞれの伝
熱面積A1 〜A7 (m2 )、厚さL1 〜L7 (m)、密
度ρ 1 〜ρ7 (kg/m3 )、比熱C1 〜C7 (kca
l/kg℃)、熱伝導率λ1〜λ6 (kcal/mh
℃)が、その物性、あるいはプロフィル等から決定でき
るので、炉底耐火物16内に埋設した測定用の温度計M
1 と温度計M2 の実測温度値から一般に用いられている
一次元の非定常伝熱計算である下式により各部位の熱伝
達率を求める。
Next, a blast furnace according to an embodiment of the present invention
Regarding the management method of the lower part, heat transfer in the furnace using the measuring device 10
As a quantity, the heat transfer coefficient Up in the furnace is used as a heat removal amount on the cooling side.
A case of obtaining the side heat transfer coefficient Uw will be described. Blast furnace 1
The thickness direction of this furnace bottom refractory 16
Thermometer M with a certain distance in the direction1 And M2 Buried in the furnace
The temperature of the bottom refractory 16 in the thickness direction of 2.5 m
Measure each. This thermometer M1 And M2 Accumulates in the furnace
Since the temperature of the hot metal 21 is about 1500 ° C., the solidified layer 20
Transfer of heat transmitted from above and below the furnace bottom refractory 16
Of the heat transfer coefficient of the cooling water supplied to the supply pipe 17
A predetermined temperature is measured and displayed due to the sound. This heat
As shown in FIG. 2, the transmissivity is measured by the internal bottom 15 of the blast furnace 11.
T in the thickness direction of the fired furnace bottom refractory 163 ~ T7 To 5
Divide and further remove heat by cooling water supply pipe 17 of bottom plate 15.
Temperature of the bottom plate 15W And solidified layer 20 and furnace bottom refractory
16 boundary temperature T2 , Boundary temperature between the hot metal 21 and the solidified layer 20
Degree T1 And the temperature T of the hot metal 21P About each biography
Heat area A1 ~ A7 (M2 ), Thickness L1 ~ L7 (M), dense
Degree ρ 1 ~ Ρ7 (Kg / m3 ), Specific heat C1 ~ C7 (Kca
1 / kg ° C), thermal conductivity λ1~ Λ6 (Kcal / mh
℃) can be determined from its physical properties, profile, etc.
Therefore, the thermometer M for measurement embedded in the furnace bottom refractory 16
1 And thermometer M2 Generally used from the measured temperature value of
The heat transfer of each part is calculated by the following equation, which is a one-dimensional unsteady heat transfer calculation.
Find the achievement rate.

【0010】例えば、T3 〜T6 は、以下の(1)、
(2)式からΔTi を求める。 ΔQi =〔Ai ×λi-1 /Li-1 ×(Ti-1 −Ti )+Ai+1 ×λi /Li ×( Ti+1 −Ti )〕×Δt ・・・・・(1) ΔTi =ΔQi /(Ai ×Li ×ρi ×Ci ) ・・・・・(2) 過去の実績Uwを用いてT7 を計算する。 ΔQ7 =〔A7 ×λ6 /L6 ×(T6 −T7 )+A8 ×Uw×(TW −T7 )〕 ×Δt ・・・・・(3) ΔT7 =ΔQ7 /(A7 ×L7 ×ρ7 ×C7 ) ・・・・・(4) 過去の実績Upを用い、凝固層厚L1 、又は表面温度T1 を計算する。 ΔQ1 =〔A1 ×Up×(Tp−T1 )+A2 ×λ1 /L1 ×(T2 −T1 )〕 ×Δt ・・・・・(5) 但し、凝固層20が存在する場合は、以下の式を適用する。 ΔL1 =ΔQ1 /Hg/A1 ・・・・・(6) 凝固層20が存在しない場合は、以下の式を適用する。 ΔT1 =ΔQ1 /(L1 ×A1 ×ρ1 ×C1 ) ・・・・・(7) ここで、iはi番目のメッシュ、Ti はi番目のメッシ
ュの温度(℃)、Qi はi番目のメッシュの蓄熱量(k
cal)、Ai は伝熱面積(m2 )、λi は熱伝導率
(kcal/mh℃)、ρi はメッシュの密度(kg/
3 )、Ci はメッシュの比熱(kcal/kg℃)、
i はメッシュの長さ(m)、tは時間(h)、Tpは
溶銑の温度(℃)、TW は冷却水の温度(℃)、Upは
炉内熱伝達率(kcal/m2 h℃)、Uwは冷却側熱
伝達率(kcal/m2 h℃)、Hgは凝固層の凝固融
解潜熱(kcal/kg)である。
For example, T 3 to T 6 are the following (1),
ΔT i is calculated from the equation (2). ΔQ i = [A i × λ i-1 / L i-1 × (T i-1 −T i ) + A i + 1 × λ i / L i × (T i + 1 −T i )] × Δt (1) ΔT i = ΔQ i / (A i × L i × ρ i × C i ) (2) Calculate T 7 using the past performance Uw. ΔQ 7 = [A 7 × λ 6 / L 6 × (T 6 −T 7 ) + A 8 × Uw × (T W −T 7 )] × Δt (3) ΔT 7 = ΔQ 7 / ( A 7 × L 7 × ρ 7 × C 7 ) (4) Using the past results Up, the solidification layer thickness L 1 or the surface temperature T 1 is calculated. ΔQ 1 = [A 1 × Up × (Tp−T 1 ) + A 2 × λ 1 / L 1 × (T 2 −T 1 )] × Δt (5) However, the solidified layer 20 exists If this is the case, the following formula applies. ΔL 1 = ΔQ 1 / Hg / A 1 (6) When the solidified layer 20 does not exist, the following formula is applied. ΔT 1 = ΔQ 1 / (L 1 × A 1 × ρ 1 × C 1 ) (7) where i is the i-th mesh and T i is the temperature (° C.) of the i-th mesh, Q i is the heat storage amount of the i-th mesh (k
cal), A i is the heat transfer area (m 2 ), λ i is the thermal conductivity (kcal / mh ° C.), ρ i is the mesh density (kg /
m 3 ), C i is the specific heat of the mesh (kcal / kg ° C.),
L i is the length of the mesh (m), t is the time (h), Tp is the temperature of the hot metal (° C.), T W is the temperature of the cooling water (° C.), and Up is the heat transfer coefficient in the furnace (kcal / m 2). h °), Uw is the heat transfer coefficient on the cooling side (kcal / m 2 h ° C.), and Hg is the latent heat of solidification and melting (kcal / kg) of the solidified layer.

【0011】そして、炉内の最内メッシュを融点が11
50℃の凝固層20とし、溶銑温度を1500℃に仮定
し、前記した式のUp、Uwを仮定値にしてT1 〜T7
の各経時変化を計算する。更に、それぞれの測定用の温
度計M1 、M2 の実測の温度値を結ぶ線と比較し、この
誤差が最小化するように、Up、Uwを伝熱逆解析法を
用いて以下の手順で求める。一定の時間毎に測定された
実測データがj個(Y1 、Y2 、Y3 ・・・Yj )で、
この実測データj個に対応して伝熱計算で求めた温度値
Tがj個(T1 、T2、T3 ・・・Tj )有るとすれ
ば、この条件で、熱伝達率Uを微小変化させた場合のT
j の変化は、下式により計算される。 φj =ΔTj/ΔU ・・・・・(8) 但し、φj は、実際のΔUを与えてΔTjを計算により
求める。更に、実測の温度計M1 、M2 との誤差が最小
化できるU’が決定するまで、下式を用いて繰り返し計
算を行う。 U’=U+〔2×Σ(φj ×Yj )−2×Σ(φj ×Tj )〕/Σ(φj 2 ) ・・・・・(9) ここで、jは時系列にデータの個数(個)、Uは熱伝達
率(Kcal/m2 h℃)、φj は感度係数(℃m2
/Kcal) U’は熱伝達率(Kcal/m2 h℃)で
ある。そして、温度計M1 、M2 から実測された温度の
推移に、前記した式を用いて計算された計算値がほぼ一
致するように、炉内熱伝達率Upと冷却側熱伝達率Uw
を求めることにより、実績の温度計M1 、M2 の温度変
化に応じた炉内熱伝達率の変化を計算により求めること
ができ、しかも、この炉内熱伝達率であるUpに応じた
凝固層の減少や成長の状態を正確に求めることができ
る。
The melting point of the innermost mesh in the furnace is 11
Assuming that the solidified layer 20 is 50 ° C., the hot metal temperature is 1500 ° C., and Up and Uw in the above equations are assumed values, T 1 to T 7
Calculate each change over time. Further, by comparing with the line connecting the actually measured temperature values of the respective thermometers M 1 and M 2 for measurement, Up and Uw are subjected to the following procedure using the heat transfer inverse analysis method so as to minimize this error. Ask in. The actual measurement data measured at regular time intervals are j (Y 1 , Y 2 , Y 3 ... Y j ),
If there are j temperature values T (T 1 , T 2 , T 3 ... T j ) obtained by heat transfer calculation corresponding to the measured data j, the heat transfer coefficient U is T when slightly changed
The change of j is calculated by the following formula. φ j = ΔTj / ΔU (8) However, for φ j , ΔTj is calculated by giving actual ΔU. Further, iterative calculation is performed using the following formula until U ′ that can minimize the error between the measured thermometers M 1 and M 2 is determined. U ′ = U + [2 × Σ (φ j × Y j ) −2 × Σ (φ j × T j )] / Σ (φ j 2 ) (9) where j is a time series Number of data (pieces), U is heat transfer coefficient (Kcal / m 2 h ℃), φ j is sensitivity coefficient (℃ m 2 h ℃)
/ Kcal) U ′ is the heat transfer coefficient (Kcal / m 2 h ° C.). Then, the in-reactor heat transfer coefficient Up and the cooling-side heat transfer coefficient Uw are set so that the transitions of the temperatures actually measured by the thermometers M 1 and M 2 substantially match the calculated values calculated using the above-described formula.
By calculating, the change in the heat transfer coefficient in the furnace according to the temperature change of the actual thermometers M 1 and M 2 can be calculated, and moreover, the solidification in accordance with the heat transfer coefficient Up in the furnace It is possible to accurately determine the state of layer reduction and growth.

【0012】次に、測定装置10を用いて炉内伝熱量と
して稼働面側からの熱貫流量qpと冷却側熱貫流量qw
を用いる場合について説明する。T3 〜T6 は、前記し
た(1)、(2)式を用い、過去の実績qwを用いてT
7を計算する。 ΔQ7 =〔A7 ×λ6 /L6 ×(T6 −T7 )+A8 ×qw〕×Δt ・・・・・(10) ΔT7 =ΔQ7 /(A7 ×L7 ×ρ7 ×C7 ) ・・・・・(11) 過去の実績qpを用い、凝固層厚L1 、又は表面温度T1 を計算する。 ΔQ1 =〔A1 ×qp+A2 ×λ1 /L1 ×(T2 −T1 )〕×Δt ・・・・・(12) 但し、凝固層20が存在する場合は、以下の式を適用する。 ΔL1 =ΔQ1 /Hg/A1 ・・・・・(13) 凝固層20が存在しない場合は、以下の式を適用する。 ΔT1 =ΔQ1 /(L1 ×A1 ×ρ1 ×C1 ) ・・・・・(14)
Next, by using the measuring device 10, the heat transfer amount qp from the operating surface and the heat transfer amount qw on the cooling side as the heat transfer amount in the furnace.
The case of using will be described. T 3 to T 6 are calculated by using the equations (1) and (2) described above, and using the past actual result qw, T
Calculate 7 . ΔQ 7 = [A 7 × λ 6 / L 6 × (T 6 −T 7 ) + A 8 × qw] × Δt (10) ΔT 7 = ΔQ 7 / (A 7 × L 7 × ρ 7 × C 7 ) (11) Using the past actual result qp, the solidification layer thickness L 1 or the surface temperature T 1 is calculated. ΔQ 1 = [A 1 × qp + A 2 × λ 1 / L 1 × (T 2 −T 1 )] × Δt (12) However, when the solidified layer 20 exists, the following formula is applied. To do. ΔL 1 = ΔQ 1 / Hg / A 1 (13) When the solidified layer 20 does not exist, the following formula is applied. ΔT 1 = ΔQ 1 / (L 1 × A 1 × ρ 1 × C 1 ) (14)

【0013】そして、炉内の最内メッシュを融点が11
50℃の凝固層20とし、溶銑温度を1500℃に仮定
し、前記した式のqp、qwを仮定値にしてT1 〜T7
の各経時変化を計算する。更に、それぞれの温度管理計
(温度計)M1 、M2 の実測の温度値を結ぶ線と比較
し、この誤差が最小化するように、qp、qwを伝熱逆
解析法を用いて以下の手順で求める。一定の時間毎に測
定された実測データがj個(Y1 、Y2 、Y3 ・・・Y
j )で、この実測データj個に対応して熱伝計算で求め
た温度値Tがj個(T1 、T2、T3 ・・・Tj )有る
とすれば、この条件で、熱貫流量qを微小変化させた場
合のTj の変化は、下式により計算される。 φj =ΔTj /Δq ・・・・・(15) 但し、φj は、実際のΔqを与えてΔTj を計算により
求める。更に、実測の温度計M1 、M2 との誤差が最小
化できるq’が決定するまで、下式を用いて繰り返し計
算を行う。 q’=q+〔2×Σ(φj ×Yj )−2×Σ(φj ×Tj )〕/Σ(φj 2 ) ・・・・・(16) ここで、jは時系列にデータの個数(個)、qは熱貫流
量(Kcal/m2 h)、φj は感度係数(℃m2 h/
Kcal) 、q’は熱貫流量(Kcal/m2 h)であ
る。そして、温度計M1 、M2 から実測された温度の推
移に、前記した式を用いて計算された計算値がほぼ一致
するように、炉内熱貫流量qpと冷却側熱貫流量qwを
求めることにより、実績の温度計M1 、M2 の温度変化
に応じた炉内熱貫流量の変化を計算により求めることが
でき、しかも、この炉内熱貫流量qpに応じた凝固層の
減少や成長の状態を正確に求めることができる。
The melting point of the innermost mesh in the furnace is 11
Assuming that the solidified layer 20 is 50 ° C., the hot metal temperature is 1500 ° C., and qp and qw in the above equations are assumed values, T 1 to T 7
Calculate each change over time. Further, by comparing with the line connecting the actually measured temperature values of the respective temperature control meters (thermometers) M 1 and M 2 , qp and qw are calculated using the inverse heat transfer analysis method so as to minimize this error. Follow the procedure of. J actual measurement data measured at regular intervals (Y 1 , Y 2 , Y 3 ... Y
j ), if there are j temperature values T (T 1 , T 2 , T 3 ... T j ) obtained by heat transfer calculation corresponding to the j measured data, the heat The change in T j when the flow rate q is slightly changed is calculated by the following equation. φ j = ΔT j / Δq ····· (15) However, phi j, determined by calculation [Delta] T j giving the actual [Delta] q. Further, iterative calculation is performed using the following formula until q'that can minimize the error between the measured thermometers M 1 and M 2 is determined. q ′ = q + [2 × Σ (φ j × Y j ) -2 × Σ (φ j × T j )] / Σ (φ j 2 ) (16) Here, j is a time series. The number of data (pieces), q is the heat transmission flow rate (Kcal / m 2 h), φ j is the sensitivity coefficient (° C m 2 h /
Kcal) and q ′ are heat transmission flow rates (Kcal / m 2 h). Then, the in-reactor heat-penetrating flow rate qp and the cooling-side heat-penetrating flow rate qw are set so that the calculated values calculated using the above-described equations substantially match the transitions of the temperatures actually measured by the thermometers M 1 and M 2. By obtaining the value, it is possible to obtain the change in the in-furnace heat transmission flow rate according to the temperature change of the actual thermometers M 1 and M 2 , and moreover, the solidification layer is reduced according to this in-reactor heat transmission flow rate qp. The growth condition can be accurately determined.

【0014】その結果、炉内熱伝達率の状況をリアルタ
イムに精度良く把握でき、炉内熱伝達率の変動に応じ
て、例えば、コークス層の密充填化や出銑口の使用制
約、燃料比、冷却等の条件の変更を行うことができる。
炉内熱伝達率の変動に応じ対応を行うことにより、炉底
耐火物16の損耗や異常な凝固層20の形成を防止して
高炉の長寿命化が可能になった。
As a result, the state of the heat transfer coefficient in the furnace can be accurately grasped in real time, and depending on the fluctuation of the heat transfer coefficient in the furnace, for example, the dense packing of the coke layer, the restriction on the use of the tap hole, the fuel ratio, etc. The conditions such as cooling can be changed.
By responding to the fluctuation of the heat transfer coefficient in the furnace, it is possible to prevent the wear of the furnace bottom refractory 16 and the abnormal formation of the solidified layer 20 and to extend the life of the blast furnace.

【0015】[0015]

【実施例】次に、高炉炉下部の管理方法の実施例につい
て説明する。温度計M1 、M2 から実測された温度の推
移を基に、前記した炉内熱伝達率Upと冷却側熱伝達率
Uwを求める式を用いて計算を行い、計算値が実測され
た温度M1 、M2 に、ほぼ一致するように炉内熱伝達率
Upと冷却側熱伝達率Uwを求めた。その結果を図3〜
図6に示す。図3に示すように、約3ケ月にわたる温度
計M1 、M2 の実績温度変化の推移と、計算により求め
た温度が正確に合致(図中では実績温度太線と計算温度
が重なっている)していることが判る。更に、図4に示
すように、計算により求めた炉内熱伝達率が5月/15
日以降に低下傾向を示したが、前記した温度計M1 、M
2 の計算温度も低下し、計算により求めた温度と炉内熱
伝達率の傾向が良く一致している。そして、図5では、
炉内熱伝達率の低下に伴って炉底耐火物16の表面に付
着した凝固層20の厚みが増加し始めたので、図6に示
すように、増加し始めた時点で、底盤15の冷却水供給
管17に供給する水量を供給弁18と排水弁19を操作
して減水し、底盤15の冷却条件を緩和する処置を行っ
た。そして、凝固層20は、冷却条件を緩和したにもか
かわらず厚みが増加し続けたが、最大0.6mの厚みに
成長したところで、冷却条件の緩和効果が寄与し、凝固
層20の厚みが減少し始めた。そこで、冷却アクション
指数を80〜85%に再調整し、凝固層20の厚みを問
題の無い0.3〜0.4mに維持できた。
EXAMPLE Next, an example of a method for controlling the lower part of the blast furnace will be described. Based on the transition of the temperature actually measured by the thermometers M 1 and M 2 , the calculation is performed using the formulas for obtaining the heat transfer coefficient Up in the furnace and the heat transfer coefficient Uw on the cooling side, and the calculated value is the measured temperature. The in-furnace heat transfer coefficient Up and the cooling-side heat transfer coefficient Uw were determined so as to be substantially equal to M 1 and M 2 . The results are shown in Fig. 3 ~
As shown in FIG. As shown in Fig. 3, the transition of the actual temperature change of the thermometers M 1 and M 2 over about 3 months exactly matches the temperature obtained by calculation (in the figure, the actual temperature thick line and the calculated temperature overlap). You can see that Furthermore, as shown in FIG. 4, the calculated heat transfer coefficient in the furnace is May / 15
Although it showed a downward trend after a day, the thermometers M 1 and M described above
The calculated temperature of 2 also decreased, and the trends of the calculated temperature and the heat transfer coefficient in the furnace agree well. And in FIG.
Since the thickness of the solidified layer 20 adhering to the surface of the furnace bottom refractory 16 began to increase as the heat transfer coefficient in the furnace decreased, as shown in FIG. The amount of water supplied to the water supply pipe 17 was reduced by operating the supply valve 18 and the drain valve 19, and the cooling condition of the bottom plate 15 was relaxed. The solidified layer 20 continued to increase in thickness despite relaxing the cooling conditions, but when it grew to a maximum thickness of 0.6 m, the effect of relaxing the cooling conditions contributed, and the thickness of the solidified layer 20 was reduced. Began to decrease. Therefore, the cooling action index was readjusted to 80 to 85%, and the thickness of the solidified layer 20 could be maintained at 0.3 to 0.4 m without any problem.

【0016】次に、本発明に掛かる高炉炉下部の管理方
法の特に側壁の管理方法の実施例について説明する。炉
底耐火物16の温度計M1 、M2 を埋設した前記の場合
と同様に、炉下部12の側壁13に内張りした側壁耐火
物14の内部に、温度計M1 、M2 を埋設し、実測され
た温度と、前記した式を用いて計算された計算値がほぼ
一致するように炉内熱伝達率Upと冷却側熱伝達率Uw
を求めた。その結果を図7〜図12に示す。図7〜図1
2に示すように、実績温度と計算により求めた温度が良
く合致しており、しかも、実績温度の変動に応じて炉内
熱伝達率も良好に変動していることが判る。特に、炉内
熱伝達率が上昇し始めた4月16日以降では、冷却熱伝
達率も緩冷状態であったため、凝固層の厚みが急激に減
少し、稼働面の温度も略1275℃に上昇した。更に、
6月10日以降で、炉内熱伝達率が上昇して凝固層の厚
みが急激に減少し、炉底耐火物16の損耗が発生して稼
働面の温度が略1305℃に上昇した。そして、この近
傍の出銑口からの出銑頻度を少なくし、同時に、この近
傍の羽口から吹き込む送風の低減を炉内熱伝達率Upに
応じて実施したところ、炉内熱伝達率Upが徐々に下が
り、4月5日以降に凝固層を安定的に増加でき、図12
に示すように、稼働面の温度を略1150℃に安定させ
ることができた。このように、稼働面に対し、熱負荷が
急激に変動する非定常時の熱負荷をリアルタイムに把握
でき、その状況に応じた操業のアクションが行うことが
できた。更に、炉内熱伝達率Upと冷却側熱伝達率Uw
に変えて熱貫流量qpと冷却側熱貫流量qwを用いた場
合についても、実績温度の変動に応じて熱貫流量qpが
良好に変動しており、凝固層の厚みを安定して管理する
ことができた。
Next, an embodiment of the method for controlling the lower part of the blast furnace according to the present invention, particularly the method for controlling the side wall, will be described. As in the case of the the buried thermometer M 1, M 2 of the furnace bottom refractory 16, the inside of the side wall refractories 14 lined on the side wall 13 of the furnace bottom 12, buried thermometer M 1, M 2 , The in-reactor heat transfer coefficient Up and the cooling-side heat transfer coefficient Uw so that the measured temperature and the calculated value calculated by using the above-mentioned formula are substantially matched
I asked. The results are shown in FIGS. 7 to 1
As shown in Fig. 2, it can be seen that the actual temperature and the temperature obtained by the calculation are in good agreement, and furthermore, the heat transfer coefficient in the furnace also fluctuates satisfactorily in accordance with the variation in the actual temperature. In particular, after April 16 when the heat transfer coefficient in the furnace began to rise, the cooling heat transfer coefficient was also in a slow cooling state, so the thickness of the solidified layer rapidly decreased and the temperature of the operating surface also reached approximately 1275 ° C. Rose. Furthermore,
After June 10, the heat transfer coefficient in the furnace increased, the thickness of the solidified layer drastically decreased, the furnace bottom refractory 16 was worn, and the temperature of the operating surface rose to about 1305 ° C. Then, the frequency of tapping from the taphole in the vicinity was reduced, and at the same time, the amount of air blown from the tuyere in the vicinity was reduced according to the heat transfer coefficient Up in the furnace. Gradually decreased, the solidified layer could be stably increased after April 5, and Fig. 12
As shown in, the temperature of the operating surface could be stabilized at about 1150 ° C. In this way, it was possible to grasp the heat load in a non-steady state in which the heat load drastically fluctuates with respect to the operation side in real time, and to take action according to the situation. Furthermore, the heat transfer coefficient Up in the furnace and the heat transfer coefficient Uw on the cooling side
Even when the heat transmission flow rate qp and the cooling side heat transmission flow rate qw are used instead of the heat transmission flow rate qp, the heat transmission flow rate qp fluctuates well according to the fluctuation of the actual temperature, and the thickness of the solidified layer is stably managed. I was able to.

【0017】以上、本発明の実施の形態を説明したが、
本発明は、上記した形態に限定されるものでなく、要旨
を逸脱しない条件の変更等は全て本発明の適用範囲であ
る。例えば、温度計は、M1 、M2 の他に、底盤や炉底
耐火物を3〜5個に分割し、それぞれに設けることがで
き、炉壁においても同様に、鉄皮や側壁耐火物を3〜5
個に分割し、それぞれに設けることができる。更に、温
度計M1 、M2 等の測定データをコンピュータに入力
し、コンピュータで演算し、その結果をコンピュータか
ら出力して操業のアクションを行うことができる。
The embodiment of the present invention has been described above.
The present invention is not limited to the above-described embodiment, and changes in conditions and the like without departing from the spirit are all within the scope of application of the present invention. For example, in addition to M 1 and M 2 , the thermometer can be divided into 3 to 5 pieces of bottom plate and furnace bottom refractory, and can be provided in each, and also in the furnace wall, iron shell and side wall refractory 3 to 5
It can be divided into individual pieces and provided for each. Further, the measurement data of the thermometers M 1 and M 2 etc. can be input to a computer, the computer can perform calculation, and the result can be output from the computer to perform an action of operation.

【0018】[0018]

【発明の効果】請求項1〜3記載の高炉炉下部の管理方
法においては、高炉の炉下部の耐火物内の厚み方向に2
点以上の温度計を埋設し、温度計により測定された温度
を対として実績の温度推移を把握し、この時の溶銑温度
とから、稼働面への炉内伝熱量と冷却側抜熱量を仮定し
た非定常伝熱計算を行い、求められた温度計の温度の推
移値が温度計により実測された温度に実質的に一致する
ように伝熱逆解析法を用いて計算し、炉内伝熱量と冷却
側抜熱量を同時に決定するので、炉内伝熱量を正確に把
握して炉内の熱負荷を推定し、炉内の熱負荷に応じた高
炉の操業アクションを行うことができ、高炉の操業を安
定、長寿命化を図ることができる。
According to the method for controlling the lower part of the blast furnace according to the first to third aspects of the present invention, the blast furnace has a lower part of the blast furnace in the thickness direction inside the refractory.
By embedding a thermometer above the point, grasp the actual temperature transition using the temperature measured by the thermometer as a pair, and from the hot metal temperature at this time, assume the heat transfer amount in the furnace to the operating surface and the heat removal amount on the cooling side The unsteady heat transfer calculation was performed and calculated using the heat transfer inverse analysis method so that the obtained transition value of the temperature of the thermometer substantially matches the temperature actually measured by the thermometer. Since the heat removal amount on the cooling side and that on the cooling side are determined at the same time, the heat transfer amount in the furnace can be accurately grasped to estimate the heat load in the furnace, and the operation action of the blast furnace can be performed according to the heat load in the furnace. Stable operation and long life can be achieved.

【0019】特に、請求項2記載の高炉炉下部の管理方
法においては、炉下部の耐火物を複数の計算メッシュに
分割し、最内メッシュは、所定温度を融点とする凝固物
であるとし、凝固層の表面と溶銑間の熱伝達率を仮定し
た炉内伝熱量と熱収支を求め、凝固層の凝固融解潜熱を
用いて、凝固層の表面が融点温度となる凝固層厚みを決
定するので、炉下部に形成される凝固層の厚みを正確に
把握することができ、凝固層の状態に応じ、コークスの
充填密度、出銑口の使用回数、炉内に供給する燃料比、
底盤の冷却等の操業アクションを選択して行うことがで
き、安定した操業を行うことができる。
Particularly, in the method for controlling the lower part of the blast furnace according to claim 2, the refractory material in the lower part of the furnace is divided into a plurality of calculation meshes, and the innermost mesh is a solidified product having a melting point at a predetermined temperature, Since the heat transfer amount and heat balance in the furnace that assume the heat transfer coefficient between the surface of the solidification layer and the hot metal are obtained, the solidification layer thickness at which the surface of the solidification layer becomes the melting point temperature is determined using the solidification melting latent heat of the solidification layer. It is possible to accurately grasp the thickness of the solidified layer formed in the lower part of the furnace, and depending on the state of the solidified layer, the packing density of coke, the number of tap holes used, the fuel ratio supplied to the furnace,
Operation actions such as cooling of the bottom plate can be selected and performed, and stable operation can be performed.

【0020】請求項3記載の高炉炉下部の管理方法にお
いては、炉下部は、炉底、又は側壁に適用するので、高
炉の熱負荷の変動が大きい部位の熱収支から、炉内の耐
火物の熱負荷を正確に把握して適正な操業アクションを
行うことができ、高炉のより安定した操業と長寿命化を
図ることができる。
In the method for controlling the lower part of the blast furnace according to the third aspect, since the lower part of the blast furnace is applied to the bottom or side wall of the blast furnace, the refractory material in the furnace is determined from the heat balance of the part where the heat load of the blast furnace varies greatly. It is possible to accurately grasp the heat load of the blast furnace and perform appropriate operation action, and it is possible to achieve more stable operation and longer life of the blast furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る高炉炉下部の管理
方法に適用される測定装置の断面図である。
FIG. 1 is a cross-sectional view of a measuring device applied to a method for controlling a lower part of a blast furnace according to an embodiment of the present invention.

【図2】同高炉炉下部の熱伝達率の測定部位の概要図で
ある。
FIG. 2 is a schematic diagram of a measurement site for heat transfer coefficient in the lower part of the blast furnace.

【図3】高炉の炉底耐火物の経過日数と温度の関係を表
すグラフである。
FIG. 3 is a graph showing the relationship between the elapsed days and the temperature of the bottom refractory of the blast furnace.

【図4】炉底耐火物の経過日数と炉内熱伝達率の関係を
表すグラフである。
FIG. 4 is a graph showing the relationship between the elapsed days of the furnace bottom refractory and the heat transfer coefficient in the furnace.

【図5】炉底耐火物の経過日数と凝固層厚みの関係を表
すグラフである。
FIG. 5 is a graph showing the relationship between the elapsed days of a furnace bottom refractory and the solidified layer thickness.

【図6】炉底耐火物の経過日数と底盤冷却アクションの
関係を表すグラフである。
FIG. 6 is a graph showing the relationship between the elapsed days of the furnace bottom refractory and the bottom cooling action.

【図7】炉底耐火物の経過日数と温度の関係を表すグラ
フである。
FIG. 7 is a graph showing the relationship between the elapsed days and the temperature of the furnace bottom refractory.

【図8】炉底耐火物の経過日数と炉内熱伝達率の関係を
表すグラフである。
FIG. 8 is a graph showing the relationship between the elapsed days of the furnace bottom refractory and the heat transfer coefficient in the furnace.

【図9】炉底耐火物の経過日数と冷却熱伝達率の関係を
表すグラフである。
FIG. 9 is a graph showing the relationship between the number of days elapsed in the furnace bottom refractory and the cooling heat transfer coefficient.

【図10】炉底耐火物の経過日数と凝固層厚みの関係を
表すグラフである。
FIG. 10 is a graph showing the relationship between the elapsed days of the furnace bottom refractory and the solidified layer thickness.

【図11】炉底耐火物の経過日数と側壁耐火物残存厚み
の関係を表すグラフである。
FIG. 11 is a graph showing the relationship between the elapsed days of the furnace bottom refractory and the sidewall refractory residual thickness.

【図12】炉底耐火物の経過日数と稼働面温度の関係を
表すグラフである。
FIG. 12 is a graph showing the relationship between the elapsed days of the furnace bottom refractory and the operating surface temperature.

【符号の説明】[Explanation of symbols]

10:測定装置、11:高炉、12:炉下部、13:側
壁、14:側壁耐火物、15:底盤、16:炉底耐火
物、17:冷却水供給管、18:供給弁、19:排出
弁、20:凝固層、21:溶銑
10: Measuring device, 11: Blast furnace, 12: Lower part of furnace, 13: Side wall, 14: Side wall refractory material, 15: Bottom plate, 16: Furnace bottom refractory material, 17: Cooling water supply pipe, 18: Supply valve, 19: Discharge Valve, 20: Solidified layer, 21: Hot metal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高炉の炉下部の耐火物内の厚み方向に2
点以上の温度計を埋設し、該温度計により測定された温
度を対として実績の温度推移を把握し、この時の溶銑温
度から、稼働面への炉内伝熱量と冷却側抜熱量を仮定し
た非定常伝熱計算を行い、求められた温度計の温度の推
移値が前記温度計により実測された温度に実質的に一致
するように伝熱逆解析法を用いて計算し、炉内伝熱量と
冷却側抜熱量を同時に決定することを特徴とする高炉炉
下部の管理方法。
1. The thickness direction of the refractory in the lower part of the blast furnace is 2
A thermometer above the point is embedded, and the actual temperature transition is grasped by using the temperature measured by the thermometer as a pair, and the heat transfer amount inside the furnace to the operating surface and the heat removal amount on the cooling side are assumed from the hot metal temperature at this time. The unsteady heat transfer calculation was performed and calculated using the heat transfer inverse analysis method so that the transition value of the obtained temperature of the thermometer substantially matches the temperature actually measured by the thermometer. A method for controlling the lower part of a blast furnace, wherein the heat quantity and the heat removal quantity on the cooling side are simultaneously determined.
【請求項2】 請求項1記載の高炉炉下部の管理方法に
おいて、前記炉下部の耐火物を複数の計算メッシュに分
割し、最内メッシュは、所定温度を融点とする凝固層で
あるとし、該凝固層の表面と溶銑間の熱伝達率を仮定し
た炉内伝熱量と熱収支を求め、凝固層の凝固融解潜熱を
用いて、該凝固層の表面が融点温度となる凝固層厚みを
決定することを特徴とする高炉炉下部の管理方法。
2. The blast furnace lower part management method according to claim 1, wherein the refractory material in the lower part of the furnace is divided into a plurality of calculation meshes, and the innermost mesh is a solidified layer having a melting point at a predetermined temperature, The amount of heat transfer in the furnace and the heat balance assuming the heat transfer coefficient between the surface of the solidification layer and the hot metal are obtained, and the solidification layer latent heat of the solidification layer is used to determine the solidification layer thickness at which the surface of the solidification layer becomes the melting point temperature. A method for managing the lower part of a blast furnace characterized by:
【請求項3】 請求項1又は2記載の高炉炉下部の管理
方法において、前記炉下部は、炉底、又は側壁であるこ
とを特徴とする高炉炉下部の管理方法。
3. The method for managing a lower part of a blast furnace according to claim 1, wherein the lower part of the blast furnace is a bottom or a side wall of the blast furnace.
JP2001204732A 2001-07-05 2001-07-05 Management method for the bottom of the blast furnace Expired - Lifetime JP4634660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001204732A JP4634660B2 (en) 2001-07-05 2001-07-05 Management method for the bottom of the blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204732A JP4634660B2 (en) 2001-07-05 2001-07-05 Management method for the bottom of the blast furnace

Publications (2)

Publication Number Publication Date
JP2003013118A true JP2003013118A (en) 2003-01-15
JP4634660B2 JP4634660B2 (en) 2011-02-16

Family

ID=19041156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204732A Expired - Lifetime JP4634660B2 (en) 2001-07-05 2001-07-05 Management method for the bottom of the blast furnace

Country Status (1)

Country Link
JP (1) JP4634660B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7690797B2 (en) 2005-06-16 2010-04-06 Nec Viewtechnology, Ltd. Projector and focus adjustment method
CN115485396A (en) * 2020-04-30 2022-12-16 杰富意钢铁株式会社 Method for detecting fluctuation of solidified layer and method for operating blast furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207310A (en) * 1994-01-20 1995-08-08 Nippon Steel Corp Operation of protecting side wall of furnace bottom of blast furnace
JPH10273708A (en) * 1997-03-28 1998-10-13 Nippon Steel Corp Method for estimating furnace bottom condition in blast furnace
JP2001234217A (en) * 2000-02-28 2001-08-28 Nippon Steel Corp Estimation and prediction method for blast furnace bottom condition
JP2002266011A (en) * 2001-03-12 2002-09-18 Nippon Steel Corp Method for estimating furnace condition in blast furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207310A (en) * 1994-01-20 1995-08-08 Nippon Steel Corp Operation of protecting side wall of furnace bottom of blast furnace
JPH10273708A (en) * 1997-03-28 1998-10-13 Nippon Steel Corp Method for estimating furnace bottom condition in blast furnace
JP2001234217A (en) * 2000-02-28 2001-08-28 Nippon Steel Corp Estimation and prediction method for blast furnace bottom condition
JP2002266011A (en) * 2001-03-12 2002-09-18 Nippon Steel Corp Method for estimating furnace condition in blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7690797B2 (en) 2005-06-16 2010-04-06 Nec Viewtechnology, Ltd. Projector and focus adjustment method
CN115485396A (en) * 2020-04-30 2022-12-16 杰富意钢铁株式会社 Method for detecting fluctuation of solidified layer and method for operating blast furnace

Also Published As

Publication number Publication date
JP4634660B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP3769164B2 (en) Blast furnace bottom condition estimation and prediction method
JP4753374B2 (en) Container wall thickness estimation method, apparatus, and computer program
CN113111549B (en) Erosion model modeling method and modeling system for casting repaired blast furnace hearth
JP2003013118A (en) Method of controlling lower part of blast furnace
WO2014030118A2 (en) A method and a system for determination of refractory wear profile in a blast furnace
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
JP4743781B2 (en) Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container
JP3562116B2 (en) Control method of molten steel temperature in tundish
JP2016221537A (en) Method for controlling temperature of molten metal holding vessel, method for controlling refractory layer thickness of molten metal holding vessel, method for controlling molten metal temperature inside molten metal holding vessel, device for controlling temperature of molten metal holding vessel, and program for controlling temperature of molten metal holding vessel
JP5007945B2 (en) Estimation method of electric furnace slag coating thickness by unsteady heat transfer analysis
JP4081248B2 (en) Control method of the lower part of the blast furnace
JPH09263808A (en) Method for cooling furnace bottom of blast furnace
JP3728050B2 (en) Blast furnace bottom condition estimation method
JP2004068099A (en) Method for operating smelting furnace
KR20030050868A (en) Estimation method for blast furnace hearth refractory thickness
JP3745538B2 (en) Blast furnace operation method
JP3385831B2 (en) Estimation method of hearth erosion line and hearth structure
RU2044058C1 (en) Method for control of erosion of blast-furnace well
JPS5933162B2 (en) Blast furnace operating method
JPS5826989A (en) Method of cooling furnace bottom section of shaft furnace, etc.
JPS6137328B2 (en)
JPS6137327B2 (en)
JP3889847B2 (en) Blast furnace bottom cooling method
JPH0978113A (en) Method for designing structure of furnace bottom in blast furnace
Saxén et al. Estimation of the local wall-mushroom thickness at the blast furnace taphole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101119

R151 Written notification of patent or utility model registration

Ref document number: 4634660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term