JPH07206476A - Production of hermetically coated optical fiber - Google Patents

Production of hermetically coated optical fiber

Info

Publication number
JPH07206476A
JPH07206476A JP6003703A JP370394A JPH07206476A JP H07206476 A JPH07206476 A JP H07206476A JP 6003703 A JP6003703 A JP 6003703A JP 370394 A JP370394 A JP 370394A JP H07206476 A JPH07206476 A JP H07206476A
Authority
JP
Japan
Prior art keywords
optical fiber
raw material
material gas
gas
reaction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6003703A
Other languages
Japanese (ja)
Other versions
JP3316290B2 (en
Inventor
Shinichi Arai
慎一 荒井
Kunio Ogura
邦男 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP00370394A priority Critical patent/JP3316290B2/en
Publication of JPH07206476A publication Critical patent/JPH07206476A/en
Application granted granted Critical
Publication of JP3316290B2 publication Critical patent/JP3316290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/22Deposition from the vapour phase
    • C03C25/223Deposition from the vapour phase by chemical vapour deposition or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • C03C25/1061Inorganic coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To produce a hermetically coated optical fiber by preventing degradation in concn. of a gaseous raw material on the surface of the optical fiber in a reaction furnace. CONSTITUTION:The hermetically coated optical fiber is produced by bringing the gaseous raw material supplied into the reaction furnace 5 into optical reaction and coating the surface of the optical fiber with a hermetic film while passing the optical fiber into the reaction furnace 5. At this time, the flow of the gaseous raw material at least near the surface of the optical fiber is disturbed within the reaction furnace 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反応炉内に供給する原
料ガスを化学反応させて該反応炉内を通る光ファイバの
表面にハーメチック膜を被覆してハーメチック被覆光フ
ァイバを製造するハーメチック被覆光ファイバの製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hermetic coating for producing a hermetically coated optical fiber by chemically reacting a raw material gas supplied into a reactor to coat a surface of an optical fiber passing through the reactor with a hermetic film. The present invention relates to a method for manufacturing an optical fiber.

【0002】[0002]

【従来の技術】従来のこの種のハーメチック被覆光ファ
イバの製造方法としては、線引き直後の光ファイバの表
面に熱CVD法により 200〜1000オングストロームの無
機材料層からなるハーメチック膜を被覆してハーメチッ
ク被覆光ファイバを製造することが知られている。
2. Description of the Related Art As a conventional method for manufacturing a hermetically coated optical fiber of this type, the surface of an optical fiber immediately after drawing is coated with a hermetic film made of an inorganic material layer of 200 to 1000 angstroms by a thermal CVD method. It is known to manufacture optical fibers.

【0003】このような製造方法により得られるハーメ
チック膜としては、炭素或いは炭素化合物からなるカー
ボン膜が良く知られている。カーボン膜は、原料ガスを
熱分解させることにより光ファイバの表面に形成する。
このようなカーボン膜は、H2 の侵入をほぼ完全に防ぐ
ため、石英ガラスに見られるH2 Oに起因する応力腐食
が起こらず、当然疲労特性も著しく改善される。更に、
カーボン被覆光ファイバの初期強度も通常の光ファイバ
と同等或いはそれ以上の強度のものが製造可能となって
おり、現在は通信線路や光学部品等の分野で使われ始め
ている。
As a hermetic film obtained by such a manufacturing method, a carbon film made of carbon or a carbon compound is well known. The carbon film is formed on the surface of the optical fiber by thermally decomposing the raw material gas.
Since such a carbon film almost completely prevents H 2 from penetrating, stress corrosion due to H 2 O found in quartz glass does not occur, and naturally fatigue characteristics are remarkably improved. Furthermore,
Carbon-coated optical fibers having an initial strength equal to or higher than that of ordinary optical fibers can be manufactured, and are now being used in fields such as communication lines and optical components.

【0004】図10及び図11は、従来のこの種のハー
メチック被覆光ファイバの製造方法を実施する装置の概
略構成を示したものである。
FIG. 10 and FIG. 11 show a schematic structure of an apparatus for carrying out the conventional method for manufacturing a hermetically coated optical fiber of this type.

【0005】即ち、従来は、カーボンヒータの如きヒー
タ1を有する線引き炉2内に、例えばコア部にGeO2
をドーパントとして添加した光ファイバ母材3の先端側
の部分を配置し、該ヒータ1で加熱溶融された光ファイ
バ母材3の先端部から例えば外径125 μmの光ファイバ
4aを線引きし、得られた光ファイバ4aを反応炉5に
通す。
That is, conventionally, GeO 2 is provided in a drawing furnace 2 having a heater 1 such as a carbon heater, for example, in a core portion.
A portion of the optical fiber preform 3 to which is added as a dopant is disposed on the tip side, and an optical fiber 4a having an outer diameter of 125 μm is drawn from the tip of the optical fiber preform 3 heated and melted by the heater 1 to obtain The optical fiber 4a thus obtained is passed through the reaction furnace 5.

【0006】反応炉5内には、その上下に仕切り体6
a,6bを設けてシール室7a,7bを構成し、これら
シール室7a,7bには上部シールガス供給口8a,下
部シールガス供給口8bからArガスの如きシールガス
を供給し、上下の光ファイバ通過孔9a,10a、9
b,10bからの外気の侵入を防止する。仕切り体6a
の直下に設けた原料ガス供給口11からは反応炉5内に
アセチレン等の炭化水素ガスからなる原料ガスを供給
し、該反応炉5内の中心を通る光ファイバ4aに沿って
層流として該原料ガスを流す。このとき光ファイバ4a
は線引き直後で加熱状態にあり、この熱で原料ガスが化
学反応を起こして(ハーメチック膜がカーボン膜の場合
には原料ガスが熱分解されて)該反応炉5内を通る光フ
ァイバ4aの表面にハーメチック膜が被覆されてハーメ
チック被覆光ファイバ4bとなる。反応炉5内を下降し
たガスは、仕切り体6bの直上に設けた排気口12から
外部に排気する。
A partition 6 is provided above and below the reactor 5.
a and 6b are provided to form the seal chambers 7a and 7b, and a seal gas such as Ar gas is supplied to the seal chambers 7a and 7b from the upper seal gas supply port 8a and the lower seal gas supply port 8b, respectively. Fiber passage holes 9a, 10a, 9
Prevents outside air from entering b and 10b. Partition body 6a
A raw material gas consisting of a hydrocarbon gas such as acetylene is supplied into the reaction furnace 5 from the raw material gas supply port 11 provided immediately below the reactor, and the raw material gas is supplied as a laminar flow along the optical fiber 4a passing through the center of the reaction furnace 5. Flow the source gas. At this time, the optical fiber 4a
Is in a heating state immediately after drawing, and the heat causes the raw material gas to undergo a chemical reaction (in the case where the hermetic film is a carbon film, the raw material gas is thermally decomposed) and the surface of the optical fiber 4a passing through the reaction furnace 5. Is hermetically coated with a hermetic film to form a hermetically coated optical fiber 4b. The gas descending in the reaction furnace 5 is exhausted to the outside through an exhaust port 12 provided directly above the partition 6b.

【0007】反応炉5で得られたハーメチック被覆光フ
ァイバ4bは、外径測定器13で外径を測定した後、樹
脂被覆器14に通してその表面に樹脂を被覆し、例えば
外径が250 μmの光ファイバ心線4cとなる。
The hermetically coated optical fiber 4b obtained in the reaction furnace 5 has its outer diameter measured by an outer diameter measuring device 13 and then passed through a resin coater 14 to coat its surface with a resin, for example, having an outer diameter of 250. It becomes the optical fiber core wire 4c of μm.

【0008】得られた光ファイバ心線4cは、樹脂硬化
炉15に通して被覆樹脂を硬化させた後、外径測定器1
6で外径を測定し、しかる後、引取りキャプスタン17
で引取りつつ図示しない巻取り機で巻き取る。
The optical fiber core wire 4c thus obtained is passed through a resin curing furnace 15 to cure the coating resin, and then the outer diameter measuring device 1
Measure the outer diameter with 6 and then take off the capstan 17
While taking it up, it is wound up by a winding machine (not shown).

【0009】[0009]

【発明が解決しようとする課題】このような従来のハー
メチック被覆光ファイバの製造方法では、原料ガスは反
応炉5内で光ファイバ4aの表面に沿って層流として流
れ、その過程で化学反応が起こり光ファイバ4aの表面
にハーメチック膜が形成されるので、下流側になるにつ
れて原料ガスの濃度が低下してしまうことになる。原料
ガスの濃度が低下している光ファイバ4aの箇所では、
反応速度が低下し、反応炉5内の下流側ではハーメチッ
ク膜の成膜速度が著しく低下する問題点があった。ま
た、従来の方法では、反応炉5内に供給される原料ガス
のうちハーメチック膜の成膜に利用されるのは、光ファ
イバ4aの近傍に流れるガスのみであり、他の大部分の
原料ガスは排気ガスとして反応炉5の外に排出されてし
まい、原料ガスの利用効率が悪い問題点があった。更
に、従来の方法では、上記のような理由でハーメチック
被覆光ファイバ4bの表面のハーメチック膜の膜厚が所
定の厚みにできない場合には、多量の原料ガスを反応炉
5内に供給するか、或いは該反応炉5の長さを長くして
いたが、前者では原料ガスの利用効率がますます悪化す
る問題点があり、後者では装置が大型化する問題点があ
った。
In such a conventional method for manufacturing a hermetically coated optical fiber, the raw material gas flows as a laminar flow along the surface of the optical fiber 4a in the reaction furnace 5, and a chemical reaction occurs in the process. Since a hermetic film is formed on the surface of the optical fiber 4a, the concentration of the raw material gas will decrease toward the downstream side. At the part of the optical fiber 4a where the concentration of the raw material gas is lowered,
There is a problem that the reaction rate decreases, and the film forming rate of the hermetic film significantly decreases on the downstream side in the reaction furnace 5. Further, in the conventional method, of the source gases supplied into the reaction furnace 5, only the gas flowing near the optical fiber 4a is used for forming the hermetic film, and most of the other source gases are used. Was exhausted as an exhaust gas to the outside of the reaction furnace 5, and there was a problem that the utilization efficiency of the raw material gas was poor. Further, in the conventional method, if the thickness of the hermetic film on the surface of the hermetically coated optical fiber 4b cannot be made to be a predetermined thickness for the above reason, a large amount of source gas is supplied into the reaction furnace 5, or Alternatively, although the length of the reaction furnace 5 was increased, the former had a problem that the utilization efficiency of the raw material gas was further deteriorated, and the latter had a problem that the apparatus was enlarged.

【0010】本発明の目的は、反応炉内の光ファイバの
表面での原料ガス濃度の低下を防止できるハーメチック
被覆光ファイバの製造方法を提供することにある。
It is an object of the present invention to provide a method for producing a hermetically coated optical fiber which can prevent the concentration of the raw material gas on the surface of the optical fiber in the reaction furnace from decreasing.

【0011】本発明の他の目的は、例えば不活性ガスの
如き消費する手段を用いずに反応炉内の光ファイバの表
面での原料ガス濃度の低下を防止できるハーメチック被
覆光ファイバの製造方法を提供することにある。
Another object of the present invention is to provide a method for producing a hermetically coated optical fiber which can prevent a decrease in the raw material gas concentration on the surface of the optical fiber in the reaction furnace without using a consuming means such as an inert gas. To provide.

【0012】本発明の他の目的は、ガスを用いて反応炉
内の光ファイバの表面での原料ガス濃度の低下を防止で
きるハーメチック被覆光ファイバの製造方法を提供する
ことにある。
Another object of the present invention is to provide a method for producing a hermetically coated optical fiber which can prevent a decrease in the raw material gas concentration on the surface of the optical fiber in a reaction furnace by using gas.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成する本
発明の手段を説明すると、次の通りである。
The means of the present invention for achieving the above object will be described below.

【0014】本発明は、光ファイバを反応炉に通しつ
つ、該反応炉内に供給する原料ガスを化学反応させて前
記光ファイバの表面にハーメチック膜を被覆してハーメ
チック被覆光ファイバを製造するハーメチック被覆光フ
ァイバの製造方法を対象としている。
The present invention is a hermetic for producing a hermetically coated optical fiber by causing a raw material gas supplied into the reactor to undergo a chemical reaction to coat the surface of the optical fiber with a hermetic film while passing the optical fiber through the reactor. The target is a method of manufacturing a coated optical fiber.

【0015】本発明は、このようなハーメチック被覆光
ファイバの製造方法において、反応炉内で少なくとも光
ファイバの表面近傍の原料ガスの流れを乱すことを特徴
とする。
The present invention is characterized in that, in such a method for producing a hermetically coated optical fiber, the flow of the source gas at least near the surface of the optical fiber is disturbed in the reaction furnace.

【0016】また本発明は、このようなハーメチック被
覆光ファイバの製造方法において、反応炉内に例えば原
料ガスの流れ方向に対し交差する向きに突出する原料ガ
ス流れ乱し具を設け、該原料ガス流れ乱し具により少な
くとも光ファイバの表面近傍の原料ガスの流れを乱すこ
とを特徴とする。
The present invention also provides a method for manufacturing a hermetically coated optical fiber as described above, wherein a raw material gas flow disturbing member is provided in the reaction furnace so as to project in a direction intersecting the flow direction of the raw material gas. It is characterized in that the flow disturbing device disturbs the flow of the raw material gas at least near the surface of the optical fiber.

【0017】この場合、原料ガス流れ乱し具としては、
リング状円盤よりなり、その中心にファイバ貫通孔が設
けられ、該ファイバ貫通孔の周囲の該原料ガス流れ乱し
具に複数のガス通過孔が設けられた構造のもの、反応炉
内に突出する突起物や凹凸からなるもの、反応炉の内径
を長手方向にテーパ状に小さく変化させて形勢したり、
ファン等の撹拌具等で構成することができる。
In this case, as the raw material gas flow disturbing device,
A ring-shaped disk, a fiber through hole is provided in the center thereof, and a plurality of gas passage holes are provided in the raw material gas flow disturbing device around the fiber through hole, which projects into the reactor. Thing consisting of protrusions and irregularities, or by changing the inner diameter of the reaction furnace to a small taper in the longitudinal direction,
It can be configured by a stirring tool such as a fan.

【0018】また本発明は、反応炉の長手方向の途中に
設けたガス吹き込み部から該反応炉内にガスを吹き込む
ことにより、少なくとも光ファイバの表面近傍の原料ガ
スの流れを乱すことを特徴とする。
Further, the present invention is characterized in that the gas is blown into the reaction furnace from a gas blowing portion provided in the longitudinal direction of the reaction furnace to disturb the flow of the raw material gas at least near the surface of the optical fiber. To do.

【0019】この場合、ガスとしては、例えばArガス
や窒素ガスの如き不活性ガス、或いは原料ガスを用い
る。
In this case, as the gas, an inert gas such as Ar gas or nitrogen gas, or a raw material gas is used.

【0020】また本発明は、反応炉に振動体を設け、該
振動体の振動により少なくとも光ファイバの表面近傍の
原料ガスの流れを乱すことを特徴とする。
Further, the present invention is characterized in that a vibrating body is provided in the reaction furnace, and the flow of the raw material gas at least near the surface of the optical fiber is disturbed by the vibration of the vibrating body.

【0021】[0021]

【作用】本発明のように、反応炉内で少なくとも光ファ
イバの表面近傍の原料ガスの流れを乱すと、光ファイバ
の表面近傍での原料ガス濃度の低下を防止できる。従っ
て、反応速度が速くなり、成膜速度の低下を防止でき、
短時間で効率よくハーメチック被覆光ファイバを製造で
きる。また、本発明によれば、原料ガスの利用効率を高
めることができる。更に、本発明によれば、反応炉の大
型化を最小限に止めることができる。
When the flow of the source gas at least near the surface of the optical fiber is disturbed in the reaction furnace as in the present invention, the concentration of the source gas near the surface of the optical fiber can be prevented from lowering. Therefore, the reaction speed becomes faster, and it is possible to prevent the film formation speed from decreasing.
A hermetically coated optical fiber can be manufactured efficiently in a short time. Further, according to the present invention, the utilization efficiency of the raw material gas can be improved. Furthermore, according to the present invention, it is possible to minimize the size increase of the reaction furnace.

【0022】また、反応炉内に例えば原料ガスの流れ方
向に対し交差する向きに突出する原料ガス流れ乱し具を
設けて、該原料ガス流れ乱し具により少なくとも光ファ
イバの表面近傍の原料ガスの流れを乱すと、ガス等の消
費する手段を用いずに反応炉内の光ファイバの表面での
原料ガス濃度の低下を防止できる。ガス等の消費する手
段を用いないと、低コストでハーメチック被覆光ファイ
バの製造を行うことができる。
Further, for example, a raw material gas flow disturbing tool which projects in a direction intersecting with the flow direction of the raw material gas is provided in the reaction furnace, and the raw material gas flow disturbing tool at least near the surface of the optical fiber is used. If the flow is disturbed, it is possible to prevent the concentration of the raw material gas on the surface of the optical fiber in the reaction furnace from decreasing without using a means for consuming the gas or the like. If no means for consuming gas or the like is used, the hermetically coated optical fiber can be manufactured at low cost.

【0023】原料ガス流れ乱し具として、リング状円盤
よりなり、その中心にファイバ貫通孔が設けられ、該フ
ァイバ貫通孔の周囲の該原料ガス流れ乱し具に複数のガ
ス通過孔が設けられた構造のものを用いると、原料ガス
流れを可及的に阻害しないようにして少なくとも光ファ
イバの表面近傍の原料ガスの流れを乱すことができる。
As the raw material gas flow disturbing device, a ring-shaped disk is provided, a fiber through hole is provided at the center thereof, and the raw material gas flow disturbing device around the fiber through hole is provided with a plurality of gas passing holes. With the structure described above, the flow of the raw material gas can be disturbed at least in the vicinity of the surface of the optical fiber so as not to obstruct the flow of the raw material gas as much as possible.

【0024】原料ガス流れ乱し具として、反応炉内に突
出する突起物や凹凸からなるものを用いると、簡単に原
料ガス流れ乱し具を構成できる。
The raw material gas flow disturbing device can be easily constructed by using a protrusion or projections and projections protruding into the reaction furnace as the raw material gas flow disturbing device.

【0025】原料ガス流れ乱し具として、反応炉の内径
を長手方向にテーパ状に小さく変化させて形勢したもの
を用いると、反応炉の構造を複雑化しないで実施でき
る。
If the material for disturbing the flow of the raw material gas is formed by tapering the inner diameter of the reaction furnace in the longitudinal direction, it can be carried out without complicating the structure of the reaction furnace.

【0026】原料ガス流れ乱し具として、ファン等の撹
拌具を用いると、撹拌具の動きを可変することにより原
料ガスの流れの乱だし加減を適宜選択できる。
When a stirring tool such as a fan is used as the raw material gas flow disturbing tool, the disturbance of the flow of the raw material gas can be appropriately selected by changing the movement of the stirring tool.

【0027】また、反応炉の長手方向の途中に設けたガ
ス吹き込み部から該反応炉内にガスを吹き込むことによ
り少なくとも光ファイバの表面近傍の原料ガスの流れを
乱すと、ガスを用いて光ファイバの表面近傍の原料ガス
の流れを乱すことができる。この場合には、反応炉内に
突出する原料ガス流れ乱し具等を用いないので、該原料
ガス流れ乱し具等に反応生成物が付着することによる清
掃の問題点を回避してハーメチック被覆光ファイバの製
造を行うことができる。
Further, when the flow of the raw material gas at least near the surface of the optical fiber is disturbed by blowing the gas into the reaction furnace from the gas blowing portion provided in the longitudinal direction of the reaction furnace, the gas is used for the optical fiber. The flow of the raw material gas near the surface of can be disturbed. In this case, since the tool for disturbing the raw material gas flow protruding into the reactor is not used, the problem of cleaning due to the adherence of the reaction product to the disturber for the raw material gas flow is avoided and the hermetic coating is performed. An optical fiber can be manufactured.

【0028】この場合、ガス吹き込み部から該反応炉内
に吹き込むガスとして不活性ガスを用いると、原料ガス
と交じり合っても反応が起こらず、ハーメチック膜の形
成に悪影響を及ぼさずに光ファイバの表面近傍での原料
ガス濃度の低下を防止できる。
In this case, if an inert gas is used as the gas blown into the reaction furnace from the gas blowing section, no reaction occurs even if mixed with the raw material gas, and the formation of the hermetic film is not adversely affected. It is possible to prevent the concentration of the raw material gas near the surface from decreasing.

【0029】また、ガス吹き込み部から該反応炉内に吹
き込むガスとして原料ガスを用いると、光ファイバの表
面近傍に新たに濃度の高い原料ガスを補給でき、不活性
ガスを用いる場合よりも原料ガス濃度の低下を防止しつ
つ、ハーメチック膜の形成を一層効率よく行える。
Further, when the raw material gas is used as the gas blown into the reaction furnace from the gas blowing portion, the raw material gas having a high concentration can be newly replenished in the vicinity of the surface of the optical fiber, and the raw material gas can be supplied as compared with the case of using the inert gas. The hermetic film can be formed more efficiently while preventing the concentration from decreasing.

【0030】また、反応炉に振動体を設け、該振動体の
振動により少なくとも光ファイバの表面近傍の原料ガス
の流れを乱すと、光ファイバの表面近傍での原料ガス濃
度の低下を防止できる。従って、反応速度が速くなり、
成膜速度の低下を防止でき、短時間で効率よくハーメチ
ック被覆光ファイバを製造できる。この場合、超音波振
動子の振動数を適宜に選定することにより、効率よく反
応炉内の原料ガスを撹拌することができる。
Further, by providing a vibrating body in the reaction furnace and disturbing the flow of the raw material gas at least near the surface of the optical fiber by the vibration of the vibrating body, it is possible to prevent the concentration of the raw material gas near the surface of the optical fiber from lowering. Therefore, the reaction speed becomes faster,
It is possible to prevent the film formation rate from decreasing, and it is possible to efficiently manufacture the hermetically coated optical fiber in a short time. In this case, by appropriately selecting the frequency of the ultrasonic vibrator, the raw material gas in the reaction furnace can be efficiently stirred.

【0031】このような振動体の振動によるハーメチッ
ク被覆光ファイバの製造方法は、原料ガス流れ乱し具を
用いたり、ガス吹き込み部から反応炉内にガスを吹き込
んだりして光ファイバの表面近傍の原料ガスの流れを乱
す方法と併用すると、これら原料ガス流れ乱し具を用い
たり、ガス吹き込み部から反応炉内にガスを吹き込んだ
りして光ファイバの表面近傍の原料ガスの流れを乱す方
法を単独で行う場合よりもハーメチック被覆光ファイバ
の製造方法をより効率よく実施できる。また、ガス吹き
込み部から反応炉内にガスを吹き込んで光ファイバの表
面近傍の原料ガスの流れを乱す方法で不活性ガスを使用
している場合には、不活性ガスの使用量を減らすことが
できる。
In the method for manufacturing a hermetically coated optical fiber by vibrating the vibrating body, a raw material gas flow disturbing tool is used, or gas is blown into the reaction furnace from the gas blowing part to cause the gas near the surface of the optical fiber. When used in combination with the method of disturbing the flow of the raw material gas, these raw gas flow disruptors are used, or a method of disturbing the flow of the raw material gas near the surface of the optical fiber by blowing gas from the gas blowing part into the reaction furnace is used. The method for producing a hermetically coated optical fiber can be carried out more efficiently than when it is performed alone. In addition, if an inert gas is used by the method of disturbing the flow of the raw material gas in the vicinity of the surface of the optical fiber by injecting the gas into the reaction furnace from the gas blowing part, it is possible to reduce the amount of the inert gas used. it can.

【0032】[0032]

【実施例】以下、本発明の実施例を図を参照して詳細に
説明する。なお、前述した図11と対応する部分には、
同一符号を付けて示している。各実施例においては、発
明の要部をなすハーメチック膜の成膜を行う反応炉5の
構成に付いて示している。その他の構成は、前述した図
10と同様になっている。
Embodiments of the present invention will now be described in detail with reference to the drawings. In addition, in the portion corresponding to FIG. 11 described above,
The same reference numerals are given. In each of the embodiments, the structure of the reaction furnace 5 for forming a hermetic film, which constitutes the essential part of the invention, is shown. Other configurations are similar to those in FIG. 10 described above.

【0033】図1及び図2は、本発明に係るハーメチッ
ク被覆光ファイバの製造方法を実施する装置の第1実施
例を示したものである。本実施例のハーメチック被覆光
ファイバの製造装置で用いている反応炉5は、上部の光
ファイバ通過孔10aから排気口12までの長さが250
mmあり、該反応炉5内には上部の光ファイバ通過孔10
aから150 mmの位置に原料ガスの流れ方向に対し交差す
る向きに突出するリング状円盤よりなる原料ガス流れ乱
し具18が設けられている。該リング状円盤よりなる原
料ガス流れ乱し具18は、直径が30mmで、その中心に直
径が10mmのファイバ貫通孔18aが設けられ、該ファイ
バ貫通孔18aの周囲の原料ガス流れ乱し具18には直
径が8 mmのガス通過孔18bが8個設けられた構造にな
っている。
FIGS. 1 and 2 show a first embodiment of an apparatus for carrying out the method for manufacturing a hermetically coated optical fiber according to the present invention. The reactor 5 used in the hermetically coated optical fiber manufacturing apparatus of this embodiment has a length from the upper optical fiber passage hole 10a to the exhaust port 12 of 250.
mm, and the upper optical fiber passage hole 10 is provided in the reactor 5.
At a position 150 mm from a, there is provided a raw material gas flow disturbing device 18 made of a ring-shaped disk protruding in a direction intersecting with the flow direction of the raw material gas. The raw material gas flow disturbing device 18 made of the ring-shaped disk has a diameter of 30 mm, a fiber through hole 18a having a diameter of 10 mm is provided in the center thereof, and the raw material gas flow disturbing device 18 around the fiber through hole 18a is provided. Has a structure in which eight gas passage holes 18b having a diameter of 8 mm are provided.

【0034】このような反応炉5を用いたハーメチック
被覆光ファイバの製造装置でハーメチック被覆光ファイ
バの製造を行うに際し、該反応炉5内の軸心を貫通する
光ファイバ4aに沿って上部から下部に層流として原料
ガスを流す。該原料ガスは流下する過程で該原料ガス流
れ乱し具18に当たって少なくとも光ファイバ4aの表
面近傍の該原料ガスの流れを乱す。
When the hermetically coated optical fiber is manufactured by the apparatus for manufacturing the hermetically coated optical fiber using the reactor 5, the upper part to the lower part along the optical fiber 4a penetrating the axial center of the reactor 5 are manufactured. A raw material gas is flowed as a laminar flow. The raw material gas hits the raw material gas flow disturbing tool 18 in the course of flowing down and disturbs the flow of the raw material gas at least near the surface of the optical fiber 4a.

【0035】これにより、即ち原料ガスを撹拌すること
により、光ファイバ4aの表面近傍での原料ガス濃度の
低下を防止できる。従って、反応速度が速くなり、成膜
速度の低下を防止でき、短時間で効率よくハーメチック
被覆光ファイバ4bを製造できる。特に、本実施例のよ
うな原料ガス流れ乱し具18を用いた場合には、後述す
るガス等の消費する手段を用いずに反応炉5内の光ファ
イバ4aの表面での原料ガス濃度の低下を防止できる。
このため、低コストでハーメチック被覆光ファイバの製
造を行うことができる。
With this, that is, by stirring the raw material gas, it is possible to prevent the concentration of the raw material gas near the surface of the optical fiber 4a from decreasing. Therefore, the reaction speed becomes faster, the film formation speed can be prevented from lowering, and the hermetically coated optical fiber 4b can be efficiently manufactured in a short time. In particular, when the raw material gas flow disturbing tool 18 as in this embodiment is used, the raw material gas concentration on the surface of the optical fiber 4a in the reaction furnace 5 can be changed without using a means for consuming the gas described later. It can prevent the deterioration.
Therefore, the hermetically coated optical fiber can be manufactured at low cost.

【0036】この第1実施例の製造条件と特性試験結果
を表1に示す。
Table 1 shows the manufacturing conditions and characteristic test results of the first embodiment.

【0037】図3及び図4は、本発明に係るハーメチッ
ク被覆光ファイバの製造方法を実施する装置の第2実施
例を示したものである。本実施例のハーメチック被覆光
ファイバの製造装置で用いている反応炉5も、上部の光
ファイバ通過孔10aから排気口12までの長さが250
mmあり、該反応炉5内には上部の光ファイバ通過孔10
aから150 mmの位置に、周方向の90°間隔で4個のガス
吹き込み部19が設けられている。これらガス吹き込み
部19は、反応炉5の内周に接線方向に、しかも斜め下
向きにガスを吹き込むように設けられている。
FIGS. 3 and 4 show a second embodiment of an apparatus for carrying out the method for manufacturing a hermetically coated optical fiber according to the present invention. The reaction furnace 5 used in the hermetically coated optical fiber manufacturing apparatus of this embodiment also has a length from the upper optical fiber passage hole 10a to the exhaust port 12 of 250.
mm, and the upper optical fiber passage hole 10 is provided in the reactor 5.
Four gas blowing portions 19 are provided at a position of 150 mm from a at intervals of 90 ° in the circumferential direction. These gas blowing portions 19 are provided so as to blow gas into the inner circumference of the reaction furnace 5 in a tangential direction and obliquely downward.

【0038】このような反応炉5を用いたハーメチック
被覆光ファイバの製造装置でハーメチック被覆光ファイ
バの製造を行うに際し、該反応炉5内の軸心を貫通する
光ファイバ4aに沿って上部から下部に層流として原料
ガスを流す。該原料ガスが流下する過程で、各ガス吹き
込み部19から該反応炉5の内周に接線方向に、しかも
斜め下向きに不活性ガスの一種であるArガスを例えば
0.5 l/min の割合で吹き込み、該Arガスにより少なく
とも光ファイバ4aの表面近傍の原料ガスの流れを乱
す。
When the hermetically coated optical fiber is manufactured by the apparatus for manufacturing the hermetically coated optical fiber using the reactor 5, the upper part to the lower part along the optical fiber 4a penetrating the axial center of the reactor 5 are manufactured. A raw material gas is flowed as a laminar flow. During the process in which the source gas flows down, Ar gas, which is a kind of inert gas, is tangentially and obliquely downwardly directed from each gas blowing portion 19 to the inner circumference of the reaction furnace 5, for example.
The Ar gas is blown in at a rate of 0.5 l / min to disturb the flow of the raw material gas at least near the surface of the optical fiber 4a.

【0039】これにより原料ガスが撹拌されて、光ファ
イバ4aの表面近傍での原料ガス濃度の低下を防止でき
る。従って、反応速度が速くなり、成膜速度の低下を防
止でき、短時間で効率よくハーメチック被覆光ファイバ
4bを製造できる。特に、本実施例のようなガス吹き込
み部19を用いた場合には、反応炉5内に突出する原料
ガス流れ乱し具18等を用いないので、該原料ガス流れ
乱し具18等に反応生成物が付着することによる清掃の
問題点を回避してハーメチック被覆光ファイバ4bの製
造を行うことができる。
As a result, the raw material gas is agitated to prevent the concentration of the raw material gas near the surface of the optical fiber 4a from decreasing. Therefore, the reaction speed becomes faster, the film formation speed can be prevented from lowering, and the hermetically coated optical fiber 4b can be efficiently manufactured in a short time. In particular, when the gas blowing section 19 as in this embodiment is used, the raw material gas flow disturbing tool 18 or the like protruding into the reaction furnace 5 is not used, so that the raw material gas flow disturbing tool 18 or the like reacts. The hermetically coated optical fiber 4b can be manufactured while avoiding the problem of cleaning due to the adhesion of the product.

【0040】この第2実施例の製造条件と特性試験結果
を表1に示す。
Table 1 shows the manufacturing conditions and the characteristic test results of the second embodiment.

【0041】図5〜図7は、本発明に係るハーメチック
被覆光ファイバの製造方法を実施する装置の第3実施例
を示したものである。本実施例のハーメチック被覆光フ
ァイバの製造装置で用いている反応炉5は、図1及び図
2に示す第1実施例と、図3及び図4に示す第2実施例
とを組み合わせた例を示したものである。この場合、ガ
ス吹き込み部19が原料ガス流れ乱し具18より上流側
(上側)に設けられている。
5 to 7 show a third embodiment of an apparatus for carrying out the method for manufacturing a hermetically coated optical fiber according to the present invention. The reactor 5 used in the hermetically coated optical fiber manufacturing apparatus of this embodiment is an example in which the first embodiment shown in FIGS. 1 and 2 and the second embodiment shown in FIGS. 3 and 4 are combined. It is shown. In this case, the gas blowing portion 19 is provided on the upstream side (upper side) of the raw material gas flow disturbing tool 18.

【0042】このように図1及び図2に示す第1実施例
と、図3及び図4に示す第2実施例とを組み合わせる
と、光ファイバ4aの表面近傍での原料ガス濃度の低下
をより一層防止できる。
Thus, by combining the first embodiment shown in FIGS. 1 and 2 with the second embodiment shown in FIGS. 3 and 4, it is possible to further reduce the concentration of the raw material gas near the surface of the optical fiber 4a. It can be prevented further.

【0043】特にこのようにガス吹き込み部19を原料
ガス流れ乱し具18より上流側に設け、該ガス吹き込み
部19から反応炉5の内周に接線方向に、しかも斜め下
向きに不活性ガスを吹き込むと、反応炉5の内周に沿っ
て渦をまいて下降する不活性ガスの一部が原料ガス流れ
乱し具18の上面及び各孔18a,18bの表面を洗う
ので、該原料ガス流れ乱し具18に反応生成物が付着す
るのを防止でき、該原料ガス流れ乱し具18の清掃回数
を減らすことができる。
In particular, the gas blowing portion 19 is provided upstream of the raw material gas flow disturbing tool 18 in this manner, and the inert gas is tangentially and obliquely downwardly directed from the gas blowing portion 19 to the inner circumference of the reaction furnace 5. When blown, a part of the inert gas that swirls and descends along the inner circumference of the reaction furnace 5 cleans the upper surface of the raw material gas flow disturbing tool 18 and the surfaces of the holes 18a and 18b. It is possible to prevent reaction products from adhering to the disturbing tool 18, and reduce the number of times of cleaning the raw material gas flow disturbing tool 18.

【0044】図8は、本発明に係るハーメチック被覆光
ファイバの製造方法を実施する装置の第4実施例を示し
たものである。本実施例のハーメチック被覆光ファイバ
の製造装置において用いている反応炉5も、上部の光フ
ァイバ通過孔10aから排気口12までの長さが250 mm
あり、該反応炉5内には上部の光ファイバ通過孔10a
から150 mmの位置に、1個のガス吹き込み部20が設け
られている。該ガス吹き込み部20は、反応炉5を通過
する光ファイバ4aにガスを吹き付けるように設けられ
ている。
FIG. 8 shows a fourth embodiment of an apparatus for carrying out the method for manufacturing a hermetically coated optical fiber according to the present invention. Also in the reactor 5 used in the apparatus for manufacturing the hermetically coated optical fiber of the present embodiment, the length from the upper optical fiber passage hole 10a to the exhaust port 12 is 250 mm.
There is an optical fiber passage hole 10a in the upper part of the reactor 5.
One gas blowing part 20 is provided at a position of 150 mm from. The gas blowing section 20 is provided so as to blow gas onto the optical fiber 4a passing through the reaction furnace 5.

【0045】このような反応炉5を用いたハーメチック
被覆光ファイバの製造装置でハーメチック被覆光ファイ
バの製造を行うに際し、該反応炉5を通過する光ファイ
バ4aに反応炉5内の軸心を貫通する光ファイバ4aに
沿って上部から下部に層流として原料ガスを流す。該原
料ガスが流下する過程で、ガス吹き込み部20から反応
炉5内に光ファイバ4aに向けて原料ガスを吹き込み、
該原料ガスにより少なくとも光ファイバ4aの表面近傍
の原料ガスの流れを乱す。
When the hermetically coated optical fiber is manufactured by the hermetically coated optical fiber manufacturing apparatus using the reaction furnace 5, the optical fiber 4a passing through the reactor 5 penetrates the axial center of the reactor 5. The raw material gas is made to flow as a laminar flow from the upper part to the lower part along the optical fiber 4a. In the process of flowing the raw material gas, the raw material gas is blown into the reaction furnace 5 from the gas blowing portion 20 toward the optical fiber 4a,
The raw material gas disturbs the flow of the raw material gas at least near the surface of the optical fiber 4a.

【0046】これにより光ファイバ4aの表面近傍に濃
度の高い原料ガスが供給され、該光ファイバ4aの表面
近傍での原料ガス濃度の低下を防止できる。特に、この
場合には新たにガス吹き込み部20から濃度の高い原料
ガスが吹き込まれるので、光ファイバ4aの表面近傍で
の原料ガス濃度が上がる。従って、不活性ガスであるA
rガスを吹き込む第2実施例より反応速度が速くなり、
第2実施例より短い時間で効率よくハーメチック被覆光
ファイバ4bを製造できる。また、本実施例の場合も、
反応炉5内に突出する原料ガス流れ乱し具18等を用い
ないので該原料ガス流れ乱し具18等に反応生成物が付
着することによる清掃の問題点を回避してハーメチック
被覆光ファイバ4bの製造を行うことができる。
As a result, the source gas having a high concentration is supplied near the surface of the optical fiber 4a, and the concentration of the source gas near the surface of the optical fiber 4a can be prevented from lowering. Particularly, in this case, since the raw material gas having a high concentration is newly blown from the gas blowing portion 20, the raw material gas concentration near the surface of the optical fiber 4a is increased. Therefore, A which is an inert gas
The reaction rate is faster than in the second embodiment in which r gas is blown,
The hermetically coated optical fiber 4b can be manufactured efficiently in a shorter time than in the second embodiment. Also in the case of this embodiment,
Since the raw material gas flow disturbing tool 18 or the like protruding into the reaction furnace 5 is not used, the hermetically coated optical fiber 4b can be avoided by avoiding the problem of cleaning caused by the reaction products adhering to the raw material gas flow disturbing tool 18 or the like. Can be manufactured.

【0047】この第4実施例の製造条件と特性試験結果
を表1に示す。
Table 1 shows the manufacturing conditions and characteristic test results of the fourth embodiment.

【0048】この場合も、第3実施例と同様に、第1実
施例と組み合わせて実施することができる。このように
すると、上流のガス吹き込み部19から原料ガスが吹き
込まれるので、第3実施例より効率よくハーメチック被
覆光ファイバ4bの製造を行うことができる。
In this case as well, similar to the third embodiment, it can be implemented in combination with the first embodiment. By doing so, the raw material gas is blown from the upstream gas blowing portion 19, so that the hermetically coated optical fiber 4b can be manufactured more efficiently than in the third embodiment.

【0049】図9は、本発明に係るハーメチック被覆光
ファイバの製造方法を実施する装置の第5実施例を示し
たものである。本実施例のハーメチック被覆光ファイバ
の製造装置の反応炉5は、その長手方向の途中の外壁に
振動体として超音波振動子22が取り付けられている。
FIG. 9 shows a fifth embodiment of an apparatus for carrying out the method for manufacturing a hermetically coated optical fiber according to the present invention. In the reactor 5 of the apparatus for manufacturing a hermetically coated optical fiber according to the present embodiment, an ultrasonic oscillator 22 is attached as an oscillator to the outer wall in the middle in the longitudinal direction.

【0050】このような反応炉5を用いたハーメチック
被覆光ファイバの製造装置でハーメチック被覆光ファイ
バの製造を行うに際し、該反応炉5を通過する光ファイ
バ4aに反応炉5内の軸心を貫通する光ファイバ4aに
沿って上部から下部に層流として原料ガスを流す。この
際、超音波振動子22の作動により、反応炉5を超音波
振動させ該反応炉5内の原料ガスを撹拌することによ
り、光ファイバ4aの表面近傍で層流となって流れてい
る原料ガスの濃度の低い気相部分に、その外側の濃度の
高い気相部分から原料ガスを供給する。
When a hermetically coated optical fiber is manufactured by the apparatus for manufacturing a hermetically coated optical fiber using such a reactor 5, the optical fiber 4a passing through the reactor 5 is penetrated through the axial center of the reactor 5. The raw material gas is made to flow as a laminar flow from the upper part to the lower part along the optical fiber 4a. At this time, by operating the ultrasonic oscillator 22 to ultrasonically vibrate the reaction furnace 5 and stir the raw material gas in the reaction furnace 5, the raw material flowing in a laminar flow near the surface of the optical fiber 4a. The raw material gas is supplied to the gas phase portion having a low gas concentration from the gas phase portion having a high concentration outside thereof.

【0051】これにより原料ガスを撹拌し、光ファイバ
4aの表面近傍での原料ガス濃度の低下を防止できる。
特に、この場合には超音波振動子22の振動数を適宜に
選定することにより、効率よく反応炉5内の原料ガスを
撹拌することができる。
As a result, the raw material gas can be agitated to prevent a decrease in the raw material gas concentration near the surface of the optical fiber 4a.
Particularly, in this case, by appropriately selecting the frequency of the ultrasonic vibrator 22, the raw material gas in the reaction furnace 5 can be efficiently stirred.

【0052】このような振動体22の振動によるハーメ
チック被覆光ファイバの製造方法は、第1,第2,第
3,第4実施例の各方法と併用すると、これら各実施例
の方法をより効率よく実施できる。
When the method of manufacturing the hermetically coated optical fiber by vibrating the vibrating body 22 is used in combination with the methods of the first, second, third and fourth embodiments, the methods of these respective embodiments are more efficient. It can be implemented well.

【0053】比較例1,2として、原料ガス流れ乱し具
18が設けられていない点以外は図1と同じ形状の図1
1に示す反応炉5を用いて形成したハーメチック被覆光
ファイバの製造条件と特性試験結果を表1に示す。
As Comparative Examples 1 and 2, FIG. 1 having the same shape as FIG. 1 except that the raw material gas flow disturbing tool 18 is not provided.
Table 1 shows the manufacturing conditions and characteristic test results of the hermetically coated optical fiber formed by using the reaction furnace 5 shown in FIG.

【0054】また比較例3として、図12に示すように
図11より長い反応炉5、具体的には上部の光ファイバ
通過孔10aから排気口12までの長さが 700mmの反応
炉5を用いて形成したハーメチック被覆光ファイバの製
造条件と特性試験結果を表1に示す。
As Comparative Example 3, as shown in FIG. 12, a reaction furnace 5 longer than that in FIG. 11, specifically, a reaction furnace 5 having a length from the upper optical fiber passage hole 10a to the exhaust port 12 of 700 mm was used. Table 1 shows the manufacturing conditions and characteristic test results of the hermetically coated optical fiber thus formed.

【0055】表1に製造条件と特性試験結果を記載した
実施例,比較例とも、線引き炉2の温度は2000℃、紡糸
速度は6m/sec で、同一条件であり、反応炉5の上端
部と線引き炉2の下端部との間の距離を同じにし、且つ
上部シール室7aへのシールガス供給量も同じにし、熱
分解反応開始部での光ファイバ4aの表面温度を同じに
した。また、原料ガスの組成は、いずれの実施例,比較
例でも同じアセチレンガスにした。
In each of the examples and comparative examples whose manufacturing conditions and characteristic test results are shown in Table 1, the temperature of the drawing furnace 2 is 2000 ° C., the spinning speed is 6 m / sec, the same conditions, and the upper end of the reaction furnace 5 is the same. And the lower end of the drawing furnace 2 were made the same, the amount of the seal gas supplied to the upper seal chamber 7a was made the same, and the surface temperature of the optical fiber 4a at the thermal decomposition reaction start portion was made the same. Further, the composition of the raw material gas was the same acetylene gas in all Examples and Comparative Examples.

【0056】[0056]

【表1】 各実施例と各比較例から明らかなように、本発明の方法
を用いることによって、原料ガスの使用量を大幅に削減
しながら、十分な膜厚をもち、十分な機械的強度を有す
るハーメチック被覆光ファイバを製造することが可能と
なる。また、比較例1,3と実施例から明らかなように
本発明の方法をとることにより、反応炉5を小型化しな
がら、十分な膜厚をもち、十分な初期強度、十分な疲労
特性と耐水素特性を有したハーメチック被覆光ファイバ
を製造することが可能となる。
[Table 1] As is clear from each example and each comparative example, by using the method of the present invention, a hermetic coating having a sufficient film thickness and a sufficient mechanical strength while significantly reducing the amount of raw material gas used. It becomes possible to manufacture an optical fiber. Further, as is clear from Comparative Examples 1 and 3 and Examples, by adopting the method of the present invention, the reactor 5 can be downsized while having a sufficient film thickness, sufficient initial strength, sufficient fatigue characteristics and durability. It becomes possible to manufacture a hermetically coated optical fiber having hydrogen characteristics.

【0057】原料ガス流れ乱し具18としては、図1及
び図2に示したリング状円盤以外に、反応炉5内に突出
する突起物や凹凸を設けたり、或いは反応炉5の内径を
長手方向にテーパ状に変化させたり、ファン等の撹拌具
を用いることもできる。
As the raw material gas flow disturbing device 18, in addition to the ring-shaped disk shown in FIGS. 1 and 2, protrusions or projections or projections projecting into the reaction furnace 5 are provided, or the inner diameter of the reaction furnace 5 is elongated. It is also possible to use a stirring tool such as a fan or the like in order to change the direction in a tapered shape.

【0058】ガス吹き込み部19,20は、上記各実施
例では1段であったが、長手方向に複数段設けることも
できる。
The gas blowing portions 19 and 20 have one step in each of the above embodiments, but a plurality of steps may be provided in the longitudinal direction.

【0059】特許請求の範囲に記載された発明以外の本
明細書に記載された発明の態様と効果を示すと、次の通
りである。
The aspects and effects of the invention described in the present specification other than the invention described in the claims are as follows.

【0060】反応炉の上流側にガス吹き込み部を設けて
該反応炉内の内周の接線方向に斜め下向きにガスを吹き
込み、このガス吹き込み部より下流側の反応炉内に原料
ガス流れ乱し具を設け、これらにより少なくとも光ファ
イバの表面近傍の原料ガスの流れを乱す。
A gas blowing section is provided on the upstream side of the reaction furnace, gas is blown obliquely downward in the tangential direction of the inner circumference of the reaction furnace, and the raw material gas flow is disturbed in the reaction furnace downstream of the gas blowing section. A tool is provided to disturb the flow of the raw material gas at least near the surface of the optical fiber.

【0061】このようにすると、ガス吹き込み部から該
反応炉内に吹き込まれるガスが該反応炉の内周に沿って
渦をまいて下降する過程で原料ガス流れ乱し具の表面を
洗うので、該原料ガス流れ乱し具に反応生成物が付着す
るのを防止でき、該原料ガス流れ乱し具の清掃回数を減
らすことができる。
In this way, since the gas blown into the reaction furnace from the gas blowing portion swirls along the inner circumference of the reaction furnace and descends, the surface of the tool for disturbing the raw material gas is washed. It is possible to prevent the reaction product from adhering to the raw material gas flow disturbing tool and reduce the number of times of cleaning the raw material gas flow disturbing tool.

【0062】この場合、ガス吹き込み部からは不活性ガ
ス又は原料ガスを吹き込む。原料ガスを吹き込むと、反
応速度がより一層速くなり、成膜速度が速くなり、より
短時間に効率よくハーメチック被覆光ファイバの製造が
行え、高速の光ファイバの紡糸に対応してハーメチック
被覆光ファイバの製造を行うことができる。
In this case, an inert gas or a raw material gas is blown from the gas blowing portion. When the raw material gas is blown in, the reaction speed becomes faster, the film formation speed becomes faster, and the hermetically coated optical fiber can be manufactured efficiently in a shorter time, and the hermetically coated optical fiber can be spun for high-speed optical fiber spinning. Can be manufactured.

【0063】また、前記各実施例ではカーボン被覆の例
のみ説明したが、ハーメチック被覆としてはSi3 4
被覆があり、この場合に使用する原料ガスとしては(S
iCl4 +NH3 )がある。本発明は、これらのハーメ
チック被覆光ファイバにも使用できることは言うまでも
ない。
Further, in each of the above-mentioned embodiments, only the example of carbon coating has been explained, but as the hermetic coating, Si 3 N 4 is used.
There is a coating, and the source gas used in this case is (S
iCl 4 + NH 3 ). It goes without saying that the invention can also be used with these hermetically coated optical fibers.

【0064】[0064]

【発明の効果】以上説明したように本発明によれば、下
記のような優れた効果を得ることができる。
As described above, according to the present invention, the following excellent effects can be obtained.

【0065】本発明では、反応炉内で少なくとも光ファ
イバの表面近傍の原料ガスの流れを乱すので、光ファイ
バの表面近傍での原料ガス濃度の低下を防止できる。従
って、反応速度が速くなり、成膜速度の低下を防止で
き、短時間で効率よくハーメチック被覆光ファイバを製
造できる。特に本発明によれば、限られた時間内で十分
な原料ガスの反応が起こるので、より高速の線引きに対
応させてハーメチック被覆光ファイバの製造を行うこと
ができる。また、本発明によれば、原料ガスの利用効率
を高めることができる。更に、本発明によれば、反応炉
の大型化を最小限に止めることができる。
In the present invention, the flow of the raw material gas at least near the surface of the optical fiber is disturbed in the reaction furnace, so that the concentration of the raw material gas near the surface of the optical fiber can be prevented from lowering. Therefore, the reaction speed becomes faster, the film formation speed can be prevented from lowering, and the hermetically coated optical fiber can be efficiently manufactured in a short time. In particular, according to the present invention, a sufficient reaction of the raw material gas occurs within a limited time, so that the hermetically coated optical fiber can be manufactured in correspondence with the higher speed drawing. Further, according to the present invention, the utilization efficiency of the raw material gas can be improved. Furthermore, according to the present invention, it is possible to minimize the size increase of the reaction furnace.

【0066】また、反応炉内に例えば原料ガスの流れ方
向に対し交差する向きに突出する原料ガス流れ乱し具を
設けて、該原料ガス流れ乱し具により少なくとも光ファ
イバの表面近傍の原料ガスの流れを乱しているので、ガ
ス等の消費する手段を用いずに反応炉内の光ファイバの
表面での原料ガス濃度の低下を防止できる。ガス等の消
費する手段を用いないと、低コストでハーメチック被覆
光ファイバの製造を行うことができる。
Further, for example, a raw material gas flow disturbing member which projects in a direction intersecting with the flow direction of the raw material gas is provided in the reaction furnace, and the raw material gas flow disturbing device at least near the surface of the optical fiber Therefore, the concentration of the raw material gas on the surface of the optical fiber in the reaction furnace can be prevented from lowering without using a means for consuming the gas or the like. If no means for consuming gas or the like is used, the hermetically coated optical fiber can be manufactured at low cost.

【0067】また、反応炉の長手方向の途中に設けたガ
ス吹き込み部から該反応炉内にガスを吹き込むことによ
り少なくとも光ファイバの表面近傍の原料ガスの流れを
乱してるので、ガスを用いて光ファイバの表面近傍の原
料ガスの流れを乱すことができる。この場合には、反応
炉内に突出する原料ガス流れ乱し具等を用いないので、
該原料ガス流れ乱し具等に反応生成物が付着することに
よる清掃の問題点を回避してハーメチック被覆光ファイ
バの製造を行うことができる。
In addition, since gas is blown into the reaction furnace from a gas blowing portion provided in the longitudinal direction of the reaction furnace, the flow of the raw material gas at least near the surface of the optical fiber is disturbed. It is possible to disturb the flow of the raw material gas near the surface of the optical fiber. In this case, since a raw material gas flow disturbing device protruding into the reaction furnace is not used,
The hermetically coated optical fiber can be manufactured while avoiding the problem of cleaning caused by the reaction product adhering to the tool for disturbing the raw material gas flow.

【0068】また、反応炉に振動体を設け、該振動体の
振動により少なくとも光ファイバの表面近傍の原料ガス
の流れを乱すので、光ファイバの表面近傍での原料ガス
濃度の低下を防止できる。従って、反応速度が速くな
り、成膜速度の低下を防止でき、短時間で効率よくハー
メチック被覆光ファイバを製造できる。この場合、超音
波振動子の振動数を適宜に選定することにより、効率よ
く反応炉内の原料ガスを撹拌することができる。
Further, the vibrating body is provided in the reaction furnace, and the flow of the raw material gas at least near the surface of the optical fiber is disturbed by the vibration of the vibrating body, so that the concentration of the raw material gas near the surface of the optical fiber can be prevented from lowering. Therefore, the reaction speed becomes faster, the film formation speed can be prevented from lowering, and the hermetically coated optical fiber can be efficiently manufactured in a short time. In this case, by appropriately selecting the frequency of the ultrasonic vibrator, the raw material gas in the reaction furnace can be efficiently stirred.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るハーメチック被覆光ファイバの製
造方法を実施する装置の第1実施例における反応炉の縦
断端面図である。
FIG. 1 is a vertical sectional end view of a reaction furnace in a first embodiment of an apparatus for carrying out a method for manufacturing a hermetically coated optical fiber according to the present invention.

【図2】第1実施例で用いている原料ガス流れ乱し具の
平面図である。
FIG. 2 is a plan view of a raw material gas flow disturbing tool used in the first embodiment.

【図3】本発明に係るハーメチック被覆光ファイバの製
造方法を実施する装置の第2実施例における反応炉の縦
断端面図である。
FIG. 3 is a vertical sectional end view of a reaction furnace in a second embodiment of the apparatus for carrying out the method for manufacturing a hermetically coated optical fiber according to the present invention.

【図4】第2実施例で用いているガス吹き込み部部分の
横断端面図である。
FIG. 4 is a cross-sectional end view of a gas blowing portion used in a second embodiment.

【図5】本発明に係るハーメチック被覆光ファイバの製
造方法を実施する装置における反応炉の第3実施例の縦
断端面図である。
FIG. 5 is a vertical cross-sectional end view of a third embodiment of a reaction furnace in an apparatus for carrying out the method for producing a hermetically coated optical fiber according to the present invention.

【図6】第3実施例で用いているガス吹き込み部部分の
横断端面図である。
FIG. 6 is a cross-sectional end view of a gas blowing portion used in a third embodiment.

【図7】第3実施例で用いている原料ガス流れ乱し具の
平面図である。
FIG. 7 is a plan view of a raw material gas flow disturbing tool used in a third embodiment.

【図8】本発明に係るハーメチック被覆光ファイバの製
造方法を実施する装置における反応炉の第4実施例の縦
断端面図である。
FIG. 8 is a vertical cross-sectional end view of a fourth embodiment of a reaction furnace in an apparatus for carrying out the method for producing a hermetically coated optical fiber according to the present invention.

【図9】本発明に係るハーメチック被覆光ファイバの製
造方法を実施する装置の第5実施例における反応炉の縦
断端面図である。
FIG. 9 is a vertical sectional end view of a reaction furnace in a fifth embodiment of an apparatus for carrying out the method for manufacturing a hermetically coated optical fiber according to the present invention.

【図10】従来のハーメチック被覆光ファイバの製造装
置の概略構成を示す縦断端面図である。
FIG. 10 is a vertical cross-sectional end view showing a schematic configuration of a conventional hermetically coated optical fiber manufacturing apparatus.

【図11】従来のハーメチック被覆光ファイバの製造装
置における反応炉の一つの例を示す縦断端面図である。
FIG. 11 is a vertical cross-sectional end view showing one example of a reaction furnace in a conventional hermetically coated optical fiber manufacturing apparatus.

【図12】従来のハーメチック被覆光ファイバの製造装
置における反応炉の他の例を示す縦断端面図である。
FIG. 12 is a vertical cross-sectional end view showing another example of a reaction furnace in a conventional hermetically coated optical fiber manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 ヒータ 2 線引き炉 3 光ファイバ母材 4a 光ファイバ 4b ハーメチック被覆光ファイバ 4c 光ファイバ心線 5 反応炉 6a,6b 仕切り体 7a,7b シール室 8a 上部シールガス供給口 8b 下部シールガス供給口 9a,9b 光ファイバ通過孔 10a,10b 光ファイバ通過孔 11 原料ガス供給口 12 排気口 13 外径測定器 14 樹脂被覆器 15 樹脂硬化炉 16 外径測定器 17 引取りキャプスタン 18 原料ガス流れ乱し具 18a ファイバ貫通孔 18b ガス通過孔 19 ガス吹き込み部 20 ガス吹き込み部 22 超音波振動子 1 Heater 2 Wire drawing furnace 3 Optical fiber base material 4a Optical fiber 4b Hermetically coated optical fiber 4c Optical fiber core wire 5 Reactor 6a, 6b Partition body 7a, 7b Seal chamber 8a Upper seal gas supply port 8b Lower seal gas supply port 9a, 9b Optical fiber passage hole 10a, 10b Optical fiber passage hole 11 Raw material gas supply port 12 Exhaust port 13 Outer diameter measuring instrument 14 Resin coating device 15 Resin curing furnace 16 Outer diameter measuring instrument 17 Take-up capstan 18 Raw material gas flow disturbing tool 18a Fiber through hole 18b Gas passage hole 19 Gas blowing part 20 Gas blowing part 22 Ultrasonic transducer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバを反応炉に通しつつ、該反応
炉内に供給する原料ガスを化学反応させて前記光ファイ
バの表面にハーメチック膜を被覆してハーメチック被覆
光ファイバを製造するハーメチック被覆光ファイバの製
造方法において、 前記反応炉内で少なくとも前記光ファイバの表面近傍の
前記原料ガスの流れを乱すことを特徴とするハーメチッ
ク被覆光ファイバの製造方法。
1. A hermetically coated light for producing a hermetically coated optical fiber by causing a raw material gas supplied into the reactor to undergo a chemical reaction to coat a hermetic film on the surface of the optical fiber while passing the optical fiber through the reactor. In the method for producing a fiber, the flow of the raw material gas at least near the surface of the optical fiber is disturbed in the reaction furnace, the method for producing a hermetically coated optical fiber.
【請求項2】 光ファイバを反応炉に通しつつ、該反応
炉内に供給する原料ガスを化学反応させて前記光ファイ
バの表面にハーメチック膜を被覆してハーメチック被覆
光ファイバを製造するハーメチック被覆光ファイバの製
造方法において、 前記反応炉内に原料ガス流れ乱し具を設け、該原料ガス
流れ乱し具により少なくとも前記光ファイバの表面近傍
の前記原料ガスの流れを乱すことを特徴とするハーメチ
ック被覆光ファイバの製造方法。
2. A hermetically coated light for producing a hermetically coated optical fiber by causing a raw material gas supplied into the reactor to undergo a chemical reaction to coat a hermetic film on the surface of the optical fiber while passing the optical fiber through the reactor. In the method for producing a fiber, a hermetic coating is provided in the reaction furnace, wherein a raw material gas flow disturbing tool is provided, and the raw material gas flow disturbing tool disturbs at least the flow of the raw material gas near the surface of the optical fiber. Optical fiber manufacturing method.
【請求項3】 光ファイバを反応炉に通しつつ、該反応
炉内に供給する原料ガスを化学反応させて前記光ファイ
バの表面にハーメチック膜を被覆してハーメチック被覆
光ファイバを製造するハーメチック被覆光ファイバの製
造方法において、 前記反応炉の長手方向の途中に設けたガス吹き込み部か
ら該反応炉内にガスを吹き込むことにより少なくとも前
記光ファイバの表面近傍の前記原料ガスの流れを乱すこ
とを特徴とするハーメチック被覆光ファイバの製造方
法。
3. A hermetically coated light for producing a hermetically coated optical fiber by causing a raw material gas supplied into the reactor to undergo a chemical reaction to coat a hermetic film on the surface of the optical fiber while passing the optical fiber through the reactor. In the method for producing a fiber, the flow of the raw material gas at least near the surface of the optical fiber is disturbed by blowing gas into the reaction furnace from a gas blowing portion provided in the longitudinal direction of the reaction furnace. A method for producing a hermetically coated optical fiber.
【請求項4】 光ファイバを反応炉に通しつつ、該反応
炉内に供給する原料ガスを化学反応させて前記光ファイ
バの表面にハーメチック膜を被覆してハーメチック被覆
光ファイバを製造するハーメチック被覆光ファイバの製
造方法において、 前記反応炉に振動体を設け、該振動体の振動により少な
くとも前記光ファイバの表面近傍の前記原料ガスの流れ
を乱すことを特徴とするハーメチック被覆光ファイバの
製造方法。
4. A hermetically coated light for producing a hermetically coated optical fiber by causing a raw material gas supplied into the reactor to undergo a chemical reaction to coat a hermetic film on the surface of the optical fiber while passing the optical fiber through the reactor. A method for producing a fiber, wherein a vibrating body is provided in the reaction furnace, and the flow of the raw material gas at least near the surface of the optical fiber is disturbed by the vibration of the vibrating body.
JP00370394A 1994-01-18 1994-01-18 Method for producing hermetic coated optical fiber Expired - Lifetime JP3316290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00370394A JP3316290B2 (en) 1994-01-18 1994-01-18 Method for producing hermetic coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00370394A JP3316290B2 (en) 1994-01-18 1994-01-18 Method for producing hermetic coated optical fiber

Publications (2)

Publication Number Publication Date
JPH07206476A true JPH07206476A (en) 1995-08-08
JP3316290B2 JP3316290B2 (en) 2002-08-19

Family

ID=11564734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00370394A Expired - Lifetime JP3316290B2 (en) 1994-01-18 1994-01-18 Method for producing hermetic coated optical fiber

Country Status (1)

Country Link
JP (1) JP3316290B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761979A1 (en) * 1997-04-14 1998-10-16 Alsthom Cge Alcatel METHOD AND APPARATUS FOR MANUFACTURING AN OPTICAL FIBER PROVIDED WITH A HERMETIC COATING
US6630029B2 (en) * 2000-12-04 2003-10-07 General Electric Company Fiber coating method and reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761979A1 (en) * 1997-04-14 1998-10-16 Alsthom Cge Alcatel METHOD AND APPARATUS FOR MANUFACTURING AN OPTICAL FIBER PROVIDED WITH A HERMETIC COATING
EP0872459A1 (en) * 1997-04-14 1998-10-21 Alcatel Method and apparatus for the manufacture of an optical fibre with a hermetic coating
US6029476A (en) * 1997-04-14 2000-02-29 Alcatel Method and apparatus for manufacturing an optical fiber provided with a hermetic coating
US6630029B2 (en) * 2000-12-04 2003-10-07 General Electric Company Fiber coating method and reactor
US7381445B2 (en) 2000-12-04 2008-06-03 General Electric Company Method of coating a ceramic matrix composite fiber

Also Published As

Publication number Publication date
JP3316290B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
JP2975642B2 (en) Hermetic coated fiber and manufacturing method thereof
JPS62171939A (en) Apparatus for production of porous optical fiber preform
JP3316290B2 (en) Method for producing hermetic coated optical fiber
US5529596A (en) Method for making dual-glass fibers by causing one glass to flow around another glass as they are spun from a rotating spinner
JPH02302343A (en) Production of hermetic-covered optical fiber
JP2685889B2 (en) Method for producing hermetic coated optical fiber
CA2061068A1 (en) Apparatus and method for manufacturing a hermetically coated optical fiber
JPH0251448A (en) Apparatus for producing hermetic coated optical fiber
JPH02145462A (en) Production of hermetic coat fiber
JP2835227B2 (en) Method for producing hermetic coated optical fiber
JPH10330129A (en) Production of porous glass body for optical fiber
JPH10226541A (en) Production of carbon coated optical fiber
JP3282925B2 (en) Manufacturing method of carbon coated optical fiber
JP2801357B2 (en) Hermetic coated optical fiber manufacturing equipment
JP2697916B2 (en) Method for producing hermetic coated optical fiber
JPH0640750A (en) Producing device for hermetic coat optical fiber
JP2583392B2 (en) Method for manufacturing hermetic coated optical fiber
JP3042533B2 (en) Method for producing hermetic coated optical fiber
JPH0725648A (en) Device for producing hermetically coated optical fiber
JPS63117934A (en) Production of optical fiber
JPH03126645A (en) Device for producing carbon coated fiber
JPH03228851A (en) Production of hermetic coated optical fiber
JPH0442839A (en) Production of optical fiber
JPS6016828A (en) Manufacture of optical fiber
JPH02192438A (en) Hermetically coated optical fiber producing furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

EXPY Cancellation because of completion of term