JPS6016828A - Manufacture of optical fiber - Google Patents

Manufacture of optical fiber

Info

Publication number
JPS6016828A
JPS6016828A JP12436383A JP12436383A JPS6016828A JP S6016828 A JPS6016828 A JP S6016828A JP 12436383 A JP12436383 A JP 12436383A JP 12436383 A JP12436383 A JP 12436383A JP S6016828 A JPS6016828 A JP S6016828A
Authority
JP
Japan
Prior art keywords
optical fiber
atmosphere
furnace
oxygen
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12436383A
Other languages
Japanese (ja)
Other versions
JPH0623073B2 (en
Inventor
Masao Nishimura
西村 真雄
Masayuki Nishimoto
西本 征幸
Shinichi Yano
慎一 矢野
Motohiro Nakahara
基博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP12436383A priority Critical patent/JPH0623073B2/en
Publication of JPS6016828A publication Critical patent/JPS6016828A/en
Publication of JPH0623073B2 publication Critical patent/JPH0623073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain an optical fiber having long length and high strength, by spinning an optical fiber from a preform composed mainly of SiO2 in an inert gas atmosphere using a high-purity carbon as the heating element, and passing the fiber through a hot atmosphere containing oxygen. CONSTITUTION:A gas such as argon gas is introduced into the furnace 1 through the gas inlet 3 to keep the inside of the furnace to the inert gas atmosphere, and the furnace is heated at about 2,000 deg.C with the heating element 2. An optical fiber preform 7a composed mainly of SiO2 is inserted slowly into the heated atmosphere, and the molten lower end of the preform is drawn at a high speed to form an optical fiber (b). An oxygen-containing hot atmosphere is formed just below the furnace 1 with the heater 4, and the spun optical fiber 7b is passed through the atmosphere. Accordingly, the impurities attached to the outer circumference of the optical fiber 7b is burnt and removed in the oxygen-containing hot atmosphere. The lowering of the strength of the optical fiber 7b caused by the deposition of impurities can be solved by this process.

Description

【発明の詳細な説明】 本発明は長尺、刀・つ、高強度の光コア□()<75’
製造できる方法に関する。
[Detailed Description of the Invention] The present invention provides a long, long, high-strength optical core □( )<75'
Regarding the method by which it can be manufactured.

既知の通り、石英系光ファイ・くの製造に際しては、コ
ア部、クラッド部を備えた石英糸の1ユ材が紡糸(加熱
延伸)され、コア部を石英系、クラッド部をブラヌチツ
ク系とするプラスグー゛ンククラソドファイバの製造で
は、石英系フ−r +s2相が紡糸され、該紡糸直後の
コア外周【こブラヌチノククラツドがコーティングされ
る。
As is known, when manufacturing quartz-based optical fibers, a single piece of quartz yarn having a core part and a cladding part is spun (heated and drawn), and the core part is made of quartz and the cladding part is made of Buranuchik. In the production of plus-gold clad fiber, a quartz-based cladding fiber is spun, and the outer periphery of the core immediately after the spinning is coated with a cladded cladding.

通常、上記紡糸用の加熱炉としてはカーボン抵抗加熱炉
、ジルコニア(ZrO2)誘導11i1熱炉などが用い
られ、また前者の炉ではその内名昏に不活性ガスが充填
されるようになって17yろQところで、上記の」二う
にして卓14造される光ノアイ/さのうち、γ豆尺もの
では500正<q / mrl (4,度の引張弛度を
発+X1;する光)γイ・2が得りれているが、IKm
l呈度の長尺ものでは上記の強度を全長fこわたって保
持さぐるのがむずかしく、紡糸後のノクリーニングテス
11こよると、その引づ」(強度は35〜70Kg /
s1.程度くことどまっている。
Usually, a carbon resistance heating furnace, a zirconia (ZrO2) induction 11i1 heating furnace, etc. are used as the heating furnace for spinning. By the way, among the light beams produced in the above manner, γ is 500 positive < q / mrl (light that emits a tensile slackness of 4 degrees + X1) γ. A.2 is obtained, but IKm
It is difficult to maintain the above-mentioned strength over the entire length of a long material with a tensile strength of 35 to 70 kg/f, and due to the cleaning test after spinning, the strength is 35 to 70 kg/
s1. It has remained to a certain extent.

これの原因としてはっぎのようなことがいえる。The reason for this could be something like Haggi.

つまり前述した加熱炉により高温の加熱雰囲気(200
0℃前後)をつくる際、その炉内材料が高温の熱により
蒸発して不純物となり、これカ光ファイバ母材ないし光
ファイバの表面にイ」着面化して欠陥部をつくるからで
あり、さらにその欠陥部の発生量が光ファイバの長さに
比例して多くなるからである。
In other words, the above-mentioned heating furnace provides a high-temperature heating atmosphere (200
This is because when producing a high temperature (around 0℃), the materials in the furnace evaporate due to high temperature heat and become impurities, which become deposited on the optical fiber base material or the surface of the optical fiber and create defects. This is because the number of defects generated increases in proportion to the length of the optical fiber.

本発明は上記の問題点に鑑み、光フアイバ製造時におけ
る強度劣化原因をJJI除することにより高強度の長尺
光ファイバが得られるようfこしたもので、以下その具
体的方法を図示の実施例により説明する。
In view of the above-mentioned problems, the present invention has been developed to obtain a long optical fiber with high strength by eliminating the cause of strength deterioration during optical fiber manufacturing by JJI. Let's explain by example.

図〔こおいて、(1)は光フアイバ母材を加熱するため
の加熱炉であり、該加熱炉(1)内には高純度カーボン
からなる発熱体(2)が配置されており、ざらに同炉(
1)1こはその内部に不活性ガス(例えばAr)を供給
するための供給口(3)がm数個(1つでもf、 Vs
 )設けられている0(4)はリングバーナ等からなる
酸水素炎式のカロ熱器であり、この加熱器(4)は上記
加熱炉(1)の直後1こ配置されている。
Figure [Here, (1) is a heating furnace for heating the optical fiber base material, and a heating element (2) made of high-purity carbon is placed inside the heating furnace (1). The same reactor (
1) There are several m supply ports (3) for supplying an inert gas (for example, Ar) into the interior (even one is f, Vs
) The provided heater (4) is an oxyhydrogen flame type heating heater consisting of a ring burner or the like, and this heater (4) is placed immediately after the heating furnace (1).

(5)は加熱器(4)の後段にめるダイスコータ、(6
)は該ダイスコータ(5)の後段にある被覆硬化炉であ
る0 本発明では上記において加熱炉(1)内には供給口(3
)からArなどのガスを吹きこんでその内部を不活性ガ
ス雰囲気に保持するとともに発熱体(2)【こより該内
部を2000℃程度に加熱し、こうした加熱雰囲気中に
SiO□を主成分とする光フアイバ母材(7)aをゆる
やかに挿入し、その溶融端(下端)を高速で延伸して光
ファイノ((7)bとする0 この際の加熱延伸時、加熱炉(1)内は高温となってい
るため発熱体(2)などから蒸発したカーJζン微粒子
が不純物として伺着するが、当該加熱炉(1)の直後に
は酸素を含有する加熱雰囲気が加熱器(4)lこより形
成されており、上記紡糸後の光ファイバ(7)bがここ
を通過することになるため、光ファイバ(7)bの外周
に付着した不純物はその酸素含有の加熱雰囲気において
燃焼除去されしたがって光ファイバ(71b lこは不
純物14着による強度劣化原因が解消されることとなる
(5) is a die coater installed after the heater (4);
) is a coating curing furnace located after the die coater (5). In the present invention, in the above heating furnace (1), there is a supply port (3
) to keep the inside in an inert gas atmosphere, and heat the inside to about 2000°C from the heating element (2). SiO□ is the main component in this heated atmosphere. The optical fiber base material (7) a is gently inserted and its melted end (lower end) is stretched at high speed to form an optical fiber ((7) b). Due to the high temperature, carbon particles evaporated from the heating element (2) arrive as impurities, but immediately after the heating furnace (1), a heating atmosphere containing oxygen is generated in the heating element (4). Since the optical fiber (7)b after spinning passes through this, impurities adhering to the outer periphery of the optical fiber (7)b are burned and removed in the oxygen-containing heated atmosphere. The cause of strength deterioration due to impurities in the optical fiber (71b) is eliminated.

酸水素炎式とした上記加熱器(4)によるとき、その加
熱雰囲気中における酸素含有量は30vot係以上、望
ましくは50 vot%以上とするのであり、02/H
2の比は3/2程度とする。
When using the oxyhydrogen flame type heater (4), the oxygen content in the heating atmosphere is 30 vot% or more, preferably 50 vot% or more, and 02/H
The ratio of 2 is about 3/2.

また、酸素含有加熱雰囲気の湿度は700℃以上とする
が、版端に高温化(2000℃以上)にすると光ファイ
バ(7)b外径変動が生じるので、その上限は1700
℃程度くことどめるのがよい。
In addition, the humidity of the oxygen-containing heating atmosphere is set to 700°C or higher, but if the plate edge is heated to a temperature of 2000°C or higher, the outer diameter of the optical fiber (7) b will change, so the upper limit is 1700°C or higher.
It is best to keep it at around ℃.

上記のようにして不純物が除去された後の光ファイバ(
7)bはダイスコータ(5)全通過するのであり、ここ
ではシリコーン系の液状樹脂によるコーティングy (
1次コート用、バッファコート用など)が1月着され、
さらにそのコーテイング膜が次段の被覆硬化炉(6)に
より硬化されて所定の被覆光ファイバ(7)cとなる。
Optical fiber after impurities have been removed as described above (
7) b completely passes through the die coater (5), and here the coating y (
(for primary coat, buffer coat, etc.) will arrive in January,
Further, the coating film is cured in a coating curing furnace (6) in the next stage to form a predetermined coated optical fiber (7)c.

なお、上記では加熱炉(1)をカーボン抵抗加熱炉とし
たが、これはジルコニア誘導加熱炉であってもよい。
In addition, although the heating furnace (1) was used as a carbon resistance heating furnace in the above, this may be a zirconia induction heating furnace.

ただし、ジルコニア誘導加熱炉の場合は面純度カーボン
製の炉心管を備えておき、Z r O2から蒸発した粒
子(燃焼除去できない)が光フアイバ母材や光ファイバ
にイ」着しないようにする0 また、酸素含有の加熱雰囲気をつくるとき、CO2レー
ザ等を熱源にしてもよく、この場合はその加熱雰囲気に
所定量の酸素を供給する0つぎに実施例、比較例を表に
上り説明する。
However, in the case of a zirconia induction heating furnace, a furnace tube made of surface-purity carbon is provided to prevent particles evaporated from ZrO2 (which cannot be removed by combustion) from adhering to the optical fiber base material or optical fiber. Further, when creating an oxygen-containing heating atmosphere, a CO2 laser or the like may be used as a heat source, and in this case, a predetermined amount of oxygen is supplied to the heating atmosphere.Next, Examples and Comparative Examples will be described below.

上記の表で明らかなように、紡糸後の光ファイバを酸素
含有の加熱雰囲気中に通して所定の処理を施している本
発明の実施例1.2ではこうした処理を行なわない比較
例1.2と比べ、その開帳強度が格段に向上している。
As is clear from the table above, Example 1.2 of the present invention, in which the optical fiber after spinning is passed through an oxygen-containing heated atmosphere and subjected to a predetermined treatment, and Comparative Example 1.2, in which such treatment is not performed. Compared to the previous version, its opening strength has been significantly improved.

以上説明した通り、本発明はSiO2を主成分とする光
フアイバ母材を加熱延伸により紡糸して光ファイバを製
造する方法において、高純度カーボンを発熱体または炉
心管とし、かつ、不活性ガスを雰囲気ガスとしている加
熱雰囲気中で上記光ファイグく母材を紡糸して光ファイ
バをつくり、該紡糸後の光ファイバを酸素含有の加熱雰
囲気中に通して光ファイバに付着した不純物を除去する
ことを特徴としているから、不純物に起因した強度上の
欠陥部が殆ど発生しなくなり、したがって高強度の長尺
光ファイバが歩どまりよく製造できることとなる。
As explained above, the present invention is a method for producing an optical fiber by spinning an optical fiber base material mainly composed of SiO2 by heating and drawing, in which high-purity carbon is used as a heating element or a furnace tube, and an inert gas is used. An optical fiber is produced by spinning the optical fiber base material in a heated atmosphere using an atmospheric gas, and the spun optical fiber is passed through a heated atmosphere containing oxygen to remove impurities attached to the optical fiber. Because of this characteristic, there are almost no strength defects caused by impurities, and therefore, high-strength long optical fibers can be manufactured at a good yield.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法の1実施例を略示した説明図である。 (1)・・・・・加熱炉 (2)・・・・・発熱体 (3)・・・・・不活性ガスの供給口 (4)・・・・・加熱器 (7)a・・・・光フアイバ母材 (力b・・・・光ファイバ 特許出、願人 代理人 弁理士 井 藤 誠 The drawing is an explanatory diagram schematically showing one embodiment of the method of the present invention. (1)・・・Heating furnace (2)・・・Heating element (3) Inert gas supply port (4)・・・Heating device (7) a... Optical fiber base material (Force b...Optical fiber Patent issued, applicant Agent: Patent Attorney Makoto Ifuji

Claims (1)

【特許請求の範囲】 tl)SiO□を主成分とする光フアイバ母材を加熱延
伸により紡糸して光ファイバを製造する方法において、
高純度カーボンを発熱体または炉心管とし、かつ、不活
性ガスを雰囲気ガスとしている加熱雰囲気中で上記光フ
ァイバ母材を紡糸して光ファイバをつくり、該紡糸後の
光ファイバを酸素含有の加熱雰囲気中に0通して光ファ
イバに(=1着した不純物を除去する光ファイバの製造
方法。 (2) 酸素含有の加熱雰囲気中をこおりる酸素濃度が
30 vo1%以上である特許請求の範囲第1項記載の
光ファイバの製造方法。 (3)1ソ素含有の加熱雰囲気中におりる湿度が700
〜]、 700℃である特許請求の範囲第1項または第
2項記戦の光ファイバの製造方法。
[Claims] tl) A method for producing an optical fiber by spinning an optical fiber base material containing SiO□ as a main component by heating and drawing,
The above-mentioned optical fiber base material is spun into an optical fiber in a heating atmosphere using high-purity carbon as a heating element or a furnace tube and an inert gas as an atmospheric gas, and the spun optical fiber is heated in an oxygen-containing atmosphere. A method for manufacturing an optical fiber in which impurities attached to the optical fiber are removed by passing the fiber through the atmosphere. The method for manufacturing an optical fiber according to item 1. (3) The humidity in the heated atmosphere containing 1-sulfur is 700%.
], 700° C. The method for manufacturing an optical fiber according to claim 1 or 2.
JP12436383A 1983-07-08 1983-07-08 Optical fiber manufacturing method Expired - Lifetime JPH0623073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12436383A JPH0623073B2 (en) 1983-07-08 1983-07-08 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12436383A JPH0623073B2 (en) 1983-07-08 1983-07-08 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS6016828A true JPS6016828A (en) 1985-01-28
JPH0623073B2 JPH0623073B2 (en) 1994-03-30

Family

ID=14883544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12436383A Expired - Lifetime JPH0623073B2 (en) 1983-07-08 1983-07-08 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPH0623073B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394125A1 (en) * 2002-08-30 2004-03-03 FITEL USA CORPORATION (a Delaware Corporation) Optical Fiber with Reduced E-Band and L-Band Loss Peaks and its method of manufacture
US20220098085A1 (en) * 2020-09-30 2022-03-31 Corning Incorporated Methods and systems for processing optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394125A1 (en) * 2002-08-30 2004-03-03 FITEL USA CORPORATION (a Delaware Corporation) Optical Fiber with Reduced E-Band and L-Band Loss Peaks and its method of manufacture
US6865327B2 (en) 2002-08-30 2005-03-08 Fitel Usa Corp. Method of making optical fiber with reduced E-band and L-band loss peaks
CN100429539C (en) * 2002-08-30 2008-10-29 Ofs飞泰尔公司 Method for making optical fibre with low E-waveband and L-waveband loss wave peak
US20220098085A1 (en) * 2020-09-30 2022-03-31 Corning Incorporated Methods and systems for processing optical fiber
US11952305B2 (en) * 2020-09-30 2024-04-09 Corning Incorporated Methods and systems for processing optical fiber

Also Published As

Publication number Publication date
JPH0623073B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
WO2010026769A1 (en) Method for manufacturing optical fiber preform
KR940021444A (en) Manufacturing method of high quality optical fiber
JPS6016828A (en) Manufacture of optical fiber
JPH03187944A (en) Heat-treatment of glass material
JPH04231336A (en) Production of optical fiber preform
JP2898705B2 (en) Manufacturing method of optical fiber preform
JPH01126236A (en) Production of optical fiber preform
JPS591218B2 (en) Manufacturing method of glass base material for optical fiber
JPS6060935A (en) Manufacture of base material for optical fiber
JPH0725624A (en) Production of soot preform
JPH01203238A (en) Production of optical fiber preform
JPS6011241A (en) Manufacture of base material for optical fiber
JPS63117934A (en) Production of optical fiber
JPS6096538A (en) Production of optical fiber preform
JPS60264336A (en) Manufacture of optical glass preform
JPS60186426A (en) Manufacture of optical fiber
JPS63182232A (en) Apparatus for producing optical fiber parent material
JPS6291440A (en) Production of optical fiber
JPS63248731A (en) Production of optical fiber base material
JPS6042240A (en) Manufacture of base material for optical fiber
JPS62216935A (en) Production of base material for quartz glass
JPS6140837A (en) Preparation of optical fiber
JPS61174136A (en) Production of optical fiber
JPS58125626A (en) Conjugated quartz tube for optical fiber and its production
JPH05246739A (en) Production of carbon-coated optical fiber