JPS60186426A - Manufacture of optical fiber - Google Patents

Manufacture of optical fiber

Info

Publication number
JPS60186426A
JPS60186426A JP3722284A JP3722284A JPS60186426A JP S60186426 A JPS60186426 A JP S60186426A JP 3722284 A JP3722284 A JP 3722284A JP 3722284 A JP3722284 A JP 3722284A JP S60186426 A JPS60186426 A JP S60186426A
Authority
JP
Japan
Prior art keywords
optical fiber
furnace
base material
temperature
vitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3722284A
Other languages
Japanese (ja)
Inventor
Shuichi Shibata
修一 柴田
Hiroyuki Suda
裕之 須田
Motohiro Nakahara
基博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3722284A priority Critical patent/JPS60186426A/en
Publication of JPS60186426A publication Critical patent/JPS60186426A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To decrease the number of production apparatuses, shorten the production time, and manufacture an optical fiber at a high speed, by carrying out the vitrification and the drawing of an optical fiber simultaneously. CONSTITUTION:A porous preform attached to the seed rod 3 is inserted into the electric furnace 1 acting also as a drawing furnace, and is vitrified to a transparent glass 6 by introducing an inert gas into the furnace through the gas inlet. The preform is drawn to an optical fiber simultaneous to the vitrification process 6. The temperature distribution in the drawing zone is maintained at about 1,900-2,000 deg.C. An optical fiber can be manufactured economically at a high speed by this process.

Description

【発明の詳細な説明】 (技 術 分 野) 本発明は光ファイバを製造する際、透明ガラス化工程と
線引き工程を同時に行う光ファイバの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing an optical fiber in which a transparent vitrification process and a drawing process are performed simultaneously when manufacturing an optical fiber.

(従 来 技 術 ) 光ファイバの製造方法には多くの種類があるが、例えば
Vapor−Phase Axial Deposit
ion (V A D )法や外付は法では、以下の工
・程によって光ファイバが製造されていた。
(Prior art) There are many types of optical fiber manufacturing methods, such as Vapor-Phase Axial Deposit
In the ion (V A D ) method and the external attachment method, optical fibers are manufactured by the following steps.

(If 原料を高温で反応させて、微粒子を発生させ、
どれを堆積させて多孔質母材を形成する工程。
(If raw materials are reacted at high temperature to generate fine particles,
The process of depositing which forms a porous matrix.

(I[l 上記多孔質母材を加熱して透明ガラス化する
工程。
(I [l A step of heating the porous base material to make it transparent vitrified.

(II) 透明ガラス化した母材を光ファイバに線引き
する工程。
(II) A step of drawing the transparent vitrified base material into an optical fiber.

(I)と(Illの工程を連続して行うことは、すでに
報告されているが、(I) 、 (Ill 、 (It
)の工程を経ることには変りがなく、電気炉も2台必要
である。
It has already been reported that the steps (I) and (Ill) are performed sequentially, but (I), (Ill, (It
) process remains the same, and two electric furnaces are required.

従来の方法で、(II)と(Illの工程が分離すねて
いるのは、両工程における処理温度が異なるため〔例え
ば(Illでは1600°C程度、(■)では2000
°C近い温度〕と考えられる。しかしながら、両工程を
別々に行うことにより、全く違うタイプの電気炉が2台
必要となり、時間的にも両工程が一緒の場合と比較して
2〜8倍の時間が必要とされるのである。
In the conventional method, the steps (II) and (Ill) are separated because the processing temperatures in both steps are different [for example, about 1600°C in (Ill) and 2000°C in (■).
It is thought that the temperature is close to °C]. However, by performing both processes separately, two completely different types of electric furnaces are required, and the time required is 2 to 8 times longer than when both processes are performed at the same time. .

ここで(Illと(mlの工程を同時に行う着想が生じ
なかったもう一つの理由は、光ファイバ用ドーバントと
して用いらねているGemg等が1600″Cより高い
温度で透明ガラス化すると、揮発してしまうとの誤まっ
た認識がなされていたためである。
Another reason why the idea of performing the (Ill and (ml) processes at the same time did not arise is that Gemg, etc., which are used as dopant for optical fibers, volatilizes when turned into transparent glass at a temperature higher than 1600"C. This was because there was a mistaken belief that the

(発 明 の 目 的) 本発明は透明ガラス化と光ファイバの!!I@を同時に
行うことを特徴とし、その目的は装置台数の減少および
製造時間の短縮を図り、光ファイバを高速に製造して、
低価格化を実現することにある。
(Purpose of the invention) The present invention is directed to transparent vitrification and optical fibers! ! It is characterized by performing I@ simultaneously, and its purpose is to reduce the number of devices and shorten manufacturing time, and to manufacture optical fibers at high speed.
The aim is to achieve lower prices.

(実 施 例 1 ) 工程(Illと工程(11を一緒にするためには、まず
従来言われていた1600”Cより高温でドーパントの
揮発なしで透明ガラス化が可能であることを実証する必
要がある。
(Example 1) In order to combine process (Ill) and process (11), it is first necessary to demonstrate that transparent vitrification is possible without volatilization of the dopant at a higher temperature than the conventionally said 1600"C. There is.

第1図に示す電気炉(カーボン抵抗炉)1を用い、下部
からGeO2をドーパントとするSin、多孔質母材、
2を種棒8上につけた状態で挿入固定した。
Using the electric furnace (carbon resistance furnace) 1 shown in FIG.
2 was inserted and fixed on the seed rod 8.

ガス導入口4から不活性ガス(Ar+He)を導入し、
種々の温度で透明ガラス化を行った。透明ガラス化した
試料の屈折率分布を干渉顕微鏡を用いて測定し、同時に
化学分析によってGoo g濃度の定置を行った。
Inert gas (Ar+He) is introduced from the gas inlet 4,
Transparent vitrification was performed at various temperatures. The refractive index distribution of the transparent vitrified sample was measured using an interference microscope, and at the same time, the Goog concentration was determined by chemical analysis.

第2図にガラス化した温度に対してn / n5(n:
温度Tでガラス化した試料中央部の屈折率、n8F 1
450℃でガラス化した試料中央部の屈折率)をパーセ
ント表示で示す。図中矢印で光ファイバに線引きすると
きの温度(1900〜2000’C)を示した。
Figure 2 shows n/n5 (n:
Refractive index of the central part of the sample vitrified at temperature T, n8F 1
The refractive index of the central part of the sample vitrified at 450°C is expressed as a percentage. The arrow in the figure indicates the temperature (1900 to 2000'C) when drawing the optical fiber.

2000°C以下では、屈折率の変化はほとんど見られ
ず、線引きと同様の温度でガラス化してもGeO2の揮
発に関して問題のないことがわかった。
At temperatures below 2000°C, almost no change in the refractive index was observed, and it was found that there was no problem with the volatilization of GeO2 even if vitrification was performed at the same temperature as that for drawing.

第8図は試料の径方向への屈折率分布で透明ガラス化温
度の影1を調べた結果を示す。ただし、Δnは石英ガラ
スを標準としたときの比屈折率差を表わす。1460〜
2000℃では、屈折率分布でみても、はとんど変化の
ないことがわかった。
FIG. 8 shows the results of examining the shadow 1 of the transparent vitrification temperature using the refractive index distribution in the radial direction of the sample. However, Δn represents a relative refractive index difference when quartz glass is used as a standard. 1460~
At 2000°C, it was found that there was almost no change in the refractive index distribution.

また、化学分析の結果も屈折率測定の結果と一致した。Furthermore, the results of chemical analysis were also consistent with the results of refractive index measurement.

(実 施 例 2) VAD法により作製した直径約50簡の多孔質母材(S
ing −Gang )を、石英ガラス炉心管を具えた
電気炉中で半焼結して直径を約Bowまで収縮させた。
(Example 2) A porous base material (S
ing-Gang) was semi-sintered in an electric furnace equipped with a quartz glass furnace tube to shrink the diameter to approximately Bow.

温度は1800°Cであり、その際、脱水のためHeガ
スとともに塩業糸脱水剤を炉心管・中に流した。
The temperature was 1800°C, and at that time, a salt fiber dehydrating agent was flowed into the furnace tube together with He gas for dehydration.

この半焼結多孔質母材を、線ダ1き炉に挿入し、線引き
を行った。
This semi-sintered porous base material was inserted into a wire drawing furnace and wire drawn.

第49(alはこの実施例の模式図であって、1は電気
炉Cfm引き炉)、8は種棒、4はガス導入口、6は半
焼結多孔質母材、6は透明ガラス化が行われている部分
、7は線引きが行われている部分を示す。さらに第4図
fblには電気炉中における温度分布を示すが、はぼ最
高温度の位置(1900〜2000°C)で線引きが行
われているO M!Iき炉はカーボンを発熱体とし、カーボン製炉心管
を用いたもので、雰匪気はlrとHe5の混合ガスであ
る。前記、半焼結多孔質母材は線引き炉の中で透明ガラ
ス化と線引きを同時に行ったことになる。
No. 49 (al is a schematic diagram of this example, 1 is an electric furnace Cfm drawing furnace), 8 is a seed rod, 4 is a gas inlet, 6 is a semi-sintered porous base material, 6 is a transparent vitrified 7 indicates a portion where delineation is performed. Furthermore, Fig. 4fbl shows the temperature distribution in the electric furnace, where the line is drawn at the highest temperature position (1900-2000°C). The I-burning furnace uses carbon as a heating element and a carbon furnace tube, and the atmosphere is a mixed gas of lr and He5. The above semi-sintered porous base material was subjected to transparent vitrification and wire drawing at the same time in a wire drawing furnace.

このようにして作製した光ファイバの光損失波長特性を
第6図に示す。この実施例では、コア部分のみを母材と
して合成し、クラッド部分はシリコーン樹脂(通常は被
覆材として用いられている)で構成しているので、光損
失特性にはOH基による吸収(0,95、1,24、1
,4μm lとともに、シリコーン樹脂に起因する吸収
が見うけられる。
FIG. 6 shows the optical loss wavelength characteristics of the optical fiber thus produced. In this example, only the core part is synthesized as a base material, and the cladding part is composed of silicone resin (usually used as a coating material), so the optical loss characteristics include absorption by OH groups (0, 95, 1, 24, 1
, 4 μml, absorption caused by the silicone resin can be seen.

得られた光ファイバのコア径は120βm1シリコーン
クラッド径は400μmであった。
The obtained optical fiber had a core diameter of 120βm1 and a silicone cladding diameter of 400 μm.

(実 施 例 8 ) 内径が約59mの線引き炉を用い、直径50gIKの多
孔質母材の透明ガラス化と線引きを同時に行った。まず
、多孔質母材の先端部から20鴎の位置を炉の中央部に
くるようにセットしくここが最高温度の位置となる)・
室温から線引き温度である1900°Cまで昇温しで、
線引きを開始した。多孔質母材の送り速度は約1〜2n
m / min%線引き速度は80〜40 m / m
inであった。得られた光ファイバの損失値は、実施例
2とほぼ同様の値であった。
(Example 8) Using a wire drawing furnace with an inner diameter of about 59 m, transparent vitrification and wire drawing of a porous base material with a diameter of 50 g IK were performed simultaneously. First, set the position 20 degrees from the tip of the porous base material to the center of the furnace (this will be the position of the highest temperature).
By raising the temperature from room temperature to 1900°C, which is the drawing temperature,
I started drawing the line. Feed speed of porous base material is approximately 1~2n
m/min% wire drawing speed is 80-40 m/m
It was in. The loss value of the obtained optical fiber was almost the same as that of Example 2.

(実 施 例 4 ) コア部とクラッド部を同時に堆積させた多孔質母材(全
合成多孔質母材と呼ぶ)(直径約60闘)を用い、線引
きと透明ガラス化を同時に行った。
(Example 4) Using a porous base material (referred to as a fully synthetic porous base material) (about 60mm in diameter) in which a core part and a cladding part were deposited at the same time, wire drawing and transparent vitrification were performed simultaneously.

この実施例では、数%の塩素系脱水剤もHe 、 Ar
ガスと同時に流している。得られた光ファイバは、コア
径約20μmで外径は125μmにコントロールして線
引きしたものである。
In this example, a few percent of the chlorine dehydrating agent was also He, Ar.
It flows at the same time as the gas. The obtained optical fiber was drawn with a core diameter of approximately 20 μm and an outer diameter controlled to be 125 μm.

第6図に光ファイバの光損失波長特性を示す。FIG. 6 shows the optical loss wavelength characteristics of the optical fiber.

第6図ではコア部、クラッド部ともにガラスで合成され
ているので、光損失値も通常の光ファイバの値と比べて
遜色のないものとなっている。
In FIG. 6, both the core part and the cladding part are made of glass, so the optical loss value is comparable to that of a normal optical fiber.

以上の実施例では、一つの山形の温度分布を有する線引
き炉を用いた実験を示したが、例えば上部に1500℃
、下部に1900℃の二つのビークを有する電気炉(ツ
ーゾーンの電気炉)を用いることももち論可能である。
In the above example, an experiment was shown using a wire drawing furnace with a single chevron-shaped temperature distribution.
It is also possible to use an electric furnace (two-zone electric furnace) having two peaks of 1900° C. at the bottom.

、以上説明したように、本発明は光ファイバを製造する
際、多孔質母材を透明ガラス化する工程と線引きする工
程を同時に行うので、時間的に大幅に短縮することが可
能であり、従来2台必要であった電気炉も1台ですむ。
As explained above, when manufacturing an optical fiber, the present invention simultaneously performs the process of converting a porous base material into transparent vitrification and the process of drawing it, so it is possible to significantly shorten the time required, compared to conventional methods. Instead of two electric furnaces, only one is required.

このことは、大量に光ファイバを低価格で製造しようと
する際に、大きな利点となる。
This is a great advantage when trying to manufacture optical fibers in large quantities at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は透明ガラス化実験(実施例1)の模式第2図は
ガラス化温度に対してn/n8(n:温度Tでガラス化
した試料中央部の屈折率、n8:1450°Cでガラス
化した試料中央部の屈折率)を示す図、 第8図は透明ガラス化温度が屈折率分布に与える影響を
示す図、 第4図(a)は本発明の一実施例の模式図、第4図(b
)は電気炉中の温度分布を示す図、第5図は透明ガラス
化と線引きを同時に行って得られた光ファイバ(シリコ
ーン争クラッド)の光損失波長特性を示す図、 第6図は全合成した多孔質母材を用い透明ガラス化と線
引きを同時に行って得られた光ファイバの光損失波長特
性を示す図である。 1・・・電気炉、2・・・多孔質母材、8・・・種棒、
4・・・ガス導入口、5・・・半焼結多孔質母材、6・
・・透明ガラス化が行われている部分、7・・・線引き
が行われている部分。 (8) 第2図 74開昭GO−186426(4) 第3図
Figure 1 is a schematic of the transparent vitrification experiment (Example 1). Figure 2 is n/n8 with respect to the vitrification temperature (n: refractive index of the central part of the sample vitrified at temperature T, n8: at 1450°C). FIG. 8 is a diagram showing the influence of the transparent vitrification temperature on the refractive index distribution. FIG. 4(a) is a schematic diagram of an embodiment of the present invention. Figure 4 (b
) is a diagram showing the temperature distribution in the electric furnace, Figure 5 is a diagram showing the optical loss wavelength characteristics of an optical fiber (silicone cladding) obtained by simultaneously performing transparent vitrification and drawing, and Figure 6 is a diagram showing the optical loss wavelength characteristic of the optical fiber obtained by simultaneously performing transparent vitrification and drawing. FIG. 3 is a diagram showing the optical loss wavelength characteristics of an optical fiber obtained by simultaneously performing transparent vitrification and drawing using a porous preform prepared by the above method. 1... Electric furnace, 2... Porous base material, 8... Seed rod,
4... Gas inlet, 5... Semi-sintered porous base material, 6...
... Part where transparent vitrification is performed, 7... Part where line drawing is performed. (8) Fig. 2 74 Kaisho GO-186426 (4) Fig. 3

Claims (1)

【特許請求の範囲】[Claims] L ガラス原料を反応させることによってガラス微粒子
を生成し、該ガラス微粒子を堆積させて光フアイバ用多
孔質母材を形成し、次に該多孔質母材を線引き用電気炉
内において、透明ガラス化しながら光ファイバに線引き
することを特徴とする光ファイバの製造方法。
L: Generate glass particles by reacting glass raw materials, deposit the glass particles to form a porous base material for optical fiber, and then turn the porous base material into transparent vitrification in an electric furnace for drawing. 1. A method for manufacturing an optical fiber, the method comprising: drawing an optical fiber.
JP3722284A 1984-03-01 1984-03-01 Manufacture of optical fiber Pending JPS60186426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3722284A JPS60186426A (en) 1984-03-01 1984-03-01 Manufacture of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3722284A JPS60186426A (en) 1984-03-01 1984-03-01 Manufacture of optical fiber

Publications (1)

Publication Number Publication Date
JPS60186426A true JPS60186426A (en) 1985-09-21

Family

ID=12491561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3722284A Pending JPS60186426A (en) 1984-03-01 1984-03-01 Manufacture of optical fiber

Country Status (1)

Country Link
JP (1) JPS60186426A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812153A (en) * 1987-01-12 1989-03-14 American Telephone And Telegraph Company Method of making a glass body having a graded refractive index profile
EP0849232A1 (en) * 1996-12-17 1998-06-24 Alcatel Process and apparatus for drawing an optical fibre from a preform
WO2001004063A3 (en) * 1999-07-08 2001-04-26 Corning Inc Method for drawing an optical fiber from a porous preform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812153A (en) * 1987-01-12 1989-03-14 American Telephone And Telegraph Company Method of making a glass body having a graded refractive index profile
EP0849232A1 (en) * 1996-12-17 1998-06-24 Alcatel Process and apparatus for drawing an optical fibre from a preform
WO2001004063A3 (en) * 1999-07-08 2001-04-26 Corning Inc Method for drawing an optical fiber from a porous preform

Similar Documents

Publication Publication Date Title
JPH0196039A (en) Production of optical fiber preform
JPS584323B2 (en) Kougakusenino Seizouhouhou
US4423925A (en) Graded optical waveguides
JPS60141634A (en) Parent material for optical fiber and its preparation
JPS60186426A (en) Manufacture of optical fiber
CN109399910B (en) Large-core-diameter optical fiber preform and preparation method of optical fiber
KR890003706B1 (en) A preparation method of glass fibers comprising geo2-sio2
JPS62246834A (en) Production of base material for optical fiber
JPS6054936A (en) Manufacture of preform rod
JPH01286932A (en) Production of optical fiber preform
JPH04260630A (en) Production of preform optical fiber
JPH05150117A (en) Production of polarizing glass
Wood et al. Characterization of torch-deposited silica for light-guide preforms
JPS5855341A (en) Manufacture of optical fiber
JPH0525817B2 (en)
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JPH01270533A (en) Production of optical fiber
JPS581051B2 (en) Manufacturing method for optical transmission materials
JPH0218333A (en) Heat treatment of porous base material
JPH02149442A (en) Production of optical fiber preform
JPS6054937A (en) Manufacture of preform rod
JPS6131328A (en) Optical fiber
JPS6272541A (en) Production of radiation-resistant optical fiber
JPS6252137A (en) Production of material for optical transmission
JPS61117128A (en) Preparation of parent material for optical fiber