JPH07206422A - Production of synthetic quartz glass powder - Google Patents

Production of synthetic quartz glass powder

Info

Publication number
JPH07206422A
JPH07206422A JP29394A JP29394A JPH07206422A JP H07206422 A JPH07206422 A JP H07206422A JP 29394 A JP29394 A JP 29394A JP 29394 A JP29394 A JP 29394A JP H07206422 A JPH07206422 A JP H07206422A
Authority
JP
Japan
Prior art keywords
powder
quartz glass
glass powder
synthetic quartz
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29394A
Other languages
Japanese (ja)
Inventor
Kazutomi Kimura
一臣 木村
Akihiro Takazawa
彰裕 高澤
Yasuo Tanabe
康雄 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP29394A priority Critical patent/JPH07206422A/en
Publication of JPH07206422A publication Critical patent/JPH07206422A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce ultrahigh purity synthetic quartz glass powder. CONSTITUTION:When powder of silica gel obtd. by hydrolyzing tetraalkoxysilane is fired to produce synthetic quartz glass powder, the particle size of the silica gel powder is regulated to the range of 10-2,000mum before firing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造分野、特に1
000℃以上の高温度域で使用される超高純度石英ガラ
ス製品の原料として好適なシリカガラス粉末を提供する
ものである。
FIELD OF THE INVENTION The present invention relates to the field of semiconductor manufacturing, in particular 1.
The present invention provides a silica glass powder suitable as a raw material for an ultra-high purity quartz glass product used in a high temperature range of 000 ° C or higher.

【0002】[0002]

【従来の技術】従来、半導体単結晶製造用のルツボや治
具等は、天然石英を粉砕して得た天然石英粉を溶融して
製造されていたが、天然石英は良質のものであっても種
々の金属不純物を含んでおり、純度の面から十分満足し
得るものではなかった。特に、半導体産業の高性能化に
伴って要求される高純度単結晶には、金属不純物が混入
すると半導体の性能に悪影響を与えるので、金属不純物
等の混入が懸念されるようなルツボや治具等を使用する
ことは出来ない。このため、最近では、合金による高純
度な石英ガラス粉末が必要になってきている。
2. Description of the Related Art Conventionally, crucibles and jigs for manufacturing semiconductor single crystals have been manufactured by melting natural quartz powder obtained by crushing natural quartz, but natural quartz is of high quality. Also contains various metal impurities, and was not sufficiently satisfactory in terms of purity. In particular, in a high-purity single crystal that is required as the semiconductor industry becomes more sophisticated, if metal impurities are mixed, the performance of the semiconductor will be adversely affected. Cannot be used. For this reason, recently, high-purity silica glass powder made of an alloy has been required.

【0003】近年、純度的にすぐれたシリカ源として、
アルコキシシランを原料としたゾル・ゲル法による石英
ガラスが紹介されている。例えば、特開昭62−176
928号公報には、アルコキシシランを酸とアルカリの
存在下、加水分解してゲルを調整し、これを粉砕、乾燥
した後、焼成して石英ガラス粉末を製造する方法が示さ
れている。
In recent years, as a highly pure silica source,
Quartz glass produced by sol-gel method using alkoxysilane as a raw material has been introduced. For example, JP-A-62-176
Japanese Patent Publication No. 928 discloses a method of producing a silica glass powder by hydrolyzing an alkoxysilane in the presence of an acid and an alkali to prepare a gel, crushing and drying the gel, and then firing the silica glass powder.

【0004】[0004]

【発明が解決しようとする課題】ソル・ゲル法による合
成石英ガラス粉の製造では、まず、原料としてアルコキ
シシランを用い、これを加水分解・縮重合させてウエッ
トゲルとし、副生したアルコールや水を乾燥除去してド
ライゲルとする。このドライゲルを1,000〜1,4
00℃まで焼成し、無孔化させて合成石英ガラスが得ら
れる。ところが、焼成後に得られたものは、非常に硬
く、粉砕が大変であるため、通常は、粉末を必要とする
場合には、比較的軟らかいドライゲル、あるいは、ウェ
ットゲルの段階において、粉砕を行う方が、工業的にも
有利である。しかしながら、粉砕された粉末中には、実
際に製品として必要な粒度に比べ、非常に小さな微粉
や、大きな粒子、あるいは、微粉の凝集体が多量に含ま
れている。このような状態のまま、焼成を行うと、特に
微粉については、焼成が速いために粒子の凝集・固着が
生じやすい上、微粉の混入により、粒子間の隙間が密に
なるため、焼成時に粉体の下層部で発生する水蒸気やC
2 が蓄圧され、突沸して、粉体が焼成用のルツボから
吹きこぼれ、歩留まりの低下につながる。また、合成石
英ガラス粉の製造において、もっともコストのかかるの
が、焼成工程であり、この焼成工程において、製品とし
ては本来不要である微粉を、製品粒度の粉末と一緒に焼
成することは、工業的にも不利である。一方、製品粒度
に比べて、非常に大きな粒子や、微粒子の凝集体が焼成
時に混入していると、残留カーボンが抜けにくく、黒色
異物となり易い。この黒色異物は溶融した際に、COや
CO2 となり、発泡の原因となるが、泡を含んだ石英ル
ツボや炉心管等では、高温使用時の寸法安定性や、単結
晶引き上げ時に泡が弾けて液面揺動が生じ、結晶欠陥に
なる等の問題があった。
In the production of synthetic quartz glass powder by the sol-gel method, first, alkoxysilane is used as a raw material, and this is hydrolyzed and polycondensed to form a wet gel, which is a by-product of alcohol or water. Is removed by drying to give a dry gel. This dry gel is 1,000-1,4
A synthetic quartz glass is obtained by firing to 00 ° C. and making it non-porous. However, the product obtained after firing is very hard and difficult to pulverize, so normally, when powder is required, it is preferable to perform pulverization in a relatively soft dry gel or wet gel stage. However, it is industrially advantageous. However, the pulverized powder contains a large amount of very small fine particles, large particles, or agglomerates of fine powder, as compared with the particle size actually required as a product. If firing is performed in such a state, particularly for fine powder, since the firing is fast, particles are likely to agglomerate and stick together. Water vapor and C generated in the lower part of the body
O 2 is accumulated in pressure and bumps, and powder is blown out from the crucible for firing, leading to a reduction in yield. Also, in the production of synthetic quartz glass powder, the most costly is the firing step. In this firing step, firing fine powder, which is essentially unnecessary as a product, together with powder of the product grain size is an industrial process. It is also disadvantageous. On the other hand, if very large particles or agglomerates of fine particles are mixed in at the time of firing as compared with the product particle size, it is difficult for residual carbon to come off, and black foreign matter tends to occur. When this black foreign substance melts, it becomes CO or CO 2 and causes foaming. However, in a quartz crucible or core tube containing bubbles, dimensional stability during high temperature use and bubbles popping when pulling a single crystal. There is a problem that the liquid level fluctuates and crystal defects occur.

【0005】[0005]

【課題を解決するための手段】発明者等は上記のような
不都合のない合成石英ガラス粉末を得るため、鋭意検討
を重ねた結果、ゾル・ゲル法による合成石英ガラス粉の
製造において、乾燥シリカゲル粉末を焼成する前に、1
0〜2,000μm、好ましくは、50〜1,000μ
mの粒度に予め分級しておくことにより、生産性を大幅
に向上させることができ、品質的にも、溶融成形時に、
泡の少ない石英ガラス製品を得ることができることを見
出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to obtain synthetic quartz glass powder free from the above-mentioned inconveniences. As a result, in the production of synthetic quartz glass powder by the sol-gel method, dry silica gel was produced. Before firing the powder, 1
0 to 2,000 μm, preferably 50 to 1,000 μm
By preliminarily classifying to a particle size of m, productivity can be significantly improved, and in terms of quality, during melt molding,
The inventors have found that a quartz glass product having a small amount of bubbles can be obtained, and have reached the present invention.

【0006】以下、本発明につき、さらに詳細に説明す
る。本発明で対象となる合成石英ガラス粉は、アルコキ
シシランを加水分解して得られるシリカゲルを乾燥後、
焼成することにより得られる石英ガラス粉である。ゾル
ゲル法によるアルコキシシランの加水分解は、周知の方
法にしたがって、アルコキシシランと水を反応させるこ
とによって行なわれる。原料として用いられるアルコキ
シシランとしてはテトラメトキシシラン、テトラエトキ
シシラン等のC1 〜C4 の低級アルコキシシラン或いは
そのオリゴマーが好ましい。
The present invention will be described in more detail below. The synthetic quartz glass powder targeted in the present invention is obtained by drying silica gel obtained by hydrolyzing alkoxysilane,
It is a quartz glass powder obtained by firing. Hydrolysis of alkoxysilane by the sol-gel method is performed by reacting alkoxysilane with water according to a known method. The alkoxysilane used as a raw material is preferably a C 1 -C 4 lower alkoxysilane such as tetramethoxysilane or tetraethoxysilane or an oligomer thereof.

【0007】水の使用量は通常、アルコキシシラン中の
アルコキシ基の1倍当量以上10倍当量以下から選択す
る。この際、必要に応じてアルコール類やエーテル類等
の有機溶媒を混合してもよい。アルコールとしてはメタ
ノール、エタノール、プロパノール、ブタノール等が、
エーテルとしてはアセトン等が挙げられる。また、触媒
として塩酸、酢酸のような酸やアンモニアのようなアル
カリを用いてもよい。
The amount of water used is usually selected from 1 to 10 times the equivalent of the alkoxy groups in the alkoxysilane. At this time, organic solvents such as alcohols and ethers may be mixed if necessary. As alcohol, methanol, ethanol, propanol, butanol, etc.,
Acetone etc. are mentioned as ether. Further, an acid such as hydrochloric acid or acetic acid or an alkali such as ammonia may be used as a catalyst.

【0008】当然のことながら、高純度のシリカガラス
粉末を得るには、ここで使用する原料アルコキシシラ
ン、水、溶媒等この反応系に導入される物質は、すべて
高純度であることが必要である。加水分解生成物をゲル
化させるには、加熱すれば直ちにゲルを得ることができ
るが、常温で放置しても数時間でゲル化するので、加温
の程度を調節することによってゲル化時間を調節するこ
とができる。得られたゲルは細分化してから乾燥しても
よい。乾燥してから細分化してもよい。
As a matter of course, in order to obtain a high-purity silica glass powder, it is necessary that all materials such as the raw material alkoxysilane, water, solvent, etc. introduced into this reaction system are of high purity. is there. To gel the hydrolysis product, you can obtain the gel immediately by heating, but it will gel in several hours even if left at room temperature, so the gelling time can be adjusted by adjusting the degree of heating. It can be adjusted. The gel obtained may be subdivided and then dried. It may be dried and then subdivided.

【0009】ゲルの乾燥の程度については、H2 O含有
量で通常、1〜10重量%であり、通常、ゲルを真空中
或いは不活性ガス中で100〜200℃に加熱すること
により行なわれる。
The degree of drying of the gel is usually from 1 to 10% by weight based on the H 2 O content, and it is usually carried out by heating the gel to 100 to 200 ° C. in vacuum or in an inert gas. .

【0010】上記のようにして製造した乾燥シリカゲル
粉末を、10〜2,000μm、好ましくは、50〜
1,000μmの範囲に粒度調整を行う。この範囲より
も小さな粒子が混入すると、これが粒子間の空隙部に入
り込み、密充填となって、焼成時に発生する水蒸気が、
スムーズに系外に排出されず、粉体内部に蓄圧され、ひ
いては、突沸、粉体の吹きこぼれが発生し易くなり、好
ましくない。また、上記粒度範囲より大きな粒子が混入
すると、焼成時にカーボン分が完全に酸化されずに、未
燃カーボンとして、粒子内部に閉じこめられ易く、黒色
異物となり易い。黒色異物は、溶融成形時にCO、ある
いは、CO2 ガスとなって、発泡の原因となるため、好
ましくない。なお、粒度調整の手段としては、篩震盪機
等で十分であるが、特にこれを限定されるものではな
い。
The dried silica gel powder produced as described above is added to 10 to 2,000 μm, preferably 50 to
The particle size is adjusted within the range of 1,000 μm. When particles smaller than this range are mixed, they enter the voids between the particles and become densely packed, and the steam generated during firing is
It is not discharged smoothly to the outside of the system, pressure is accumulated inside the powder, and as a result, bumping and powder spillage are likely to occur, which is not preferable. Further, when particles larger than the above particle size range are mixed, the carbon content is not completely oxidized during firing, and unburned carbon is likely to be trapped inside the particles and black foreign matter is likely to occur. Black foreign matter is not preferable because it causes CO or CO 2 gas during melt molding and causes foaming. As a means for adjusting the particle size, a sieve shaker or the like is sufficient, but it is not particularly limited.

【0011】このようにして粒度調整された乾燥シリカ
ゲル粉末は、1,000〜1,400℃まで焼成され、
無孔化して、合成石英ガラス粉末となるが、焼成時の粉
体の吹きこぼれ等もない。また、製品として不必要であ
る微粉や、粗大粒子をあらかじめ除去してあるため、焼
成工程における生産性が、大幅に向上する。
The dried silica gel powder whose particle size has been adjusted in this manner is fired to 1,000 to 1,400 ° C.,
It becomes non-porous and becomes synthetic quartz glass powder, but there is no spilling of powder during firing. Further, since fine powder and coarse particles, which are unnecessary as a product, have been removed in advance, the productivity in the firing step is greatly improved.

【0012】[0012]

【実施例】以下、実施例によって、本発明を具体的に説
明するが、本発明は、その要旨を越えない限り、以下の
実施例に限定されるものではない。〔実施例1〕攪拌槽
に、テトラメトキシシランとこれに対して5倍当量の水
を仕込み、30℃の温度で1時間攪拌し、加水分解反応
によって均一なゾル溶液を得た。さらに、これを塩化ビ
ニル製のバットに移し、24時間放置して、ゲル化させ
た。このゲルを、140℃の真空乾燥機を用いて12時
間乾燥を行なった後、ロールミルを用いて粉砕し、篩震
盪機を用いて125〜500μmの粒子径に粒度調整を
行なった。このようにして得られたシリカガラス粉末5
0kgずつを、550mmφ×430mmHの石英ルツ
ボ10個に仕込み、これを間口2×2m、奥行5mの電
気炉内にセットした。そして、200℃/Hrの昇温速
度で1200℃まで昇温し、その温度で20時間保持し
た。自然冷却後、ルツボ、及び、粉体の状態を調べたと
ころ、粉体の吹きこぼれは全く見られず、焼成品の全量
を回収することが出来た。この時の回収量は、410k
gであり、焼成後の粒度は、100〜400μmに収縮
していた。また、焼成品100gを採取し、この中の異
色異物の数を目視により数えたところ皆無であった。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. [Example 1] Tetramethoxysilane and water in an amount 5 times equivalent thereto were charged in a stirring tank and stirred at a temperature of 30 ° C for 1 hour to obtain a uniform sol solution by hydrolysis reaction. Further, this was transferred to a vinyl chloride vat and left for 24 hours for gelation. The gel was dried for 12 hours using a vacuum dryer at 140 ° C., crushed using a roll mill, and the particle size was adjusted to 125 to 500 μm using a sieve shaker. Silica glass powder 5 thus obtained
Each of 0 kg was charged into 10 quartz crucibles of 550 mmφ × 430 mmH, which were set in an electric furnace having a frontage of 2 × 2 m and a depth of 5 m. Then, the temperature was raised to 1200 ° C. at a heating rate of 200 ° C./Hr, and the temperature was maintained for 20 hours. When the state of the crucible and the powder was examined after natural cooling, no blowout of the powder was found, and the entire amount of the fired product could be recovered. The recovery amount at this time is 410k
and the particle size after firing had shrunk to 100 to 400 μm. In addition, 100 g of the fired product was sampled, and the number of foreign matters of different colors therein was visually counted, and it was found that none.

【0013】〔比較例1〕実施例1において、ロールミ
ルを用いて乾燥ゲルを粉砕後、粒度調整する事無く、5
50mmφ×430mmHの石英ルツボ10個に、50
kgずつゲルを仕込み、実施例1と同様の条件で焼成を
行った。なお、この時仕込んだゲルの粒度分布を測定し
たところ、10μm以下が6%、10〜50μmが8
%、50〜100μmが13%、100〜500μmが
67%、500μm以上が6%であった。焼成後、自然
冷却してルツボ、及び、粉体の状態を調べたところ、1
0個のルツボのうち、3個について、仕込んだ粉体量
の、およそ5分の1〜4分の1が、ルツボの周辺部へ吹
きこぼれていた。結局、ルツボ内の回収した粉末のう
ち、100〜400μmの粒度のものを篩分けして回収
したところ、回収量は251kgであった。これは、1
バッチ当たりの焼成効率としては、実施例1の61%で
あった。また、焼成品100gを採取し、実施例1と同
様に黒色異物の数を調べたところ、6個であった。この
黒色異物を入れた焼成品を、酸−水素炎によるベルヌイ
法で15mmφ×50mmのインゴットを作製したとこ
ろ、いずれの黒色異物も、1mmφ以上の泡となった。
Comparative Example 1 In Example 1, the dry gel was crushed using a roll mill, and then the particle size was adjusted without adjusting the particle size.
50 pieces for each 50mmφ × 430mmH quartz crucible
The gel was charged in units of kg and baked under the same conditions as in Example 1. When the particle size distribution of the gel charged at this time was measured, 10% or less was 6% and 10 to 50 μm was 8%.
%, 50-100 μm was 13%, 100-500 μm was 67%, and 500 μm or more was 6%. After firing, it was naturally cooled and the state of the crucible and the powder was examined.
About three out of zero crucibles, about one-fifth to one-fourth of the amount of powder charged was blown to the peripheral portion of the crucible. After all, among the powders collected in the crucible, powder having a particle size of 100 to 400 μm was sieved and collected, and the collected amount was 251 kg. This is 1
The firing efficiency per batch was 61% of that of Example 1. Further, when 100 g of the baked product was sampled and the number of black foreign matters was examined in the same manner as in Example 1, it was 6 pieces. When a 15 mmφ × 50 mm ingot was prepared from the fired product containing the black foreign matter by the Bernoulli method using an acid-hydrogen flame, all the black foreign matter became bubbles of 1 mmφ or more.

【0014】[0014]

【発明の効果】本発明により高純度石英ガラス粉の効率
的な製造が可能となる。
The present invention enables efficient production of high-purity quartz glass powder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 テトラアルコキシシランの加水分解によ
り得たシリカゲル粉末を焼成することにより合成石英ガ
ラス粉を製造するにあたり、焼成前に10〜2,000
μmの範囲に粒度調整を行なうことを特徴とする合成石
英ガラス粉の製造方法。
1. In producing a synthetic quartz glass powder by firing silica gel powder obtained by hydrolysis of tetraalkoxysilane, 10 to 2,000 before firing.
A method for producing a synthetic quartz glass powder, which comprises adjusting the particle size in the range of μm.
JP29394A 1994-01-06 1994-01-06 Production of synthetic quartz glass powder Pending JPH07206422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29394A JPH07206422A (en) 1994-01-06 1994-01-06 Production of synthetic quartz glass powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29394A JPH07206422A (en) 1994-01-06 1994-01-06 Production of synthetic quartz glass powder

Publications (1)

Publication Number Publication Date
JPH07206422A true JPH07206422A (en) 1995-08-08

Family

ID=11469864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29394A Pending JPH07206422A (en) 1994-01-06 1994-01-06 Production of synthetic quartz glass powder

Country Status (1)

Country Link
JP (1) JPH07206422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008332A1 (en) * 2001-07-19 2003-01-30 Mitsubishi Chemical Corporation High purity quartz powder and method for production thereof, and formed glass article from the powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008332A1 (en) * 2001-07-19 2003-01-30 Mitsubishi Chemical Corporation High purity quartz powder and method for production thereof, and formed glass article from the powder
US7063826B2 (en) 2001-07-19 2006-06-20 Mitsubishi Chemical Corporation High-purity quartz powder, process for producing the same, and glass molding
US7427387B2 (en) 2001-07-19 2008-09-23 Mitsubishi Chemical Corporation High-purity quartz powder, process for producing the same, and glass molding

Similar Documents

Publication Publication Date Title
JPH072513A (en) Production of synthetic quartz glass powder
WO1988003914A1 (en) Vitreous silica
TW201529474A (en) Synthetic amorphous silica powder and process for manufacturing same
JPH10287416A (en) Production of synthetic quartz powder
EP0451818B1 (en) Method for producing unsintered cristobalite particles
JP2001089168A (en) Production of synthetic silica glass powder of high purity
TW202304811A (en) Silica powder and production method therefor
JPH07206422A (en) Production of synthetic quartz glass powder
KR100414962B1 (en) Process for producing synthetic quartz powder
JPH0567574B2 (en)
JPH07309615A (en) Production of synthetic quartz glass powder
JP3735887B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JP5941774B2 (en) Synthetic silica glass powder and method for producing the same
JPH05201718A (en) Production of silica glass powder and silica glass molten molding
JPH07157308A (en) Production of synthetic quartz glass powder
JPH05279002A (en) Production of al nitride powder
JP3806956B2 (en) Method for producing synthetic quartz glass powder
JPH0563416B2 (en)
JPH10182139A (en) Quality evaluation of synthetic quartz glass powder
JPH054827A (en) Silica glass powder, its production and formed silica glass using the same
JP4313851B2 (en) Method for producing synthetic quartz glass powder
JPH09142852A (en) Production of both high-purity synthetic quartz glass powder and high-purity synthetic quartz glass molding product
JP4322262B2 (en) Method for producing synthetic quartz glass powder
JPH10212115A (en) Production of high purity quartz glass powder and production of quartz glass molding

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040203

Free format text: JAPANESE INTERMEDIATE CODE: A02