JPH07206409A - Silicon nitride powder and its production - Google Patents

Silicon nitride powder and its production

Info

Publication number
JPH07206409A
JPH07206409A JP6001713A JP171394A JPH07206409A JP H07206409 A JPH07206409 A JP H07206409A JP 6001713 A JP6001713 A JP 6001713A JP 171394 A JP171394 A JP 171394A JP H07206409 A JPH07206409 A JP H07206409A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
nitride powder
temperature
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6001713A
Other languages
Japanese (ja)
Other versions
JP3438928B2 (en
Inventor
Hideki Hirotsuru
秀樹 広津留
Hiroshi Isozaki
啓 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP00171394A priority Critical patent/JP3438928B2/en
Publication of JPH07206409A publication Critical patent/JPH07206409A/en
Application granted granted Critical
Publication of JP3438928B2 publication Critical patent/JP3438928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain silicon nitride powder capable of producing a silicon nitride sintered compact excellent in high-temp. strength and high-temp. creep characteristics and suitable for use as a high-temp. member of a gas turbine, etc. CONSTITUTION:Metallic silicon powder is nitrided to obtain the objective silicon nitride powder having >=10m<2>/g specific surface area or <=0.8mum average particle diameter, <=1.5wt.% in total of oxygen content, <=500ppm (F+Cl) content and <=300ppm F content.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温強度、高温クリー
プ特性等の高温特性に優れた焼結体を製造することがで
きる窒化珪素粉末及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride powder capable of producing a sintered body having excellent high temperature characteristics such as high temperature strength and high temperature creep characteristics, and a method for producing the same.

【0002】[0002]

【従来の技術】窒化珪素焼結体は、強度、硬度、靭性、
耐熱性、耐食性、耐熱衝撃性等に優れた材料であり、各
種産業機構部品、自動車部品等の利用が進められてい
る。更には、窒化珪素焼結体は、高温においてもその特
性の劣化が少ないので、1200℃以上での使用が要求
されるガスタービン部品等での利用が検討されている。
2. Description of the Related Art Sintered silicon nitride has strength, hardness, toughness,
It is a material with excellent heat resistance, corrosion resistance, and thermal shock resistance, and is being used for various industrial mechanism parts, automobile parts, and the like. Further, since the silicon nitride sintered body is less deteriorated in its characteristics even at high temperatures, its use in a gas turbine component or the like which is required to be used at 1200 ° C. or higher is being studied.

【0003】窒化珪素は、共有結合性の強い物質である
ため、緻密化した焼結体を得るためには、焼結助剤とし
て酸化物等を添加して焼結される。しかし、焼結助剤は
窒化珪素粉末の表面に存在するシリカ等と反応して焼結
体中に粒界ガラス相として残留し、窒化珪素焼結体の高
温特性を低下させる原因となっている。
Since silicon nitride is a substance having a strong covalent bond, in order to obtain a densified sintered body, it is sintered by adding an oxide or the like as a sintering aid. However, the sintering aid reacts with silica or the like present on the surface of the silicon nitride powder and remains as a grain boundary glass phase in the sintered body, which causes the high temperature characteristics of the silicon nitride sintered body to deteriorate. .

【0004】これまで、窒化珪素焼結体の高温特性を向
上させる手段として、粒界ガラス相の軟化点を高めるた
めに希土類酸化物を添加する(特公昭48−7486号
公報、特公昭49−21091号公報、特公昭52−3
649号公報)、粒界ガラス相を結晶化させて軟化点を
高くする(特公昭56−388号公報)等の提案があ
る。また、HIP処理や焼結体のアニール処理によって
粒界相を結晶化させる方法もある。しかしながら、これ
らの方法であっても高温特性を十分に高めた窒化珪素焼
結体を製造することはできなかった。
Hitherto, as a means for improving the high temperature characteristics of a silicon nitride sintered body, a rare earth oxide has been added in order to raise the softening point of the grain boundary glass phase (Japanese Patent Publication Nos. 48-7486 and 49-49). No. 21091, Japanese Patent Publication No. 52-3
649) and crystallizing the grain boundary glass phase to increase the softening point (Japanese Patent Publication No. 56-388). There is also a method of crystallizing the grain boundary phase by HIP treatment or annealing treatment of the sintered body. However, even by these methods, it was not possible to manufacture a silicon nitride sintered body having sufficiently improved high temperature characteristics.

【0005】一方、原料となる窒化珪素粉末の製造方法
としては、金属珪素直接窒化法、シリカ還元法、ハロゲ
ン化珪素法等があり、これらの製法で得られた粉末は、
それぞれ異なった粉体特性をもち、焼結性や焼結体特性
に大きく影響している。一般に、高温特性は粒界相の特
性に大きな影響を受けているので高温特性を向上させる
には高純度の窒化珪素粉末が必要となる。
On the other hand, as a method for producing a silicon nitride powder as a raw material, there are a metal silicon direct nitriding method, a silica reduction method, a silicon halide method and the like. The powder obtained by these production methods is
They have different powder characteristics, which greatly affect the sinterability and the characteristics of the sintered body. In general, the high temperature characteristics are greatly influenced by the characteristics of the grain boundary phase, and therefore high-purity silicon nitride powder is required to improve the high temperature characteristics.

【0006】金属珪素直接窒化法の場合、高純度のSi
粉末を原料とし、得られた窒化珪素粉末の金属不純物を
低減するために酸による精製処理が行われているが、こ
のようにして製造された高純度窒化珪素粉末であって
も、必ずしも高温特性に優れた焼結体を製造することは
できなかった。
In the case of the metal silicon direct nitriding method, high-purity Si is used.
Although the powder is used as a raw material and is refined with an acid in order to reduce metal impurities in the obtained silicon nitride powder, even the high-purity silicon nitride powder produced in this manner does not necessarily have high-temperature characteristics. It was not possible to manufacture a sintered body excellent in heat resistance.

【0007】[0007]

【本発明が解決しようとする課題】本発明の目的は、1
200℃以上の高温で使用されるガスタービン部品等と
して使用可能な高温強度、高温クリープ特性等の高温特
性に優れた焼結体を製造することができる焼結性に優れ
た窒化珪素粉末を提供することである。
The object of the present invention is to
Provided is a silicon nitride powder having excellent sinterability, which can produce a sintered body excellent in high-temperature characteristics such as high-temperature strength and high-temperature creep characteristics, which can be used as a gas turbine component used at a high temperature of 200 ° C. or higher. It is to be.

【0008】すなわち、本発明は、以下を要旨とする窒
化珪素粉末及び窒化珪素粉末の製造方法である。
That is, the present invention is a silicon nitride powder and a method for producing a silicon nitride powder, which are summarized below.

【0009】金属珪素粉末を窒化して得られた窒化珪素
粉末であって、比表面積10m2/g以上又は平均粒径
0.8μm以下、全酸素量が1.5重量%以下、F及び
Clの合計含有量が500ppm以下でしかもF含有量
が300ppm以下であることを特徴とする窒化珪素粉
末(請求項1)。
Silicon nitride powder obtained by nitriding metallic silicon powder, having a specific surface area of 10 m 2 / g or more or an average particle diameter of 0.8 μm or less, a total oxygen content of 1.5% by weight or less, F and Cl The total content of Fe is 500 ppm or less and the F content is 300 ppm or less. A silicon nitride powder (claim 1).

【0010】表面酸素量が0.3重量%以上であること
を特徴とする請求項1記載の窒化珪素粉末(請求項
2)。
The silicon nitride powder according to claim 1, wherein the surface oxygen content is 0.3% by weight or more (claim 2).

【0011】金属珪素粉末を窒化して得られた高純度窒
化珪素微粉末を、水素及び/又はアンモニアの分圧が
0.2atm以上の還元性雰囲気下、温度1000〜1
500℃で30分間以上処理することを特徴とする請求
項1記載の窒化珪素粉末の製造方法(請求項3)。
High-purity silicon nitride fine powder obtained by nitriding metallic silicon powder is heated at a temperature of 1000 to 1 under a reducing atmosphere in which the partial pressure of hydrogen and / or ammonia is 0.2 atm or more.
The method for producing a silicon nitride powder according to claim 1, wherein the treatment is performed at 500 ° C for 30 minutes or more (claim 3).

【0012】金属珪素粉末を窒化して得られた高純度窒
化珪素微粉末を、1torr以下の減圧雰囲気下、温度
1200〜1400℃で30分間以上処理することを特
徴とする請求項1記載の窒化珪素粉末の製造方法(請求
項4)。
The high-purity silicon nitride fine powder obtained by nitriding metallic silicon powder is treated at a temperature of 1200 to 1400 ° C. for 30 minutes or more under a reduced pressure atmosphere of 1 torr or less. A method for producing silicon powder (claim 4).

【0013】金属珪素粉末を窒化して得られた高純度窒
化珪素微粉末を、塩素ガス分圧が0.2atm以上の雰
囲気下、温度1000〜1500℃で30分間以上処理
した後、水素及び/又はアンモニアの分圧が0.2at
m以上の還元性雰囲気下、温度1000〜1500℃で
30分間以上処理することを特徴とする請求項1記載の
窒化珪素粉末の製造方法(請求項5)。
High-purity silicon nitride fine powder obtained by nitriding metallic silicon powder is treated at a temperature of 1000 to 1500 ° C. for 30 minutes or more in an atmosphere having a chlorine gas partial pressure of 0.2 atm or more, and then hydrogen and / or Or the partial pressure of ammonia is 0.2 at
The method for producing a silicon nitride powder according to claim 1, wherein the treatment is performed at a temperature of 1000 to 1500 ° C for 30 minutes or more in a reducing atmosphere of m or more (claim 5).

【0014】金属珪素粉末を窒化して得られた高純度窒
化珪素微粉末を、塩素ガス分圧が0.2atm以上の雰
囲気下、温度1000〜1500℃で30分間以上処理
した後、1torr以下の減圧雰囲気下、温度1200
〜1400℃で30分間以上処理することを特徴とする
請求項1記載の窒化珪素粉末の製造方法(請求項6)。
High-purity silicon nitride fine powder obtained by nitriding metallic silicon powder is treated at a temperature of 1000 to 1500 ° C. for 30 minutes or more in an atmosphere having a chlorine gas partial pressure of 0.2 atm or more, and then at 1 torr or less. Under reduced pressure, temperature 1200
The method for producing a silicon nitride powder according to claim 1, wherein the treatment is performed at -1400 ° C for 30 minutes or more (claim 6).

【0015】請求項1記載の窒化珪素粉末を酸素を含有
する雰囲気下で加熱処理することを特徴とする請求項2
記載の窒化珪素粉末の製造方法(請求項7)。
The silicon nitride powder according to claim 1 is heat-treated in an atmosphere containing oxygen.
A method for producing the silicon nitride powder as described above (claim 7).

【0016】以下、さらに詳しく本発明について説明す
る。
The present invention will be described in more detail below.

【0017】本発明者らは、金属珪素直接窒化法によっ
て金属不純物量、酸素量、粒度等の異なる各種窒化珪素
粉末を試作し、種々の焼結条件で評価を行い、粉体特性
と焼結性及び焼結体特性との関係について詳細に検討を
行った。その結果、精製処理を行った高純度の窒化珪素
粉末において、Fe等の金属不純物量が同程度であって
も、精製時に使用する酸の種類や濃度によって得られた
窒化珪素粉末のF及びCl等のハロゲン不純物量が異な
り、高温強度に著しく影響を与えることを見いだした。
The inventors of the present invention prototyped various silicon nitride powders having different amounts of metal impurities, oxygen content, grain size, etc. by the direct silicon nitriding method, evaluated them under various sintering conditions, and evaluated the powder characteristics and the sintering characteristics. The relationship between the properties and the properties of the sintered body was examined in detail. As a result, in the high-purity silicon nitride powder subjected to the refining treatment, even if the amount of metallic impurities such as Fe is similar, F and Cl of the silicon nitride powder obtained by the kind and concentration of the acid used at the time of refining are obtained. It was found that the amount of halogen impurities such as, for example, differed significantly affecting the high temperature strength.

【0018】すなわち、窒化珪素粉末中のハロゲン不純
物は焼結後も焼結体に残留し、窒化珪素焼結体の高温特
性は粒界相の軟化温度等に支配されていること、そして
その軟化温度はそこに存在するハロゲン不純物量の増加
に伴って低下し、窒化珪素粉末のハロゲン不純物の増加
に伴って窒化珪素焼結体の高温強度、高温クリープ特性
等の高温特性が低下することがわかった。
That is, the halogen impurities in the silicon nitride powder remain in the sintered body even after sintering, and the high temperature characteristics of the silicon nitride sintered body are governed by the softening temperature of the grain boundary phase and the like. It was found that the temperature decreases as the amount of halogen impurities present therein increases, and that the high temperature properties such as high temperature strength and high temperature creep properties of the silicon nitride sintered body deteriorate as the amount of halogen impurities in the silicon nitride powder increases. It was

【0019】そこで、本発明では、窒化珪素粉末中のF
及びClの合計含有量を500ppm未満に限定した。
また、F及びClの合計含有量が500ppm未満であ
っても、粒界相の高温特性に影響の大きいF含有量の多
少によって高温特性が変化するので、本発明において
は、F含有量を300ppm未満に限定した。すなわ
ち、窒化珪素粉末中のF及びClの合計含有量が500
ppm以上であるか又はF含有量が300以上である
と、それを用いて製造された窒化珪素焼結体の粒界相の
軟化温度が低下し、窒化珪素焼結体の高温特性が低下す
る。
Therefore, in the present invention, F in the silicon nitride powder is
And the total content of Cl was limited to less than 500 ppm.
Further, even if the total content of F and Cl is less than 500 ppm, the high temperature characteristics change greatly depending on the amount of F content, which greatly affects the high temperature characteristics of the grain boundary phase. Therefore, in the present invention, the F content is 300 ppm. Limited to less than. That is, the total content of F and Cl in the silicon nitride powder is 500
When the content is ppm or more or the F content is 300 or more, the softening temperature of the grain boundary phase of the silicon nitride sintered body produced using the same is lowered, and the high temperature characteristics of the silicon nitride sintered body are lowered. .

【0020】次に、本発明の窒化珪素粉末の粒度につい
ては、比表面積が10m2/g以上又は平均粒径が0.8
μm以下である。窒化珪素粉末の粒度は、焼結性や焼結
体微構造と密接に関係しており、微細な粉末ほど焼結性
が良く微細且つ均一な焼結体が得られる。特に、窒化珪
素焼結体の高温特性を向上させるためには、粒界相量を
低減しその融点を高くする必要があるので、原料となる
窒化珪素粉末には焼結性に優れたものが必要となる。そ
こで、本発明では、上記した粒度に限定したものであ
り、比表面積が10m2/g未満又は平均粒径が0.8μ
mを超えると焼結性が低下し、十分に緻密化した焼結体
を得ることが困難となる。比表面積の上限及び平均粒径
の下限については、特に制限はなく極端にカサ高となっ
て成形ができなくならなければよい。
Next, regarding the particle size of the silicon nitride powder of the present invention, the specific surface area is 10 m 2 / g or more or the average particle size is 0.8.
μm or less. The particle size of the silicon nitride powder is closely related to the sinterability and the microstructure of the sintered body. The finer the powder, the better the sinterability and the finer and more uniform sintered body can be obtained. In particular, in order to improve the high temperature characteristics of the silicon nitride sintered body, it is necessary to reduce the amount of grain boundary phases and increase the melting point thereof, so that the raw material silicon nitride powder should have excellent sinterability. Will be needed. Therefore, in the present invention, the particle size is limited to the above, and the specific surface area is less than 10 m 2 / g or the average particle size is 0.8 μm.
When it exceeds m, the sinterability is lowered and it becomes difficult to obtain a sufficiently densified sintered body. The upper limit of the specific surface area and the lower limit of the average particle size are not particularly limited as long as it becomes extremely dry and cannot be molded.

【0021】本発明の窒化珪素粉末の全酸素量は1.5
重量%以下である。全酸素量が1.5重量%を超えると
焼結時に添加された焼結助剤と反応して生成する粒界相
の量が増加し、またその融点も低下して窒化珪素焼結体
の高温特性が低下する。
The total oxygen content of the silicon nitride powder of the present invention is 1.5.
It is less than or equal to weight%. If the total oxygen content exceeds 1.5% by weight, the amount of the grain boundary phase generated by reacting with the sintering aid added during sintering increases, and the melting point also decreases, resulting in a silicon nitride sintered body High temperature characteristics deteriorate.

【0022】一方、本発明の窒化珪素粉末の金属不純物
量については、Fe、Ca及びAlの合計含有量が、3
000ppm以下特に500ppm以下であることが好
ましい。このような金属不純物は焼結時に粒界相に固溶
して融点を低下させたり、粒界相中に偏析して高温特性
を低下させる。
On the other hand, regarding the amount of metallic impurities of the silicon nitride powder of the present invention, the total content of Fe, Ca and Al is 3
It is preferably 000 ppm or less, and particularly preferably 500 ppm or less. Such metal impurities form a solid solution in the grain boundary phase during sintering to lower the melting point, or segregate in the grain boundary phase to deteriorate high temperature characteristics.

【0023】次に、本発明の請求項2の発明は、請求項
1の窒化珪素粉末の表面酸素量を0.3重量%以上とし
たものである。これは、請求項1の窒化珪素粉末を酸素
を含有する雰囲気下で熱処理することによって製造する
ことができる。
Next, the invention of claim 2 of the present invention is such that the amount of surface oxygen of the silicon nitride powder of claim 1 is 0.3% by weight or more. This can be manufactured by heat-treating the silicon nitride powder of claim 1 in an atmosphere containing oxygen.

【0024】窒化珪素焼結体の高温特性を向上させる方
法としては、上記した方法の他に特開平4−21937
4号公報等に示されているように焼結助剤とシリカを添
加する方法がある。この場合におけるシリカ量は、目標
とする粒界相組成、焼結助剤量及び窒化珪素粉末の酸素
量から決定されるが、焼結助剤と共に添加する場合は、
得られた焼結体の均一性に問題がある。本発明では、こ
の点を考慮し、窒化珪素粉末を酸素を含有する雰囲気下
で加熱処理を行いその表面に均一なシリカ相を形成させ
ることによって問題を解決したものである。
As a method for improving the high temperature characteristics of the silicon nitride sintered body, in addition to the above-mentioned method, Japanese Patent Laid-Open No. 4-21937.
There is a method of adding a sintering aid and silica as shown in Japanese Patent Publication No. 4 or the like. The amount of silica in this case is determined from the target grain boundary phase composition, the amount of sintering aid and the amount of oxygen of the silicon nitride powder, but when added together with the sintering aid,
There is a problem in the uniformity of the obtained sintered body. In consideration of this point, the present invention solves the problem by subjecting the silicon nitride powder to a heat treatment in an atmosphere containing oxygen to form a uniform silica phase on the surface thereof.

【0025】本発明の窒化珪素粉末の表面酸素量は0.
3重量%以上で全酸素量は1.5重量%以下である。表
面酸素量が0.3重量%未満では、焼結性の向上と焼結
体の均一化に対して十分な効果が得られない。表面酸素
量は、全酸素量を測定した後、温度50℃以上のフッ酸
溶液中で2時間攪拌して窒化珪素粉末表面のシリカ相を
除去してから洗浄・乾燥後、再び酸素量(内部酸素量)
を測定し、全酸素量と内部酸素量の差から算出すること
ができる。
The surface oxygen content of the silicon nitride powder of the present invention is 0.
The total oxygen content is 3% by weight or more and 1.5% by weight or less. If the amount of surface oxygen is less than 0.3% by weight, sufficient effects cannot be obtained for improving sinterability and homogenizing the sintered body. The surface oxygen content was measured by measuring the total oxygen content, then stirring in a hydrofluoric acid solution at a temperature of 50 ° C or higher for 2 hours to remove the silica phase on the surface of the silicon nitride powder, followed by washing and drying, and then again measuring the oxygen content (internal Oxygen amount)
Can be measured and calculated from the difference between the total oxygen content and the internal oxygen content.

【0026】請求項7の発明は、上記請求項2の窒化珪
素粉末の製造方法に関する発明であり、請求項1の窒化
珪素粉末を酸素を含む酸化性雰囲気で加熱処理するもの
である。その酸素濃度は、酸素分圧0.02〜0.5a
tmであるこが好ましい。酸素分圧が0.02atm未
満では窒化珪素粉末の酸化速度が遅く、所望する表面酸
素を付与するためには処理時間が長くなり、一方、0.
5atmを超えると窒化珪素粉末の酸化速度が速くなり
すぎて表面酸素量の調整が難しくなる。
The invention of claim 7 relates to the method for producing silicon nitride powder of claim 2, wherein the silicon nitride powder of claim 1 is heat-treated in an oxidizing atmosphere containing oxygen. The oxygen concentration is oxygen partial pressure 0.02-0.5a.
It is preferably tm. When the oxygen partial pressure is less than 0.02 atm, the oxidation rate of the silicon nitride powder is slow, and the treatment time is long in order to give the desired surface oxygen.
If it exceeds 5 atm, the oxidation rate of the silicon nitride powder becomes too fast, and it becomes difficult to adjust the surface oxygen content.

【0027】本発明の処理温度は500〜1100℃が
好ましく、500℃未満では所望する表面酸素量を付与
するためには処理時間が長くなり、また1100℃を超
えると窒化珪素粉末の酸化速度が速くなりすぎて表面酸
素量の調整が難しくなる。
The treatment temperature of the present invention is preferably 500 to 1100 ° C. If the treatment temperature is less than 500 ° C., the treatment time will be long in order to give a desired amount of surface oxygen. It becomes too fast and it becomes difficult to control the surface oxygen content.

【0028】本発明の加熱処理によって得られた窒化珪
素粉末の表面酸素の形態を高分解能透過型電子顕微鏡で
分析した結果、一部のサンプルにおいてはアモルファス
状態のシリカであることが確認された。
The surface oxygen morphology of the silicon nitride powder obtained by the heat treatment of the present invention was analyzed by a high resolution transmission electron microscope. As a result, it was confirmed that some samples were amorphous silica.

【0029】次に、請求項1の窒化珪素粉末を得るため
の4つの好適な製造方法について説明する。第1の製造
方法(請求項3の発明)は、金属珪素粉末を窒化して得
られた窒化珪素粉末を水素及び/又はアンモニアの分圧
が0.2atm以上の還元性雰囲気下、温度1000〜
1500℃で30分間以上処理するものである。
Next, four preferable manufacturing methods for obtaining the silicon nitride powder of claim 1 will be described. In the first manufacturing method (the invention of claim 3), the silicon nitride powder obtained by nitriding the metal silicon powder is heated at a temperature of 1000 to 1000 in a reducing atmosphere in which the partial pressure of hydrogen and / or ammonia is 0.2 atm or more.
The treatment is performed at 1500 ° C. for 30 minutes or more.

【0030】通常、金属珪素直接窒化法で高純度微粉末
を製造する場合、酸素及び金属不純物を低減するために
製造された粉末を塩酸、フッ酸等の混酸による精製処理
が行われている。しかしながら、このような方法で製造
された高純度窒化珪素粉末には、F、Cl等のハロゲン
不純物が相当量含まれており、しかもこれらのハロゲン
不純物は窒化珪素粉末表面に非常に強固に吸着されてい
て、単に水又はアンモニア等で洗浄したり不活性雰囲気
中で加熱処理を行っても十分に除去することは困難であ
る。
Usually, when producing a high-purity fine powder by the metal silicon direct nitriding method, the produced powder is purified by a mixed acid such as hydrochloric acid or hydrofluoric acid in order to reduce oxygen and metal impurities. However, the high-purity silicon nitride powder produced by such a method contains a considerable amount of halogen impurities such as F and Cl, and these halogen impurities are very strongly adsorbed on the surface of the silicon nitride powder. However, it is difficult to sufficiently remove even by simply washing with water or ammonia or performing heat treatment in an inert atmosphere.

【0031】本発明者らは、ハロゲン不純物を含有する
窒化珪素粉末を各種雰囲気下で処理温度を変え種々検討
を加えたところ、驚くべきことに、窒化珪素粉末を水素
及び/又はアンモニアの分圧が0.2atm以上の還元
性雰囲気下、温度1000〜1500℃で30分間以上
処理することによってハロゲン不純物を著しく減少させ
ることができることを見いだしたものである。
The present inventors have made various investigations by changing the treatment temperature of silicon nitride powder containing halogen impurities under various atmospheres. Surprisingly, the partial pressure of hydrogen and / or ammonia in the silicon nitride powder is surprisingly changed. It was found that halogen impurities can be remarkably reduced by treating at a temperature of 1000 to 1500 ° C. for 30 minutes or more in a reducing atmosphere of 0.2 atm or more.

【0032】本発明において、窒化珪素粉末の処理雰囲
気を水素及び/又はアンモニアを含む還元性雰囲気とし
たのは、窒化珪素粉末中のハロゲン不純物は通常の不活
性雰囲気では大半が残留するが、水素及び/又はアンモ
ニアを含む還元性雰囲気下では水素原子等と反応してH
F、HCl等となり系外に除去することができることに
もとづくものである。雰囲気中の水素及び/又はアンモ
ニアの分圧としては0.2atm以上は必要であり、
0.2atm未満ではハロゲン不純物の十分な除去がで
きなくなる。
In the present invention, the processing atmosphere of the silicon nitride powder is set to the reducing atmosphere containing hydrogen and / or ammonia, because most of the halogen impurities in the silicon nitride powder remain in the normal inert atmosphere, In a reducing atmosphere containing ammonia and / or ammonia, it reacts with hydrogen atoms etc.
It is based on the fact that it becomes F, HCl, etc. and can be removed outside the system. The partial pressure of hydrogen and / or ammonia in the atmosphere must be 0.2 atm or more,
If it is less than 0.2 atm, halogen impurities cannot be sufficiently removed.

【0033】本発明における処理温度は1000〜15
00℃であり、1000℃未満では雰囲気と窒化珪素粉
末中のハロゲン不純物との反応性が小さくなってハロゲ
ン不純物の十分な除去ができなくなり、また1500℃
を超えると窒化珪素粉末の比表面積が低下する等、他の
粉体特性が悪化する。
The processing temperature in the present invention is 1000 to 15
If the temperature is less than 1000 ° C., the reactivity between the atmosphere and the halogen impurities in the silicon nitride powder becomes small, and the halogen impurities cannot be sufficiently removed.
If it exceeds the range, other powder characteristics are deteriorated, such as a decrease in the specific surface area of the silicon nitride powder.

【0034】また、本発明における処理時間については
30分間以上は必要であり、30分間未満ではハロゲン
不純物の十分な除去ができない。処理時間の上限につい
ては特に限定されないが、極端に長い場合は製造コスト
の増加や金属不純物等による部分的な焼結が起こる可能
性があるので、充填状態にもよるがより短い時間が好ま
しい。
Further, the treatment time in the present invention is required to be 30 minutes or more, and if it is less than 30 minutes, halogen impurities cannot be sufficiently removed. The upper limit of the treatment time is not particularly limited, but if it is extremely long, the production cost may increase and partial sintering due to metal impurities or the like may occur, so a shorter time is preferable although it depends on the filling state.

【0035】次に、第2の製造方法(請求項4の発明)
について説明すると、この発明は、金属珪素粉末を窒化
して得られた窒化珪素粉末を1torr以下の減圧雰囲
気下、温度1200〜1400℃で30分間以上処理す
るものである。
Next, the second manufacturing method (the invention of claim 4)
In the present invention, the silicon nitride powder obtained by nitriding metallic silicon powder is treated at a temperature of 1200 to 1400 ° C. for 30 minutes or more under a reduced pressure atmosphere of 1 torr or less.

【0036】本発明者らは、雰囲気の圧力と温度を変え
て窒化珪素粉末に含まれるハロゲン不純物の挙動につい
て種々検討を行った結果、1torr以下の減圧雰囲気
下、温度1200〜1400℃で30分間以上処理する
ことにより、上記した還元性雰囲気下での処理と同様に
ハロゲン不純物量をかなり減少させることができること
を見いだしたものである。
The present inventors have conducted various studies on the behavior of halogen impurities contained in the silicon nitride powder by changing the pressure and temperature of the atmosphere, and as a result, under the reduced pressure atmosphere of 1 torr or less, the temperature is 1200 to 1400 ° C. for 30 minutes. It has been found that the above treatment can considerably reduce the amount of halogen impurities as in the treatment in the reducing atmosphere described above.

【0037】本発明の処理雰囲気を1torr以下の減
圧雰囲気としているのは、窒化珪素粉末表面に強固に吸
着しているハロゲン不純物は常圧雰囲気では大半が残留
するが、減圧雰囲気下では系外に除去することができる
ことにもとづいている。
The treatment atmosphere of the present invention is set to a reduced pressure atmosphere of 1 torr or less, because most of the halogen impurities strongly adsorbed on the surface of the silicon nitride powder remain in the atmospheric pressure atmosphere, but under the reduced pressure atmosphere, the halogen impurities are removed from the system. It is based on being able to be removed.

【0038】本発明における処理温度は1200〜14
00℃であり、1200℃未満では窒化珪素粉末中のハ
ロゲン不純物の揮発量が少なくなってハロゲン不純物を
十分に除去することができず、一方、1400℃を超え
ると窒化珪素の分解が激しくなって重量減少、金属Si
の生成等の問題が生じる。
The processing temperature in the present invention is 1200-14.
If it is less than 1200 ° C., the amount of halogen impurities volatilized in the silicon nitride powder is small and the halogen impurities cannot be sufficiently removed. On the other hand, if it exceeds 1400 ° C., the decomposition of silicon nitride becomes severe. Weight reduction, metal Si
There is a problem such as the generation of

【0039】本発明の処理時間については30分間以上
は必要であり、30分間未満ではハロゲン不純物の揮発
量が少なくその十分な除去はできない。処理時間の上限
については特に制限はないが、極端に長い場合は製造コ
ストの増加や窒化珪素の分解といった問題もあるので、
より短い時間が好ましい。
The treatment time of the present invention is required to be 30 minutes or more, and if it is less than 30 minutes, the amount of halogen impurities volatilized is too small to be removed sufficiently. There is no particular limitation on the upper limit of the treatment time, but if it is extremely long, there are problems such as an increase in manufacturing cost and decomposition of silicon nitride.
Shorter times are preferred.

【0040】第3の製造方法(請求項5の発明)は、金
属珪素粉末を窒化して得られた窒化珪素粉末を塩素ガス
分圧が0.2atm以上の雰囲気下、温度1000〜1
500℃で30分間以上処理(以下、一次処理という)
した後、更に水素及び/又はアンモニアの還元性雰囲気
下、温度1000〜1500℃で30分間以上処理(以
下、二次処理1という)するものである。
In the third manufacturing method (the invention of claim 5), the silicon nitride powder obtained by nitriding the metal silicon powder is heated at a temperature of 1000 to 1 in an atmosphere having a chlorine gas partial pressure of 0.2 atm or more.
Treatment at 500 ° C for 30 minutes or longer (hereinafter referred to as primary treatment)
After that, it is further treated in a reducing atmosphere of hydrogen and / or ammonia at a temperature of 1000 to 1500 ° C. for 30 minutes or more (hereinafter referred to as secondary treatment 1).

【0041】本発明者らは、窒化珪素粉末中のF、Cl
等のハロゲン不純物の挙動について詳細に検討を行った
結果、FとClではその挙動が異なりFの方がClより
も除去することが困難であることがわかった。そこで、
窒化珪素粉末のFの除去方法について更に検討を加えた
ところ、驚くべきことに、塩素ガスを含む雰囲気で処理
するとCl量は大幅に増加するがF量が極めて減少し、
しかも金属不純物量も減少することを見いだしたもので
ある。
The present inventors have found that F, Cl in silicon nitride powder
As a result of detailed examination of the behavior of halogen impurities such as, it was found that F and Cl have different behaviors, and it is more difficult to remove F than Cl. Therefore,
After further studying the method of removing F from the silicon nitride powder, surprisingly, when the treatment was carried out in an atmosphere containing chlorine gas, the amount of Cl was significantly increased, but the amount of F was extremely decreased.
Moreover, it has been found that the amount of metal impurities also decreases.

【0042】すなわち、本発明においては、一次処理に
よって窒化珪素粉末中のF含有量を低減させた後、二次
処理1によって残留するClを除去するものである。こ
の二次処理1は上記した第1の製造方法と同様な処理で
ある。
That is, in the present invention, after the F content in the silicon nitride powder is reduced by the primary treatment, the residual Cl is removed by the secondary treatment 1. This secondary process 1 is the same process as the above-mentioned first manufacturing method.

【0043】本発明における一次処理の塩素ガス分圧は
0.2atm以上であり、0.2atm未満ではFの十
分な除去ができない。また、処理温度については100
0〜1500℃であり、1000℃未満では雰囲気中の
Clと窒化珪素粉末中のFとの反応性が小さくFの十分
な除去が困難となる。一方、1500℃を超えると窒化
珪素粉末の比表面積が低下する等、他の粉体特性が悪化
する。処理時間は30分間以上は必要であり、30分間
未満ではFの十分な除去ができなくなる。
The chlorine gas partial pressure of the primary treatment in the present invention is 0.2 atm or more, and if it is less than 0.2 atm, F cannot be sufficiently removed. The processing temperature is 100
It is 0 to 1500 ° C., and if it is less than 1000 ° C., the reactivity between Cl in the atmosphere and F in the silicon nitride powder is small and it is difficult to sufficiently remove F. On the other hand, when the temperature exceeds 1500 ° C., other powder characteristics are deteriorated such that the specific surface area of the silicon nitride powder is reduced. A treatment time of 30 minutes or more is necessary, and if it is less than 30 minutes, F cannot be sufficiently removed.

【0044】更に、第4の製造方法(請求項6の発明)
は、一次処理された窒化珪素粉末を更に1torr以下
の減圧雰囲気下、温度1200〜1400℃で30分間
以上処理(以下、二次処理2という)するものである。
この二次処理2は上記した第2の製造方法と同様な処理
である。
Further, the fourth manufacturing method (the invention of claim 6)
In the above, the primary-treated silicon nitride powder is further treated at a temperature of 1200 to 1400 ° C. for 30 minutes or more (hereinafter referred to as secondary treatment 2) under a reduced pressure atmosphere of 1 torr or less.
The secondary process 2 is the same process as the second manufacturing method described above.

【0045】以上、説明した4例の製造方法において使
用される窒化珪素粉末としては、Fe、Al、Caの金
属不純物の合計が3000ppm以下で、比表面積が7
2/g以上である高純度窒化珪素微粉末が好ましい。こ
のような高純度窒化珪素微粉末は、例えば金属珪素粉末
を比表面積1〜2m2/g程度に粉砕してカサ比重0.8
〜1.5程度の成形体に成形し、それを窒素及び/又は
アンモニアを含む雰囲気中、温度1200〜1500℃
で加熱窒化して窒化珪素インゴットを製造し、次いでそ
れを所望の粒度まで粉砕した後、塩酸、フッ酸等の混酸
で精製処理することによって製造することができる。
As the silicon nitride powder used in the above-described four manufacturing methods, the total of metallic impurities of Fe, Al, and Ca is 3000 ppm or less, and the specific surface area is 7.
High-purity silicon nitride fine powder having a m 2 / g or more is preferable. Such high-purity silicon nitride fine powder is obtained by crushing, for example, metallic silicon powder to a specific surface area of about 1 to 2 m 2 / g and a bulk specific gravity of 0.8.
Molded into a molded body of about 1.5 to about 1.5 ° C. in an atmosphere containing nitrogen and / or ammonia at a temperature of 1200 to 1500 ° C.
It can be manufactured by heating and nitriding to produce a silicon nitride ingot, crushing it to a desired particle size, and then purifying it with a mixed acid such as hydrochloric acid and hydrofluoric acid.

【0046】[0046]

【実施例】以下、実施例と比較例を挙げてさらに具体的
に本発明を説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0047】実施例1〜10 比較例1〜8 金属珪素粉末(比表面積1.5m2/g)を塩酸とフッ酸
からなる温度50℃の混酸により2時間の純化処理を行
い、洗浄、乾燥後、カサ密度1.0g/cm3の成形体
を成形した。この成形体を窒素及びアンモニアを含む雰
囲気中、1100〜1450℃の温度で窒化し、α相含
有量が92%の窒化珪素インゴットを製造した。次い
で、それを粗砕・中砕して所望の粒度までボールミルで
湿式粉砕した後、上記混酸の濃度を変えて2時間の精製
処理を行い窒化珪素粉末(窒化珪素粉末A)を製造し
た。この窒化珪素粉末AのFe、Al、Caの金属不純
物の合計は360ppm以下で、比表面積は11m2/g
であった。
Examples 1 to 10 Comparative Examples 1 to 8 Metallic silicon powder (specific surface area 1.5 m 2 / g) was purified by a mixed acid of hydrochloric acid and hydrofluoric acid at a temperature of 50 ° C. for 2 hours, washed and dried. Then, a molded body having a bulk density of 1.0 g / cm 3 was molded. This compact was nitrided at a temperature of 1100 to 1450 ° C. in an atmosphere containing nitrogen and ammonia to produce a silicon nitride ingot having an α phase content of 92%. Then, it was coarsely crushed / medium crushed and wet-milled to a desired particle size by a ball mill, and then purified by changing the concentration of the mixed acid for 2 hours to produce a silicon nitride powder (silicon nitride powder A). The total of metallic impurities of Fe, Al, and Ca of the silicon nitride powder A is 360 ppm or less, and the specific surface area is 11 m 2 / g.
Met.

【0048】なお、比較例7は粉砕後塩酸単独で純化処
理を行い、また比較例8は粉砕時間を半分とし、実施例
1と同様な純化処理を行ったものである。
In Comparative Example 7, after the pulverization, the purification treatment was carried out with hydrochloric acid alone, and in Comparative Example 8, the pulverization time was halved and the same purification treatment as in Example 1 was performed.

【0049】得られた窒化珪素粉末の100gを直径5
0mmのアルミナ管に充填し、管状炉にて表1に示す各
種条件で処理を行い窒化珪素粉末を製造した。実施例9
及び10は、金属珪素直接窒化法で製造された市販粉末
を実施例2と同様な純化処理を行ったものである。それ
らの粉体特性を表2に示す。
100 g of the obtained silicon nitride powder was added with a diameter of 5
A 0 mm alumina tube was filled and treated in a tubular furnace under various conditions shown in Table 1 to produce silicon nitride powder. Example 9
Nos. 10 and 10 are commercially available powders produced by the direct nitriding method of metallic silicon, and subjected to the same purification treatment as in Example 2. The powder properties are shown in Table 2.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】次に、これらの窒化珪素粉末90重量部、
平均粒径1.5μmのY23 粉末5重量部、平均粒径
1.2μmのYb23 粉末5重量部を配合し、メタノ
ール中で4時間湿式混合した後乾燥し、それを100k
g/cm2 の圧力で金型成形後更に2700kg/cm
2 の圧力でCIP成形した。次いで、これらのCIP成
形体を窒化珪素粉末及びBN粉末からなる詰め粉と共に
カーボン製坩堝にセットし、10kg/cm2 の窒素加
圧雰囲気下、温度1900℃で2時間焼成して焼結体を
製造した。
Next, 90 parts by weight of these silicon nitride powders,
5 parts by weight of Y 2 O 3 powder having an average particle size of 1.5 μm and 5 parts by weight of Yb 2 O 3 powder having an average particle size of 1.2 μm were blended, wet-mixed in methanol for 4 hours and dried, and then 100 k
2700 kg / cm after molding with a pressure of g / cm 2
CIP molding was performed at a pressure of 2 . Next, these CIP compacts were set in a carbon crucible together with a filler made of silicon nitride powder and BN powder, and sintered at a temperature of 1900 ° C. for 2 hours in a nitrogen pressure atmosphere of 10 kg / cm 2 to obtain a sintered compact. Manufactured.

【0053】得られた焼結体を研削加工後、相対密度、
1300℃における4点曲げ強度及び温度1250℃に
おける高温クリープ特性を測定した。それらの結果を表
3に示す。
After grinding the obtained sintered body, the relative density,
Four-point bending strength at 1300 ° C and high temperature creep properties at a temperature of 1250 ° C were measured. The results are shown in Table 3.

【0054】[0054]

【表3】 [Table 3]

【0055】実施例11〜16 比較例9〜12 実施例1で製造された窒化珪素粉末Aの100gをカー
ボン発熱体の電気炉に充填し、表4に示す雰囲気圧力、
温度及び時間で処理した。得られた窒化珪素粉末の粉体
特性を表5に示す。
Examples 11 to 16 Comparative Examples 9 to 12 100 g of the silicon nitride powder A produced in Example 1 was charged into an electric furnace of a carbon heating element, and the atmospheric pressure shown in Table 4 was applied.
Processed at temperature and time. Table 5 shows the powder characteristics of the obtained silicon nitride powder.

【0056】[0056]

【表4】 [Table 4]

【0057】[0057]

【表5】 (注)比較例11では約10%の重量減少がありX線回
折で確認できる程度量の金属Siが検出された。
[Table 5] (Note) In Comparative Example 11, there was a weight loss of about 10%, and metallic Si was detected in an amount that could be confirmed by X-ray diffraction.

【0058】実施例17〜23 比較例13〜16 実施例1で製造された窒化珪素粉末Aの100gを直径
50mmのアルミナ管に充填し、管状炉にて表6に示す
各種条件で一次処理を行った。次いで、実施例17〜2
2については引き続き水素分圧が0.4atmの窒素及
び水素からなる雰囲気中、温度1400℃で1時間の二
次処理1を行い、また実施例23については、一次処理
された粉末をカーボン発熱体の電気炉に充填し、0.5
torrの減圧雰囲気下、温度1300℃で1時間の二
次処理2を行った。比較例13〜16は、一次処理粉末
を窒素雰囲気中、温度1400℃で1時間の熱処理を行
い窒化珪素粉末を製造した。それらの粉体特性を表7に
示す。
Examples 17 to 23 Comparative Examples 13 to 16 100 g of the silicon nitride powder A produced in Example 1 was filled in an alumina tube having a diameter of 50 mm and subjected to a primary treatment in a tubular furnace under various conditions shown in Table 6. went. Then, Examples 17-2
For No. 2, secondary treatment 1 was carried out for 1 hour at a temperature of 1400 ° C. in an atmosphere consisting of nitrogen and hydrogen with a hydrogen partial pressure of 0.4 atm, and for Example 23, the primary treated powder was treated with a carbon heating element. Charged into an electric furnace of 0.5
Secondary treatment 2 was performed at a temperature of 1300 ° C. for 1 hour under a reduced pressure atmosphere of torr. In Comparative Examples 13 to 16, silicon nitride powder was manufactured by subjecting the primary treatment powder to a heat treatment at a temperature of 1400 ° C. for 1 hour in a nitrogen atmosphere. The powder characteristics are shown in Table 7.

【0059】[0059]

【表6】 [Table 6]

【0060】[0060]

【表7】 [Table 7]

【0061】次に、これらの窒化珪素粉末94重量部と
平均粒径1.5μmのY23 粉末6重量部を配合し、
メタノール中で4時間湿式混合した後乾燥して得られた
粉末50gを直径60mmのカーボンダイスに充填し、
窒素ガス雰囲気下、温度1800℃、圧力400kg/
cm2 で1時間のホットプレス焼結を行って焼結体を製
造し、実施例1と同様の評価を行った。それらの結果を
表8に示す。
Next, 94 parts by weight of these silicon nitride powders and 6 parts by weight of Y 2 O 3 powder having an average particle size of 1.5 μm were mixed,
50 g of powder obtained by wet-mixing in methanol for 4 hours and then drying was filled in a carbon die having a diameter of 60 mm,
Under nitrogen gas atmosphere, temperature 1800 ℃, pressure 400kg /
Hot press sintering was performed at 1 cm 2 for 1 hour to produce a sintered body, and the same evaluation as in Example 1 was performed. The results are shown in Table 8.

【0062】[0062]

【表8】 [Table 8]

【0063】実施例24〜25 比較例17〜18 Fe、Ca、Alの金属不純物量の合計が1000pp
m以下である高純度金属珪素粉末(比表面積1.5m2/
g)をカサ密度1.0g/cm3 の成形体に成形し、窒
素及びアンモニアを含む雰囲気中、1100〜1450
℃の温度で窒化してα相含有量が92%の窒化珪素イン
ゴットを製造した。次いで、それをセラミックス製の粉
砕機で粗砕・中砕し、所望の粒度まで窒化珪素製のボー
ルミルで湿式粉砕して窒化珪素粉末B(実施例24)と
窒化珪素粉末C(実施例25)を製造した。それらの粉
体特性を表9に示す。比較例17(窒化珪素粉末D)及
び比較例18(窒化珪素粉末E)は、いずれも市販の窒
化珪素粉末である。
Examples 24 to 25 Comparative Examples 17 to 18 The total amount of metallic impurities of Fe, Ca and Al is 1000 pp.
High-purity metallic silicon powder having a specific surface area of 1.5 m or less (specific surface area 1.5 m 2 /
g) is molded into a molded body having a bulk density of 1.0 g / cm 3 , and the temperature is 1100 to 1450 in an atmosphere containing nitrogen and ammonia.
Nitriding was performed at a temperature of ° C to produce a silicon nitride ingot having an α phase content of 92%. Then, it is roughly crushed / medium crushed by a ceramic crusher and wet crushed by a ball mill made of silicon nitride to a desired grain size to obtain silicon nitride powder B (Example 24) and silicon nitride powder C (Example 25). Was manufactured. The powder characteristics are shown in Table 9. Comparative Example 17 (silicon nitride powder D) and Comparative Example 18 (silicon nitride powder E) are both commercially available silicon nitride powders.

【0064】[0064]

【表9】 [Table 9]

【0065】次に、これらの窒化珪素粉末90重量部、
平均粒径1.5μmのY23 粉末5重量部、平均粒径
1.2μmのYb23 粉末5重量部を配合し、メタノ
ール中で4時間湿式混合し乾燥後、100kg/cm2
の圧力で金型成形した後2700kg/cm2 の圧力で
CIP成形した。次いで、これらのCIP成形体を窒化
珪素粉末及びBN粉末からなる詰め粉と共にカーボン製
坩堝にセットし、10kg/cm2 の窒素加圧雰囲気
中、温度1900℃で2時間焼成して焼結体を製造し、
実施例1と同様の評価を行った。それらの結果を表10
に示す。
Next, 90 parts by weight of these silicon nitride powders,
5 parts by weight of Y 2 O 3 powder having an average particle diameter of 1.5 μm and 5 parts by weight of Yb 2 O 3 powder having an average particle diameter of 1.2 μm were mixed, wet-mixed in methanol for 4 hours and dried, and then 100 kg / cm 2
After die molding at a pressure of 2700 kg, CIP molding was performed at a pressure of 2700 kg / cm 2 . Next, these CIP compacts are set in a carbon crucible together with a stuffing consisting of silicon nitride powder and BN powder, and sintered at a temperature of 1900 ° C. for 2 hours in a nitrogen pressure atmosphere of 10 kg / cm 2 to obtain a sintered compact. Manufactured,
The same evaluation as in Example 1 was performed. The results are shown in Table 10.
Shown in.

【0066】[0066]

【表10】 [Table 10]

【0067】実施例26〜28 比較例19 実施例1で製造された窒化珪素粉末Aの100gを直径
50mmのアルミナ管に充填し管状炉にて大気中で表1
1に示す温度で30分間、加熱処理を行い表面酸素を付
与した。得られた窒化珪素粉末の全酸素量と表面酸素量
の測定結果を表11に示す。なお、他の粉体特性につい
ては窒化珪素粉末Aと同様であった。
Examples 26 to 28 Comparative Example 19 An alumina tube having a diameter of 50 mm was filled with 100 g of the silicon nitride powder A produced in Example 1, and the tube was heated in a tube furnace in the air.
Heat treatment was performed at the temperature shown in 1 for 30 minutes to provide surface oxygen. Table 11 shows the measurement results of the total oxygen amount and the surface oxygen amount of the obtained silicon nitride powder. The other powder characteristics were the same as those of the silicon nitride powder A.

【0068】次に、これらの窒化珪素粉末に、平均粒径
1.2μmのYb23 粉末及び平均粒径1.0μmの
SiO2 粉末を表11に示す割合で配合し、メタノール
中で4時間湿式混合し乾燥後、それを100kg/cm
2 の圧力で金型成形した後2700kg/cm2 の圧力
でCIP成形した。次いで、これらのCIP成形体を窒
化珪素粉末及びBN粉末からなる詰め粉と共にカーボン
製坩堝にセットし、10kg/cm2 の窒素加圧雰囲気
中、温度1850℃で2時間焼成して焼結体を製造し、
実施例1と同様にして相対密度と曲げ強度を測定した。
それらの結果を表12に示す。
Next, these silicon nitride powders were mixed with Yb 2 O 3 powder having an average particle diameter of 1.2 μm and SiO 2 powder having an average particle diameter of 1.0 μm in the proportions shown in Table 11, and the mixture was added in methanol to obtain 4 parts. After wet mixing and drying for 100 hours / 100kg / cm
Was CIP molded under a pressure of 2700 kg / cm 2 after molding with 2 pressure. Next, these CIP compacts were set in a carbon crucible together with a filler made of silicon nitride powder and BN powder, and sintered at a temperature of 1850 ° C. for 2 hours in a nitrogen pressure atmosphere of 10 kg / cm 2 to obtain a sintered compact. Manufactured,
The relative density and bending strength were measured in the same manner as in Example 1.
The results are shown in Table 12.

【0069】[0069]

【表11】 [Table 11]

【0070】[0070]

【表12】 [Table 12]

【0071】表に示された各物性は以下に従って測定し
た。 (1)全酸素量(重量%):LECO社製O/N同時分
析計「TC−136」で測定した。 (2)表面酸素量(重量%):上記方法で内部酸素量を
測定し、全酸素量との差を算出した。 (3)比表面積(m2/g):湯浅アイオニクス社製カン
ターソーブJr.BET1点法によった。 (4)平均粒径(μm):L&N社製粒度分布計「マイ
クロトラック−SPA」で測定した。 (5)F量、F+Cl量(ppm):バイロハイドリシ
ス蒸留、イオンクロマトグラフィー法によった。
The physical properties shown in the table were measured as follows. (1) Total oxygen content (% by weight): Measured with LECO O / N simultaneous analyzer "TC-136". (2) Surface oxygen content (% by weight): The internal oxygen content was measured by the above method, and the difference from the total oxygen content was calculated. (3) Specific surface area (m 2 / g): Cantersorb Jr. manufactured by Yuasa Ionics Inc. It was based on the BET one-point method. (4) Average particle size (μm): Measured with a particle size distribution meter “Microtrac-SPA” manufactured by L & N. (5) F amount, F + Cl amount (ppm): Virohydrolysis distillation, ion chromatography method.

【0072】(6)Fe、Al及びCaの金属不純物
(ppm):JIS G1322に準じて測定した。 (7)相対密度(%):アルキメデス法によった。 (8)曲げ強度(MPa):1300℃における4点曲
げ強度をJIS R1601に準じて測定した。 (9)クリープ特性:焼結体を大気中、温度1250
℃、引張り応力250MPaにおける引張り試験法によ
る200時間の高温クリープ評価を行った。
(6) Metal impurities (ppm) of Fe, Al and Ca: Measured according to JIS G1322. (7) Relative density (%): By the Archimedes method. (8) Bending strength (MPa): Four-point bending strength at 1300 ° C was measured according to JIS R1601. (9) Creep characteristics: Sintered body in air, temperature 1250
A high temperature creep evaluation was performed for 200 hours by a tensile test method at a temperature of 250 ° C. and a tensile stress of 250 MPa.

【0073】[0073]

【発明の効果】本発明によれば、高温強度、高温クリー
プ特性等に優れ、ガスタービン等の高温部材に適した窒
化珪素焼結体を製造することができる窒化珪素粉末が提
供される。
According to the present invention, there is provided a silicon nitride powder which is excellent in high temperature strength, high temperature creep characteristics and the like and which can produce a silicon nitride sintered body suitable for a high temperature member such as a gas turbine.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金属珪素粉末を窒化して得られた窒化珪
素粉末であって、比表面積10m2/g以上又は平均粒径
0.8μm以下、全酸素量が1.5重量%以下、F及び
Clの合計含有量が500ppm以下でしかもF含有量
が300ppm以下であることを特徴とする窒化珪素粉
末。
1. A silicon nitride powder obtained by nitriding metallic silicon powder, which has a specific surface area of 10 m 2 / g or more or an average particle diameter of 0.8 μm or less, a total oxygen content of 1.5% by weight or less, and F And a total content of Cl of 500 ppm or less and an F content of 300 ppm or less.
【請求項2】 表面酸素量が0.3重量%以上であるこ
とを特徴とする請求項1記載の窒化珪素粉末。
2. The silicon nitride powder according to claim 1, wherein the amount of surface oxygen is 0.3% by weight or more.
【請求項3】 金属珪素粉末を窒化して得られた高純度
窒化珪素微粉末を、水素及び/又はアンモニアの分圧が
0.2atm以上の還元性雰囲気下、温度1000〜1
500℃で30分間以上処理することを特徴とする請求
項1記載の窒化珪素粉末の製造方法。
3. A high-purity silicon nitride fine powder obtained by nitriding metallic silicon powder is heated in a reducing atmosphere having a partial pressure of hydrogen and / or ammonia of 0.2 atm or more at a temperature of 1000 to 1.
The method for producing a silicon nitride powder according to claim 1, wherein the treatment is performed at 500 ° C. for 30 minutes or more.
【請求項4】 金属珪素粉末を窒化して得られた高純度
窒化珪素微粉末を、1torr以下の減圧雰囲気下、温
度1200〜1400℃で30分間以上処理することを
特徴とする請求項1記載の窒化珪素粉末の製造方法。
4. The high-purity silicon nitride fine powder obtained by nitriding metallic silicon powder is treated at a temperature of 1200 to 1400 ° C. for 30 minutes or more under a reduced pressure atmosphere of 1 torr or less. 1. A method for producing a silicon nitride powder according to claim 1.
【請求項5】 金属珪素粉末を窒化して得られた高純度
窒化珪素微粉末を、塩素ガス分圧が0.2atm以上の
雰囲気下、温度1000〜1500℃で30分間以上処
理した後、水素及び/又はアンモニアの分圧が0.2a
tm以上の還元性雰囲気下、温度1000〜1500℃
で30分間以上処理することを特徴とする請求項1記載
の窒化珪素粉末の製造方法。
5. A high-purity silicon nitride fine powder obtained by nitriding metallic silicon powder is treated with hydrogen at a temperature of 1000 to 1500 ° C. for 30 minutes or more in an atmosphere having a chlorine gas partial pressure of 0.2 atm or more. And / or the partial pressure of ammonia is 0.2a
1000 to 1500 ° C. in a reducing atmosphere of tm or more
The method for producing a silicon nitride powder according to claim 1, wherein the treatment is performed for 30 minutes or more.
【請求項6】 金属珪素粉末を窒化して得られた高純度
窒化珪素微粉末を、塩素ガス分圧が0.2atm以上の
雰囲気下、温度1000〜1500℃で30分間以上処
理した後、1torr以下の減圧雰囲気下、温度120
0〜1400℃で30分間以上処理することを特徴とす
る請求項1記載の窒化珪素粉末の製造方法。
6. A high-purity silicon nitride fine powder obtained by nitriding metallic silicon powder is treated at a temperature of 1000 to 1500 ° C. for 30 minutes or more in an atmosphere having a chlorine gas partial pressure of 0.2 atm or more, and then 1 torr. Under the following reduced pressure atmosphere, temperature 120
The method for producing a silicon nitride powder according to claim 1, wherein the treatment is performed at 0 to 1400 ° C. for 30 minutes or more.
【請求項7】 請求項1記載の窒化珪素粉末を酸素を含
有する雰囲気下で加熱処理することを特徴とする請求項
2記載の窒化珪素粉末の製造方法。
7. The method for producing a silicon nitride powder according to claim 2, wherein the silicon nitride powder according to claim 1 is heat-treated in an atmosphere containing oxygen.
JP00171394A 1994-01-12 1994-01-12 Method for producing silicon nitride powder Expired - Fee Related JP3438928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00171394A JP3438928B2 (en) 1994-01-12 1994-01-12 Method for producing silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00171394A JP3438928B2 (en) 1994-01-12 1994-01-12 Method for producing silicon nitride powder

Publications (2)

Publication Number Publication Date
JPH07206409A true JPH07206409A (en) 1995-08-08
JP3438928B2 JP3438928B2 (en) 2003-08-18

Family

ID=11509204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00171394A Expired - Fee Related JP3438928B2 (en) 1994-01-12 1994-01-12 Method for producing silicon nitride powder

Country Status (1)

Country Link
JP (1) JP3438928B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344577A (en) * 1999-06-07 2000-12-12 Hitachi Metals Ltd Production of highly heat-conductive silicon nitride sintered compact and the sintered compact
JP4478198B2 (en) * 2007-03-22 2010-06-09 日本特殊陶業株式会社 Inserts and cutting tools
KR101467438B1 (en) * 2013-01-10 2014-12-03 조항선 Method of fabricating silicon nitride powder
WO2020203695A1 (en) 2019-03-29 2020-10-08 デンカ株式会社 Silicon nitride powder and production method therefor, and production method for silicon nitride sintered body
JPWO2022202621A1 (en) * 2021-03-25 2022-09-29
JPWO2022210209A1 (en) * 2021-03-30 2022-10-06
WO2023176889A1 (en) 2022-03-18 2023-09-21 Ube株式会社 Silicon nitride powder and method for producing silicon nitride sintered body
WO2023176893A1 (en) 2022-03-18 2023-09-21 Ube株式会社 Silicon nitride powder and method for producing silicon nitride sintered body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344577A (en) * 1999-06-07 2000-12-12 Hitachi Metals Ltd Production of highly heat-conductive silicon nitride sintered compact and the sintered compact
JP4478198B2 (en) * 2007-03-22 2010-06-09 日本特殊陶業株式会社 Inserts and cutting tools
JPWO2008114752A1 (en) * 2007-03-22 2010-07-08 日本特殊陶業株式会社 Inserts and cutting tools
US8492300B2 (en) 2007-03-22 2013-07-23 Ngk Spark Plug Co., Ltd. Insert and cutting tool
KR101407160B1 (en) * 2007-03-22 2014-06-13 니혼도꾸슈도교 가부시키가이샤 Insert and cutting tool
KR101467438B1 (en) * 2013-01-10 2014-12-03 조항선 Method of fabricating silicon nitride powder
WO2020203695A1 (en) 2019-03-29 2020-10-08 デンカ株式会社 Silicon nitride powder and production method therefor, and production method for silicon nitride sintered body
JPWO2022202621A1 (en) * 2021-03-25 2022-09-29
JPWO2022210209A1 (en) * 2021-03-30 2022-10-06
WO2023176889A1 (en) 2022-03-18 2023-09-21 Ube株式会社 Silicon nitride powder and method for producing silicon nitride sintered body
WO2023176893A1 (en) 2022-03-18 2023-09-21 Ube株式会社 Silicon nitride powder and method for producing silicon nitride sintered body

Also Published As

Publication number Publication date
JP3438928B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
US4803183A (en) Dense molded bodies of polycrystalline aluminum nitride and process for preparation without use of sintering aids
US4571331A (en) Ultrafine powder of silicon carbide, a method for the preparation thereof and a sintered body therefrom
Koc et al. β-SiC production by reacting silica gel with hydrocarbon gas
JP3438928B2 (en) Method for producing silicon nitride powder
WO2023162721A1 (en) Silicon carbide powder, and production method thereof
JPH0812306A (en) Silicon nitride powder
JP3669406B2 (en) Silicon nitride powder
WO2020241700A1 (en) Silicon nitride powder and method for producing same, and method for producing silicon nitride sintered body
US5585084A (en) Silicon nitride powder
JP3648963B2 (en) Silicon nitride powder
JP3997596B2 (en) Silicon nitride powder
EP3950583B1 (en) Silicon nitride powder and method for producing same, and method for producing silicon nitride sintered body
JP2907367B2 (en) Method for producing crystalline silicon nitride powder
JPH06321508A (en) Production of crystalline silicon nitride powder
JPH06263410A (en) Method for increasing beta-fraction of powdery silicon nitride
EP3950582B1 (en) Silicon nitride powder and production method therefor, and production method for silicon nitride sintered body
JP3285621B2 (en) Method for producing silicon nitride powder
JPH07223863A (en) Silicon nitride sintered compact
JPH07206528A (en) Silicon nitride sintered compact and its production
JPH0664906A (en) Powdery silicon nitride
JPH0723516B2 (en) Method for producing tungsten sintered alloy
WO2022202621A1 (en) Silicon nitride powder and method for producing same, and silicon nitride sintered body and method for producing same
JP3111656B2 (en) Method and apparatus for producing silicon nitride sintered body
WO2024122174A1 (en) Silicon carbide powder and method for producing same
JPH0952771A (en) Hexagonal boron nitride sintered compact and its production

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees