JPH0723516B2 - Method for producing tungsten sintered alloy - Google Patents

Method for producing tungsten sintered alloy

Info

Publication number
JPH0723516B2
JPH0723516B2 JP31130789A JP31130789A JPH0723516B2 JP H0723516 B2 JPH0723516 B2 JP H0723516B2 JP 31130789 A JP31130789 A JP 31130789A JP 31130789 A JP31130789 A JP 31130789A JP H0723516 B2 JPH0723516 B2 JP H0723516B2
Authority
JP
Japan
Prior art keywords
liquid phase
dew point
powder
sintering
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31130789A
Other languages
Japanese (ja)
Other versions
JPH03173727A (en
Inventor
将雄 中井
裕志 吉田
信義 岡登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP31130789A priority Critical patent/JPH0723516B2/en
Publication of JPH03173727A publication Critical patent/JPH03173727A/en
Publication of JPH0723516B2 publication Critical patent/JPH0723516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高速回転体又は防護物を貫通する発射体に有
用なタングステン焼結合金の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a tungsten sintered alloy useful for a projectile penetrating a high speed rotating body or a protective object.

〔従来の技術〕[Conventional technology]

高速回転体は、高度の引張り強さ,ヤング率を有し、し
かも高速回転時に破壊しないような十分な靭性を有して
いなければならない。又、上記発射体は、高度の引張り
強さ,密度,硬さを有し、しかも発射体が防護物を完全
に貫通する前に破壊しないように十分の延性,靭性を有
することが必要である。
The high-speed rotating body must have a high degree of tensile strength and Young's modulus, and must have sufficient toughness so as not to break during high-speed rotation. The projectile must also have a high degree of tensile strength, density and hardness, yet be sufficiently ductile and tough to prevent the projectile from breaking before completely penetrating the protective object. .

このような要求に応ずるべく高比重,高延性のタングス
テン合金の製造方法が、特開昭62−185843号公報に開示
されている。このものは、タングステン粉末85〜97%お
よび残部がニッケルと鉄の粉末からなる混合粉末を1〜
4ton/cm2の静水圧下で圧粉し、得られた圧粉体を0〜−
60℃の露点の水素気流中で液相焼結した後、該焼結体を
真空中において加熱後急冷する熱処理を施すものであ
る。
A method for producing a tungsten alloy having a high specific gravity and a high ductility in order to meet such requirements is disclosed in JP-A-62-185843. This is a mixed powder consisting of 85-97% tungsten powder and the balance nickel and iron powder.
Powder compacted under hydrostatic pressure of 4 ton / cm 2 and the resulting compact is 0-
After liquid-phase sintering in a hydrogen stream having a dew point of 60 ° C., the sintered body is heated in vacuum and then rapidly cooled.

上記焼結後に真空中で加熱・急冷の熱処理を施すことに
より、焼結体中に過剰に固溶した水素が除去され、又脆
化の原因となる不純物の粒界析出を防止できるため高延
性が得られるとされている。
By performing heat treatment of heating and quenching in a vacuum after the above-mentioned sintering, excess solid-solved hydrogen in the sintered body is removed, and grain boundary precipitation of impurities that cause embrittlement can be prevented, resulting in high ductility. Is said to be obtained.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来の製造方法において0〜−60℃の露点の雰囲気
中で液相焼結を行う理由は、十分な還元と不純物除去を
行うためであるとしている。
The reason why liquid phase sintering is performed in an atmosphere having a dew point of 0 to −60 ° C. in the above conventional manufacturing method is to perform sufficient reduction and impurity removal.

ところが本発明者の研究によれば、このような露点の場
合、焼結体中に固溶した酸素と水素とが2=H2O
のように反応して生成されたH2Oがガスポロシティとな
り、かえって焼結体の延性を低下させる原因となること
が判明した。この延性の低下は、タングステン焼結合金
を用いた高速回転体や防護物を貫通する発射体を実際に
使用する上で問題になる。
However, according to the research conducted by the present inventor, in the case of such a dew point, oxygen and hydrogen solid-dissolved in the sintered body are 2 H + O = H 2 O.
It was found that the H 2 O generated by the reaction as described above becomes gas porosity, which rather causes the ductility of the sintered body to decrease. This decrease in ductility is a problem when actually using a high-speed rotating body made of a tungsten sintered alloy or a projectile penetrating a protective object.

そこで本発明の目的とする所は、液相焼結の条件を詳細
に規定し高延性を有するタングステン焼結合金が得られ
る製造方法を提供することにより、上記従来の問題点を
解決することにある。
Therefore, an object of the present invention is to solve the above-mentioned conventional problems by providing a manufacturing method in which the conditions of liquid phase sintering are specified in detail and a tungsten sintered alloy having high ductility is obtained. is there.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するため、本発明は、タングステン85〜
97%および残部がニッケルと鉄の粉末からなる混合粉末
を静水圧下で圧粉し、ついで該圧粉体を液相焼結するに
あたり、昇温中の1430℃以下の温度範囲では雰囲気の露
点を−5℃未満とし、次に1430℃を超える昇温中および
液相焼結の温度範囲では雰囲気の露点を−5℃以上5℃
以下とする。
In order to achieve the above object, the present invention provides tungsten 85-
At the time of compacting a mixed powder consisting of 97% and the balance nickel and iron powder under hydrostatic pressure, and then performing liquid phase sintering of the compact, the dew point of the atmosphere in the temperature range of 1430 ° C. or less during temperature rising. Of less than -5 ° C and then over 1430 ° C and in the temperature range of liquid phase sintering, the dew point of the atmosphere is -5 ° C to 5 ° C.
Below.

以下、更に詳細に説明する。The details will be described below.

本発明に用いる原料粉末は、高純度のタングステン
(W),ニッケル(Ni),鉄(Fe)の粉末である。タン
グステン含有量は、所定の高密度を保つために85%以上
が必要である。かつ又、液相焼結工程において完全に緻
密化する液相量を確保するため、97%以下であることが
必要である。ニッケルと鉄は、焼結時に液相を発生して
高密度化を促進し、かつ材料の延性を高める目的で添加
される。その添加量は、合金量の3〜15%とする。3%
以下では十分な液相が発生せず、高密度化の効果が発揮
できない。一方、15%以上になるとタングステンの含有
量が少なくなりすぎて、合金の高比重が得られなくな
る。又、ニッケルと鉄の成分比率は、Ni:Fe=5:5からN
i:Fe=8:2の間に調整することが望ましい。その理由
は、この組成範囲で、液相焼結工程における液相生成温
度を、ニッケル又は鉄単体の場合より十分に低下せし
め、ひいては効果的な液相焼結が可能となるためであ
る。
The raw material powder used in the present invention is high-purity tungsten (W), nickel (Ni), and iron (Fe) powder. The tungsten content needs to be 85% or more to maintain a predetermined high density. Moreover, in order to secure the amount of the liquid phase which is completely densified in the liquid phase sintering step, it is necessary to be 97% or less. Nickel and iron are added for the purpose of generating a liquid phase during sintering, promoting densification, and increasing the ductility of the material. The added amount is 3 to 15% of the alloy amount. 3%
Below, a sufficient liquid phase is not generated and the effect of increasing the density cannot be exhibited. On the other hand, if it exceeds 15%, the content of tungsten becomes too small, and the high specific gravity of the alloy cannot be obtained. Also, the composition ratio of nickel and iron is Ni: Fe = 5: 5 to N
It is desirable to adjust between i: Fe = 8: 2. The reason for this is that in this composition range, the liquid phase generation temperature in the liquid phase sintering step is sufficiently lowered as compared with the case of nickel or iron alone, and eventually effective liquid phase sintering becomes possible.

したがって、単体のニッケルと鉄の混合粉末に代えて、
上記組成を有する両者の合金粉末を使用しても同等の効
果がある。
Therefore, instead of a single powder of nickel and iron,
Even if both alloy powders having the above composition are used, the same effect can be obtained.

上記原料粉末の混合物を圧縮成形する際の圧力は、1〜
4ton/cm2の静水圧とする。1ton/cm2未満での成形では、
液相焼結を行っても2〜3%の気孔が残留する。そのた
め圧縮成形体の密度が小さすぎて、完全に緻密化でき
ず、延性が落ちる。また4ton/cm2を越える成形では、逆
に密度が高くなりすぎて圧縮成形体中にクローズドボア
が生じ、結局完全に緻密化できない。
The pressure at the time of compression molding the mixture of the raw material powders is 1 to
The hydrostatic pressure is 4 ton / cm 2 . The molding of less than 1 ton / cm 2,
Even if liquid phase sintering is performed, 2-3% of pores remain. Therefore, the density of the compression molded article is too small to be completely densified, and the ductility is deteriorated. On the other hand, in the case of molding exceeding 4 ton / cm 2 , the density becomes too high, and closed bores occur in the compression molded body, so that it cannot be completely densified.

加圧に際して、通常の一軸圧縮ではなく静水圧力を用い
るのは、四方から万遍なく加圧することにより合金の均
質性を高め、ひいては延性を高めるためである。
The reason why the hydrostatic pressure is used instead of the usual uniaxial compression is to increase the homogeneity of the alloy and thus the ductility by uniformly pressing from all sides.

液相焼結は、水素中で、ニッケル・鉄成分が液相を生成
する温度である1430℃以上で行うことが必要である。
Liquid phase sintering needs to be performed in hydrogen at 1430 ° C. or higher, which is the temperature at which the nickel and iron components form a liquid phase.

焼結時間は完全に緻密化が進行するに必要な時間、すな
わち20分間以上を要し、しかして焼結中に粗大ポロシテ
ィを生じさせないためには、60分間以下が望ましい。
The sintering time is a time required for complete densification, that is, 20 minutes or more, and 60 minutes or less is desirable in order to prevent coarse porosity from being generated during sintering.

本発明にあっては、この液相焼結工程において雰囲気中
に含有される水分すなわち雰囲気の露点を2段階に分け
て設定する。まず1430℃以下の温度範囲では、露点−5
℃未満で昇温を行う。その理由は、原料粉末の表面に吸
着する酸素または酸化物を還元力の強い低露点の水素ガ
スによって十分に還元するためである。このときの反応
+H2(g)=H2O(g)である。露点が−5℃以上
であると、この反応は起こらず、の除去はできない。
In the present invention, the moisture contained in the atmosphere in this liquid phase sintering step, that is, the dew point of the atmosphere is set in two stages. First, in the temperature range below 1430 ° C, the dew point is -5.
The temperature is raised below ℃. The reason is that oxygen or oxide adsorbed on the surface of the raw material powder is sufficiently reduced by hydrogen gas having a low dew point having a strong reducing power. The reaction at this time is O + H 2 (g) = H 2 O (g). If the dew point is -5 ° C or higher, this reaction does not occur and O cannot be removed.

1430℃以下の温度としたのは、焼結緻密化を抑制して成
形体内部までガスの流れを容易にし、上記反応を促進す
るためである。
The temperature of 1430 ° C. or less is for suppressing sintering and densification, facilitating gas flow to the inside of the molded body, and promoting the above reaction.

次に1430℃を越える温度範囲では、露点が−5℃〜+5
℃の水素雰囲気中で昇温とそれに続く液相焼結を行う。
Next, in the temperature range over 1430 ° C, the dew point is -5 ° C to +5.
Temperature rising and subsequent liquid phase sintering are performed in a hydrogen atmosphere at ℃.

本合金系では焼結温度が1430℃を越すと、ニッケル,鉄
成分が溶融して真密度化するが、溶融した液相中には雰
囲気ガスから吸収した水素および未還元で残留した微量
の酸素が溶け込んでいる。この段階で雰囲気の露点が−
5℃より低すぎると、+2H=H2O(g)の反応が進ん
で水蒸気が発生し、外部に排出されないのでポロシティ
となって焼結後も残留する。逆に雰囲気の露点を+5℃
より上げすぎると、H2Oガスの分解による酸素が液相中
に吸収されて延性劣化を招く。
In this alloy system, when the sintering temperature exceeds 1430 ° C, the nickel and iron components melt and become true density, but in the melted liquid phase, hydrogen absorbed from the atmospheric gas and a small amount of unreduced residual oxygen are absorbed. Is melting in. At this stage, the dew point of the atmosphere is −
If the temperature is lower than 5 ° C, the reaction of O + 2H = H 2 O (g) proceeds to generate water vapor, which is not discharged to the outside and remains as porosity even after sintering. Conversely, the dew point of the atmosphere is + 5 ° C
If it is set too high, oxygen due to the decomposition of H 2 O gas is absorbed in the liquid phase and ductility is deteriorated.

本発明によれば、液相焼結における雰囲気の露点を1430
℃以前と以後とに分けてそれぞれ規定することにより、
高延性を有するタングステン焼結合金が得られた。
According to the present invention, the dew point of the atmosphere in liquid phase sintering is 1430
By prescribing separately before and after ℃,
A tungsten sintered alloy having high ductility was obtained.

〔実施例〕〔Example〕

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be described with reference to examples.

ニッケル粉および鉄粉を合計で5〜12%含有するタング
ステン粉末をV型混合機を用いて混合し、得られた混合
粉末を2ton/cm2の静水圧下で圧縮成形後、その成形体を
種々の露点を与えた水素中で(1430+α)℃で液相焼結
した。得られた焼結体を1150℃で2時間、真空中で熱処
理した後に、残留ポロシティ測定および引張り試験を行
って品質を評価した。
Tungsten powder containing a total of 5 to 12% of nickel powder and iron powder was mixed using a V-type mixer, and the resulting mixed powder was compression-molded under a hydrostatic pressure of 2 ton / cm 2 , and then the molded body was Liquid phase sintering was performed at (1430 + α) ° C in hydrogen with various dew points. The obtained sintered body was heat-treated in vacuum at 1150 ° C. for 2 hours, and then the residual porosity was measured and the tensile test was performed to evaluate the quality.

残留ポロシティ測定は、材料の断面を光学顕微鏡で観察
し、格子点法によってポロシティの面積率を求めた。
The residual porosity was measured by observing the cross section of the material with an optical microscope and determining the area ratio of porosity by the lattice point method.

引張り試験は平行部4.0mmφ、標点距離30mmの試験片を
用いて、1mm/minの引張り速度で行った。
The tensile test was performed at a tensile speed of 1 mm / min using a test piece having a parallel portion of 4.0 mmφ and a gauge length of 30 mm.

第1表に試料の化学組成と焼結条件、および品質評価の
結果を示す。又、比較例として、焼結条件を変えたもの
の結果についても示す。
Table 1 shows the chemical composition of the sample, the sintering conditions, and the results of quality evaluation. In addition, as a comparative example, the results obtained by changing the sintering conditions are also shown.

第1表より、本実施例のものは、比較例のものに比べて
残留ポロシティがなく、高延性を示すことがわかる。
It can be seen from Table 1 that the material of this example has no residual porosity and exhibits high ductility as compared with the material of the comparative example.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、タングステン85
〜97%および残部がニッケルと鉄の粉末からなる混合粉
末を静水圧下で圧粉し、ついで該圧粉体を液相焼結する
にあたり、昇温中の1430℃以下の温度範囲では雰囲気の
露点を−5℃未満とし、次に1430℃を超える昇温中およ
び液相焼結の温度範囲では雰囲気の露点を−5℃以上5
℃以下とするものとした。そのため、残留ポロシティが
なくタングステン焼結合金の延性を著しく高めることが
でき、実質的に優れた発射体、高速回転体が得られると
いう効果がある。
As described above, according to the present invention, tungsten 85
~ 97% and the balance powdered powder consisting of nickel and iron powders is pressed under hydrostatic pressure, and then the liquid phase sintering of the powder compact is performed in a temperature range of 1430 ° C or less during the temperature rise. The dew point should be less than -5 ° C, and then the dew point of the atmosphere should be -5 ° C or more and 5 ° C or more during the temperature rising over 1430 ° C and the temperature range of liquid phase sintering.
The temperature is set to be equal to or lower than ° C. Therefore, there is an effect that there is no residual porosity, the ductility of the tungsten sintered alloy can be remarkably enhanced, and a substantially excellent projectile and high-speed rotating body can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】タングステン85〜97%および残部がニッケ
ルと鉄の粉末からなる混合粉末を静水圧下で圧粉し、つ
いで該圧粉体を液相焼結するにあたり、昇温中の1430℃
以下の温度範囲では雰囲気の露点を−5℃未満とし、次
に1430℃を超える昇温中および液相焼結の温度範囲では
雰囲気の露点を−5℃以上5℃以下とすることを特徴と
するタングステン焼結合金の製造方法。
1. A powder mixture consisting of 85 to 97% tungsten and the balance nickel and iron powder is pressed under hydrostatic pressure, and then the liquid powder is sintered at 1430 ° C.
In the temperature range below, the dew point of the atmosphere is less than -5 ° C, and in the temperature range of the temperature rising above 1430 ° C and in the liquid phase sintering, the dew point of the atmosphere is -5 ° C to 5 ° C. Method for producing a sintered tungsten alloy.
JP31130789A 1989-11-30 1989-11-30 Method for producing tungsten sintered alloy Expired - Lifetime JPH0723516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31130789A JPH0723516B2 (en) 1989-11-30 1989-11-30 Method for producing tungsten sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31130789A JPH0723516B2 (en) 1989-11-30 1989-11-30 Method for producing tungsten sintered alloy

Publications (2)

Publication Number Publication Date
JPH03173727A JPH03173727A (en) 1991-07-29
JPH0723516B2 true JPH0723516B2 (en) 1995-03-15

Family

ID=18015565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31130789A Expired - Lifetime JPH0723516B2 (en) 1989-11-30 1989-11-30 Method for producing tungsten sintered alloy

Country Status (1)

Country Link
JP (1) JPH0723516B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830022B1 (en) * 2001-09-26 2004-08-27 Cime Bocuze HIGH POWER SINTERED TUNGSTEN BASE ALLOY
CN102380614B (en) * 2011-11-11 2013-06-12 西安瑞福莱钨钼有限公司 Method for preparing tungsten-nickel-iron alloy thin plate
EP2789708A4 (en) * 2011-12-07 2015-10-14 Almt Corp Sintered tungsten alloy

Also Published As

Publication number Publication date
JPH03173727A (en) 1991-07-29

Similar Documents

Publication Publication Date Title
CA1261887A (en) Dense molded bodies of polycrystalline aluminum nitride and process for preparation without use of sintering aids
TW201241190A (en) Iron based powders for powder injection molding
US5454999A (en) Composite silicide/silicon carbide mechanical alloy
JPH08109422A (en) Production of alumina dispersion strengthened copper
JPH0723516B2 (en) Method for producing tungsten sintered alloy
JP3438928B2 (en) Method for producing silicon nitride powder
CN116555653A (en) K-bubble and nano-oxide composite reinforced W-based material and preparation method thereof
JPS62185805A (en) Production of high-speed flying body made of tungsten alloy
JP3035615B1 (en) Metal short wire dispersed thermoelectric material and method for producing the same
JPH083601A (en) Aluminum-aluminum nitride composite material and its production
KR960007499B1 (en) Method for degassing and solidifying aluminium alloy powder
Xiong et al. Synthesis and properties of bulk nanocrystalline Mg2Si through ball-milling and reactive hot-pressing
KR100303122B1 (en) Process for producing aluminum nitride
JP2552264B2 (en) Method for producing W-based alloy sintered body having high toughness
JPH0149765B2 (en)
JP2666036B2 (en) Cemented carbide
JPS62196306A (en) Production of double layer tungsten alloy
JP2927400B2 (en) Method for regenerating cemented carbide composition and method for producing cemented carbide
Park et al. Microstructure and mechanical properties of MoSi2/Nb composites made by MA-pulse discharge sintering
JPH05263163A (en) Manufacture of w-ni-fe sintered alloy
KR102414539B1 (en) A SiC powder, SiC sintered body and Manufacturing method of the same
JP3582061B2 (en) Sintered material and manufacturing method thereof
JPH0639641B2 (en) Method for producing tungsten sintered alloy
JPH062918B2 (en) Method for producing tungsten sintered alloy
JPS61270348A (en) Composite copper alloy reinforced with fiber by reaction sintering method