JPH0639641B2 - Method for producing tungsten sintered alloy - Google Patents

Method for producing tungsten sintered alloy

Info

Publication number
JPH0639641B2
JPH0639641B2 JP63275067A JP27506788A JPH0639641B2 JP H0639641 B2 JPH0639641 B2 JP H0639641B2 JP 63275067 A JP63275067 A JP 63275067A JP 27506788 A JP27506788 A JP 27506788A JP H0639641 B2 JPH0639641 B2 JP H0639641B2
Authority
JP
Japan
Prior art keywords
tungsten
liquid phase
residual stress
sintered alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63275067A
Other languages
Japanese (ja)
Other versions
JPH02122026A (en
Inventor
和男 江波戸
信義 岡登
裕志 ▲吉▼田
将雄 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP63275067A priority Critical patent/JPH0639641B2/en
Publication of JPH02122026A publication Critical patent/JPH02122026A/en
Publication of JPH0639641B2 publication Critical patent/JPH0639641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高速回転体又は防護物を貫通する発射体に有
用なタングステン焼結合金の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a tungsten sintered alloy useful for a projectile penetrating a high speed rotating body or a protective object.

〔従来の技術〕 高速回転体は、高度の引張り強さ,ヤング率を有し、し
かも高速回転時に破壊しないような十分な靭性を有して
いなければならに。又、上記発射体は、高度の引張り強
さ,密度,硬さを有し、しかも発射体が防護物を完全に
貫通する前に破壊しないように十分の延性,靭性を有す
ることが必要である。
[Prior Art] A high-speed rotating body must have a high degree of tensile strength and Young's modulus, and also must have sufficient toughness so as not to break at high-speed rotation. The projectile must also have a high degree of tensile strength, density and hardness, yet be sufficiently ductile and tough to prevent the projectile from breaking before completely penetrating the protective object. .

このような要求に応ずるべく高比重,高延性のタングス
テン合金の製造方法が、特開昭62−185843号公
報に開示されている。このものは、タングステン粉末8
5〜97%および残部がニッケルと鉄の粉末からなる混
合粉末を1〜4ton/cm2の静水圧下で圧粉し、得ら
れた圧粉体を水素気流中で液相焼結した後、該焼結体を
真空中において加熱後急冷する熱処理を施すものであ
る。
A method for producing a tungsten alloy having a high specific gravity and a high ductility in order to meet such requirements is disclosed in JP-A-62-185843. This is a tungsten powder 8
A mixed powder of 5 to 97% and the balance of nickel and iron powder was compacted under hydrostatic pressure of 1 to 4 ton / cm 2 , and the obtained compact was liquid-phase sintered in a hydrogen stream, The sintered body is subjected to heat treatment in which it is heated in a vacuum and then rapidly cooled.

上記焼結後に真空中で加熱・急冷の熱処理を施すことに
より、焼結体中に過剰に固溶した水素が除去され、又脆
化の原因となる不純物の粒界析出を防止できるため高延
性が得られるとされている。
By performing heat treatment of heating and quenching in a vacuum after the above-mentioned sintering, excess solid-solved hydrogen in the sintered body is removed, and grain boundary precipitation of impurities that cause embrittlement can be prevented, resulting in high ductility. Is said to be obtained.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来の製造方法により得られたタングステン合金が
適用される高速回転体や防護物を貫通する発射体にあっ
ては、寸法精度の要求が厳しく、最終的にセンタレス盤
などによる表面研削加工は必須の工程である。
In the high-speed rotating body and the projectile penetrating the protective object to which the tungsten alloy obtained by the above conventional manufacturing method is applied, the dimensional accuracy is strict, and finally the surface grinding by the centerless machine is essential. Process.

しかして、本発明者らが鋭意研究を重ねた結果によれ
ば、タングステン−ニッケル(W−Ni−Fe)系焼結
合金の延性は、セラミックスと同様に表面の残留応力に
極めて敏感である。したがって、上記従来例における脱
水素の加熱・急冷の熱処理を施した後に、センタレス盤
などにより表面研削加工を加えると延性が著しく劣化し
てしまい、実際に使用する上で問題になることが見出さ
れた。
According to the results of the intensive studies by the present inventors, the ductility of the tungsten-nickel (W—Ni—Fe) -based sintered alloy is extremely sensitive to the residual stress on the surface, as is the case with ceramics. Therefore, it is found that if the surface grinding is applied by a centerless machine after the heat treatment for dehydrogenation and the heat treatment for rapid cooling in the above conventional example, the ductility is remarkably deteriorated, which is a problem in actual use. Was done.

そこで本発明の目的とする所は、最終形状に機械加工後
の表面の残留応力の悪影響を除去し得るタングステン合
金の製造方法を提供することにより、上記従来の問題点
を解決することにある。
Therefore, an object of the present invention is to solve the above-mentioned conventional problems by providing a method for producing a tungsten alloy capable of removing the adverse effect of residual stress on the surface after machining into a final shape.

〔課題を解決するめの手段〕[Means for solving problems]

上記目的を達成するため、本発明は、タングステン85
〜97%、残部がニッケルと鉄の粉末からなる混合粉を
圧縮成形し、ついで該圧縮成形体を液相焼結により緻密
化し、得られた焼結体を最終形状に加工した後に、非酸
化性雰囲気中で900〜1400℃で加熱後徐冷却す
る。
In order to achieve the above object, the present invention provides a tungsten 85
˜97%, the mixed powder consisting of nickel and iron powder as the balance is compression molded, and then the compression molded body is densified by liquid phase sintering, and the obtained sintered body is processed into a final shape and then non-oxidized. After heating at 900 to 1400 ° C. in a neutral atmosphere, it is gradually cooled.

しかして、その徐冷却速度は30℃以下が好ましい。However, the slow cooling rate is preferably 30 ° C. or less.

以下、更に詳細に説明する。The details will be described below.

本発明に用いる原料粉末は、高純度のタングステン
(W),ニッケル(Ni),鉄(Fe)の粉末である。
タングステン含有量は、所定の高密度を保つために85
%以上が必要である。かつ又、液相焼結工程において完
全に緻密化する液相量を確保するため、97%以下であ
ることが必要である。ニッケルと鉄は、焼結時に液相を
発生して高密度化を促進し、かつ材料の延性を高める目
的で添加される。その添加量は、合金量の3〜15%と
する。3%以下では十分な液相が発生せず、高密度化の
効果が発揮できない。一方、15%以上になるとタング
ステンの含有量が少なくなりすぎて、合金の高比重が得
られなくなる。又、ニッケルと鉄の成分比率は、Ni:
Fe=5:5からNi:Fe=8:2の間に調整するこ
とが望ましい。その理由は、この組成範囲で、液相焼結
工程における液相生成温度を、ニッケル又は鉄単体の場
合より十分に低下せしめ、ひいては効果的な液相焼結が
可能となるためである。
The raw material powder used in the present invention is high-purity tungsten (W), nickel (Ni), and iron (Fe) powder.
Tungsten content is 85 in order to maintain a predetermined high density.
% Or more is required. Moreover, in order to secure the amount of the liquid phase which is completely densified in the liquid phase sintering step, it is necessary to be 97% or less. Nickel and iron are added for the purpose of generating a liquid phase during sintering, promoting densification, and increasing the ductility of the material. The addition amount is 3 to 15% of the alloy amount. If it is less than 3%, a sufficient liquid phase is not generated and the effect of increasing the density cannot be exhibited. On the other hand, if it is 15% or more, the content of tungsten becomes too small, and the high specific gravity of the alloy cannot be obtained. The composition ratio of nickel and iron is Ni:
It is desirable to adjust between Fe = 5: 5 and Ni: Fe = 8: 2. The reason is that in this composition range, the liquid phase generation temperature in the liquid phase sintering step is sufficiently lowered as compared with the case of nickel or iron alone, and eventually effective liquid phase sintering is possible.

したがって、単体のニッケルと鉄の混合粉末に代えて、
上記組成を有する両者の合金粉末を使用しても同等の効
果がある。
Therefore, instead of a single powder of nickel and iron,
Even if both alloy powders having the above composition are used, the same effect can be obtained.

上記原料粉末の混合物を圧縮成形する際の圧力は、1〜
4ton/cm2の静水圧とする。1ton/cm2未満での
成形では、液相焼結を行っても2〜3%の気孔が残留す
る。そのため圧縮成形体の密度が小さすぎて、完全に緻
密化できず、延性が落ちる。また4ton/cm2を越え
る成形では、逆に密度が高くなりすぎて圧縮成形体中に
クローズドボアが生じ、結局完全に緻密化できない。
The pressure at the time of compression molding the mixture of the raw material powders is 1 to
The hydrostatic pressure is 4 ton / cm 2 . In the case of molding at less than 1 ton / cm 2 , 2-3% of pores remain even after liquid phase sintering. Therefore, the density of the compression molded article is too small to be completely densified, and the ductility is deteriorated. On the other hand, in the case of molding in excess of 4 ton / cm 2 , on the contrary, the density becomes too high and a closed bore occurs in the compression molded body, so that it cannot be completely densified.

加圧に際して、通常の一軸圧縮ではなく静水圧力を用い
るのは、四方から万遍なく加圧することにより合金の均
質性を高め、ひいては延性を高めるためである。
The reason why the hydrostatic pressure is used instead of the usual uniaxial compression is to increase the homogeneity of the alloy and thus the ductility by uniformly pressing from all sides.

液相焼結は、水素中で、ニッケル・鉄成分が液相を生成
する温度である1430℃以上で行うことが必要であ
る。
Liquid phase sintering needs to be performed in hydrogen at 1430 ° C. or higher, which is the temperature at which the nickel / iron component forms a liquid phase.

焼結時間は完全に緻密化が進行するに必要な時間、すな
わち20分間以上を要し、しかして焼結中に粗大ポロシ
ティを生じさせないためには、60分間以下が望まし
い。
The sintering time is a time required for complete densification, that is, 20 minutes or more, and 60 minutes or less is desirable in order to prevent coarse porosity from being generated during sintering.

次に焼結体を最終形状まで加工する。加工方法は、切
削,研削、あるいはスエージング等の塑性加工等いずれ
も良く、又これらの組み合わせでも良い。
Next, the sintered body is processed into a final shape. The processing method may be cutting, grinding, plastic working such as swaging, or a combination thereof.

本発明にあっては、最終形状まで機械加工した後に、例
えばアルゴンガス等の非酸化性雰囲気中で加熱・徐冷の
熱処理を施す。その理由は、熱処理後に表面研削などの
機械加工を施したのでは、表面残留応力の悪影響を除去
出来ないからであり、非酸化性雰囲気としたのは酸化性
雰囲気では酸化が著しいためである。
In the present invention, after the final shape is machined, heat treatment such as heating and slow cooling is performed in a non-oxidizing atmosphere such as argon gas. The reason is that the adverse effect of the surface residual stress cannot be removed by performing mechanical processing such as surface grinding after the heat treatment, and the reason why the non-oxidizing atmosphere is set is that the oxidizing atmosphere significantly oxidizes.

上記の非酸化性雰囲気中での加熱処理温度を900〜1
400℃と規定したのは、900℃未満では機械加工の
残留応力の除去が十分ではなく(第1図参照)、140
0℃を超える温度では、製品形状を保てないからであ
る。他方、冷却温度は、冷却中における残留応力の発生
を防止するために、30℃/min以下の遅い冷却速度
にすることが好ましい。
The heat treatment temperature in the above non-oxidizing atmosphere is 900 to 1
The temperature of 400 ° C. is defined as below 900 ° C. because the residual stress of machining is not sufficiently removed (see FIG. 1).
This is because the product shape cannot be maintained at a temperature higher than 0 ° C. On the other hand, the cooling temperature is preferably a slow cooling rate of 30 ° C./min or less in order to prevent the occurrence of residual stress during cooling.

本発明の熱処理は、従来の、液相焼結後にただちに真空
中において加熱し、その後急冷する方法とは明白に異な
っている。すなわち、一般に材料の特性、例えば疲労強
度等に関して、表面の残留応力が影響することはよく知
られている。特に、先にも述べたように、セラミックス
及びタングステンなどの脆性材料は表面残留応力に敏感
である。どれほど注意深く加工を施しても、残留応力を
生じさせないことは不可能である。本発明者らは、この
表面の残留応力がタングステン焼結合金の延性に極めて
大きい影響を与えることを見出した。第2図はその測定
結果を示す。なお、表面残留応力はX線回析を用いて半
価幅中点法により行ったものである。第2図から、表面
残留応力の増加に反比例して伸びる減少していることが
わかる。換言すれば、延性の向上には表面残留応力の除
去が非常に重要である。
The heat treatment of the present invention is distinctly different from the conventional method of heating in vacuum immediately after liquid phase sintering and then quenching. That is, it is well known that the residual stress on the surface generally affects the material properties such as fatigue strength. In particular, as mentioned above, brittle materials such as ceramics and tungsten are sensitive to surface residual stress. No matter how carefully the material is processed, it is impossible to generate residual stress. The present inventors have found that this residual stress on the surface has an extremely large effect on the ductility of the tungsten sintered alloy. FIG. 2 shows the measurement results. The surface residual stress was measured by the half-value width midpoint method using X-ray diffraction. From FIG. 2, it can be seen that the elongation decreases in inverse proportion to the increase in the surface residual stress. In other words, removal of surface residual stress is very important for improving ductility.

本発明によれば、圧縮成形した所定の金属粉末を液相焼
結し、次いで最終形状まで加工した後に、非酸化性雰囲
気中で加熱・徐冷の熱処理を施すことによって、残留応
力の除去を行い、延性を有効に向上させることができ
た。
According to the present invention, residual stress is removed by subjecting a predetermined compression-molded metal powder to liquid-phase sintering, then processing to a final shape, and then performing heat treatment of heating / slow cooling in a non-oxidizing atmosphere. The ductility was effectively improved.

〔実施例〕〔Example〕

以下、本発明の実施例を図とともに説明する。 Embodiments of the present invention will be described below with reference to the drawings.

タングステン粉95wt%−ニッケル粉3.5wt%−
鉄粉1.5wt%の組成に配合し、V型混合機を用いて
混合した。得られた混合粉を2ton/cm2の静水圧下
に圧縮成形し、その成形体を水素中で1530℃で40
分間液相焼結した。つづいて焼結体を1200℃で2時
間、真空中で熱処理した後に、引張り試験片に機械加工
した。
Tungsten powder 95 wt% -Nickel powder 3.5 wt%-
Iron powder was blended to a composition of 1.5 wt% and mixed using a V-type mixer. The obtained mixed powder was compression molded under a hydrostatic pressure of 2 ton / cm 2 , and the molded body was subjected to 40 ° C. in hydrogen at 1530 ° C.
Liquid phase sintering was performed for a minute. Subsequently, the sintered body was heat-treated in vacuum at 1200 ° C. for 2 hours and then machined into a tensile test piece.

この機械加工により、試験片に表面残留応力が生じる。
この引張り試験片を800〜1400℃で1時間、アル
ゴン雰囲気中で熱処理した。この時の冷却速度は10℃
/minである。
This machining causes surface residual stress in the test piece.
This tensile test piece was heat-treated at 800 to 1400 ° C. for 1 hour in an argon atmosphere. The cooling rate at this time is 10 ℃
/ Min.

第1表に引張り試験結果を示す。又、比較例として、引
張り試験片に機械加工後、熱処理を施さなかったもの、
及び同機械加工後に1000℃で1時間真空中で加熱処
理し、50/minで急冷したものの結果についても示
す。
Table 1 shows the tensile test results. As a comparative example, a tensile test piece was not machined and then heat treated,
Also, the results of heat treatment in vacuum at 1000 ° C. for 1 hour after the machining and quenching at 50 / min are shown.

第1表より、本実施例の方法によるものは、熱処理を施
さなかったもの、及び機械加工に加熱・急冷したものよ
り高い伸びを示すことがわかる。
From Table 1, it can be seen that the method according to the present example exhibits higher elongation than those not subjected to heat treatment and those subjected to heating / quenching during machining.

上記試験結果に基づき、本発明の利用分野である防護物
を貫通する発射体としての弾を製作し、多層目標物に対
する貫通比較検討した。上記比較例7と同じく、最終加
工後の熱処理なしで製造した発射体、及び比較例8,9
と同じ熱処理条件で製造した発射体の貫通能力を100
とすると、本発明の方法による発射体の貫通能力は10
0以上であった。
Based on the above test results, a bullet as a projectile penetrating a protective object, which is a field of application of the present invention, was manufactured, and a penetration comparison for a multi-layered target was examined. Similar to Comparative Example 7 above, a projectile manufactured without heat treatment after final processing, and Comparative Examples 8 and 9
The penetration capability of a projectile manufactured under the same heat treatment conditions as
Then, the penetration capability of the projectile by the method of the present invention is 10
It was 0 or more.

〔発明の効果〕 以上説明したように、本発明によれば、タングステン8
5〜97%、残部がニッケルと鉄の粉末からなる混合粉
を圧縮成形し、ついで該圧縮成形体を液相焼結により緻
密化し、得られた焼結体を最終形状に加工した後に、非
酸化性雰囲気中で900〜1400℃で加熱、所定速度
で徐冷却するものとした。そのため、タングステン焼結
合金の最終製品形状における延性を著しく高めることが
でき、実質的に優れた発射体、高速回転体が得られると
いう効果がある。
[Effects of the Invention] As described above, according to the present invention, the tungsten 8
A mixed powder of 5 to 97% with the balance being nickel and iron powder is compression molded, and then the compression molded body is densified by liquid phase sintering, and the obtained sintered body is processed into a final shape. Heating was performed at 900 to 1400 ° C. in an oxidizing atmosphere, and slow cooling was performed at a predetermined rate. Therefore, the ductility of the tungsten sintered alloy in the final product shape can be remarkably enhanced, and a substantially excellent projectile and high-speed rotating body can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のタングステン合金における熱処理温度
と表面圧縮残留応力との関係を示すグラフ、第2図は同
じく表面圧縮残留応力と伸びとの関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between heat treatment temperature and surface compressive residual stress in the tungsten alloy of the present invention, and FIG. 2 is a graph showing the relationship between surface compressive residual stress and elongation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中井 将雄 神奈川県川崎市川崎区小島町4番2号 日 本冶金工業株式会社技術研究所内 (56)参考文献 特開 昭52−37503(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masao Nakai 4-2 Kojima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Nihon Metallurgical Industry Co., Ltd. (56) Reference JP-A-52-37503 (JP, A) )

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】タングステン85〜97%、残部がニッケ
ルと鉄の粉末からなる混合粉を圧縮成形し、ついで該圧
縮成形体を液相焼結により緻密化し、得られた焼結体を
最終形状に加工した後に、非酸化性雰囲気中で900〜
1400℃で加熱後徐冷却することを特徴とするタング
ステン焼結合金の製造方法。
1. A mixed powder comprising 85 to 97% tungsten and the balance being powder of nickel and iron is compression-molded, and then the compression-molded body is densified by liquid phase sintering to obtain a sintered body having a final shape. After processed into 900-900mm in a non-oxidizing atmosphere
A method for producing a tungsten sintered alloy, which comprises heating at 1400 ° C. and then gradually cooling.
【請求項2】前記非酸化性雰囲気中での加熱後の徐冷却
の速度は、30℃/min 以下であることを特徴とする請
求項(1)記載のタングステン焼結合金の製造方法。
2. The method for producing a tungsten sintered alloy according to claim 1, wherein the slow cooling rate after heating in the non-oxidizing atmosphere is 30 ° C./min or less.
JP63275067A 1988-10-31 1988-10-31 Method for producing tungsten sintered alloy Expired - Lifetime JPH0639641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275067A JPH0639641B2 (en) 1988-10-31 1988-10-31 Method for producing tungsten sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275067A JPH0639641B2 (en) 1988-10-31 1988-10-31 Method for producing tungsten sintered alloy

Publications (2)

Publication Number Publication Date
JPH02122026A JPH02122026A (en) 1990-05-09
JPH0639641B2 true JPH0639641B2 (en) 1994-05-25

Family

ID=17550378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275067A Expired - Lifetime JPH0639641B2 (en) 1988-10-31 1988-10-31 Method for producing tungsten sintered alloy

Country Status (1)

Country Link
JP (1) JPH0639641B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140308536A1 (en) * 2011-12-07 2014-10-16 A.L.M.T. Corp Sintered tungsten alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979234A (en) * 1975-09-18 1976-09-07 The United States Of America As Represented By The United States Energy Research And Development Administration Process for fabricating articles of tungsten-nickel-iron alloy

Also Published As

Publication number Publication date
JPH02122026A (en) 1990-05-09

Similar Documents

Publication Publication Date Title
RU2324576C2 (en) Nanocristallic metal material with austenic structure possessing high firmness, durability and viscosity, and method of its production
JP2629151B2 (en) Compressed article and method for producing the same
KR920004706B1 (en) PROCESS FOR MAKING THE W-Ni-Fe ALLOY
US5552109A (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
US4090874A (en) Method for improving the sinterability of cryogenically-produced iron powder
WO2012023620A1 (en) High-strength titanium alloy member and process for production thereof
US5632827A (en) Aluminum alloy and process for producing the same
JP4703005B2 (en) Steel, use of the steel, product made of the steel and method for producing the steel
US3700434A (en) Titanium-nickel alloy manufacturing methods
US5344605A (en) Method of degassing and solidifying an aluminum alloy powder
JPH02197535A (en) Manufacture of intermetallic compound
JP2000219931A (en) Cemented carbide and its production
KR970005415B1 (en) Method for manufacturing vanadium carbide powder added tool steel by milling process
JPH0639641B2 (en) Method for producing tungsten sintered alloy
JP4537501B2 (en) Cemented carbide and method for producing the same
JPS62185805A (en) Production of high-speed flying body made of tungsten alloy
JPS62196306A (en) Production of double layer tungsten alloy
US5395464A (en) Process of grain enlargement in consolidated alloy powders
JPS62287041A (en) Production of high-alloy steel sintered material
US4321091A (en) Method for producing hot forged material from powder
JPH062918B2 (en) Method for producing tungsten sintered alloy
JPH06306508A (en) Production of low anisotropy and high fatigue strength titanium base composite material
JPS63109139A (en) Titanium carbide sintered alloy for cutting tool parts
JPH02163337A (en) Manufacture of high hardness tungsten liquid phase sintered alloy
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof