KR101407160B1 - Insert and cutting tool - Google Patents

Insert and cutting tool Download PDF

Info

Publication number
KR101407160B1
KR101407160B1 KR1020097019547A KR20097019547A KR101407160B1 KR 101407160 B1 KR101407160 B1 KR 101407160B1 KR 1020097019547 A KR1020097019547 A KR 1020097019547A KR 20097019547 A KR20097019547 A KR 20097019547A KR 101407160 B1 KR101407160 B1 KR 101407160B1
Authority
KR
South Korea
Prior art keywords
insert
silicon nitride
amount
sintered body
mass
Prior art date
Application number
KR1020097019547A
Other languages
Korean (ko)
Other versions
KR20100014477A (en
Inventor
료지 도요다
유스케 스즈키
유키 하타노
Original Assignee
니혼도꾸슈도교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니혼도꾸슈도교 가부시키가이샤 filed Critical 니혼도꾸슈도교 가부시키가이샤
Publication of KR20100014477A publication Critical patent/KR20100014477A/en
Application granted granted Critical
Publication of KR101407160B1 publication Critical patent/KR101407160B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/73Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/766Trigonal symmetry, e.g. alpha-Si3N4 or alpha-Sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/27Cutters, for shaping comprising tool of specific chemical composition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

인서트는 β-Si3N4를 주성분으로 하고, Mg과 희토류원소(Re)(Y, La, Ce, Er, Dy, Yb)를 함유하되, Mg은 MgO 환산으로 1.0∼7.0mol%, Re는 산화물 환산으로 0.4∼1.0mol%를 각각 함유하며, 그 합계가 1.7∼7.5mol%인 질화규소 소결체로 이루어진다. 이 인서트는 소결체 표면에서 내부로 향해서 산소량이 증가하는 경사조성으로서, 표면에서 0.5㎜ 미만의 내부까지의 사이에 산소를 0.8∼1.5질량%, 표면으로부터 0.5㎜ 이상 내부에 있어서는 산소를 1.1∼2.3질량% 함유하며, 그 산소량의 차이가 0.1∼1.0질량%이다.The insert is made mainly of β-Si 3 N 4 and contains Mg and rare earth elements (Re) (Y, La, Ce, Er, Dy and Yb), Mg being 1.0 to 7.0 mol% And 0.4 to 1.0 mol% in terms of oxide, and the total amount thereof is 1.7 to 7.5 mol%. This insert is an inclined composition whose oxygen amount increases from the surface of the sintered body toward the inside and contains oxygen in an amount of 0.8 to 1.5 mass% from the surface to an inside of less than 0.5 mm, oxygen in an amount of 1.1 to 2.3 mass %, And the difference in oxygen amount is 0.1 to 1.0 mass%.

Description

인서트 및 절삭 공구{INSERT AND CUTTING TOOL}[0001] INSERT AND CUTTING TOOL [0002]

본 발명은 내마모성이 요구되는 인서트 및 절삭 공구, 특히 주철 등을 절삭가공하는데 최적한 인서트 및 절삭 공구에 관한 것이다.The present invention relates to an insert and a cutting tool which are required to have abrasion resistance, and particularly to an insert and a cutting tool optimal for cutting a cast iron or the like.

질화규소질 소결체(질화규소 소결체)는 내열성 및 내마모성 등이 우수하기 때문에 종래부터 각종 절삭 공구용 재료 등으로서 사용되고 있다.A silicon nitride sintered body (silicon nitride sintered body) is conventionally used as a material for various cutting tools because it has excellent heat resistance and abrasion resistance.

그러나, 질화규소는 난소결성이기 때문에, 통상은 소결조제를 사용하여 소성되고 있으며, 이 조제량이 많을 경우에는 소결체의 성능이 저하되기 때문에, 소성이 가능한 범위에서 조제량은 적은 편이 바람직하다.However, since silicon nitride is ovoid-shaped, it is usually baked using a sintering auxiliary agent. When the amount of the silicon nitride is large, the performance of the sintered body is lowered.

따라서, 하기한 특허문헌 1∼5와 같이 조제의 종류나 사용량의 저감 등 여러 가지 관점에서 성능 향상이 도모되고 있다.Therefore, as in the following Patent Documents 1 to 5, the performance is improved from various viewpoints such as reduction of kinds and amount of preparation.

특허문헌 1에는 Mg, Zr, Ce의 산화물 등의 조제를 극히 저감하여 특히 내마모성을 우수하게 한 절삭 공구용 질화규소 소결체가 개시되어 있다.Patent Document 1 discloses a silicon nitride sintered body for cutting tools, which has extremely reduced abrasion resistance such as oxides of Mg, Zr and Ce, and particularly excellent wear resistance.

특허문헌 2에는 소결체 최표면의 조제를 휘산시켜서 내부의 조제량보다 적게 함으로써 내마모성을 개선하는 기술이 개시되어 있다.Patent Document 2 discloses a technique for improving abrasion resistance by reducing the amount of the internal preparation by volatilizing the preparation on the outermost surface of the sintered body.

특허문헌 3에는 열처리에 의해서 질화규소질 소결체의 표면에 α-사이알론을 형성함으로써 표면 경도를 높여서 내마모 성능의 개선을 도모하는 기술이 개시되어 있다.Patent Document 3 discloses a technique for improving the wear resistance by increasing the surface hardness by forming? -Sialon on the surface of the silicon nitride-based sintered body by heat treatment.

특허문헌 4에는 SiO 가스 분위기 중에서 소성함으로써 소결체의 소성 표면의 거칠기를 적게 하고, 또한 소결체의 최표면에서 10㎛의 깊이까지 16GPa 이상의 비커스 경도를 가지는 경질상을 형성하는 기술이 개시되어 있다.Patent Document 4 discloses a technique of forming a hard phase having a Vickers hardness of 16 GPa or more at a depth of 10 탆 from the outermost surface of a sintered body by reducing the roughness of the sintered body by sintering in a SiO gas atmosphere.

특허문헌 5에는 입계(粒界)형성 성분인 희토류, Mg, Al 및 총량을 규정하여 열충격 저항성을 개선한 기술이 개시되어 있다.Patent Document 5 discloses a technique of improving the thermal shock resistance by regulating the rare earth elements, Mg, Al, and the total amount, which are grain boundary forming components.

특허문헌 1 : 일본국 특허 제3550420호 공보 Patent Document 1: Japanese Patent No. 3550420

특허문헌 2 : 일본국 특개 2002-12474호 공보 Patent Document 2: JP-A-2002-12474

특허문헌 3 : 일본국 특개 평9-183667호 공보 Patent Document 3: JP-A-9-183667

특허문헌 4 : 일본국 특개 평8-323509호 공보Patent Document 4: JP-A-8-323509

특허문헌 5 : 일본국 특개 평11-268957호 공보Patent Document 5: Japanese Patent Application Laid-Open No. 11-268957

[발명의개시][Disclosure of the Invention]

[발명이 해결하려고 하는 과제][PROBLEMS TO BE SOLVED BY THE INVENTION]

그러나, 특허문헌 1에 기재된 기술에서는, 내마모성에는 우수하지만 조제량이 적기 때문에 내결손성에 있어서 충분하지 않아 신뢰성이 결여되는 재료가 되기 쉽다는 문제가 있었다.However, in the technique described in Patent Document 1, there is a problem that the material is excellent in abrasion resistance, but is not sufficient in resistance to breakage because of a small amount of preparation, and is likely to be a material lacking in reliability.

특허문헌 2에 기재된 기술에서는, 소결조제의 조성이 경사진 재료이지만, 소결조제와 함께 입계상을 형성하는 주된 성분인 질화규소 원료 중에 함유되는 SiO2에 관해서는 전혀 고려되어 있지 않기 때문에 충분한 내마모성이 얻어지지 않는다는 문제가 있었다.In the technique described in Patent Document 2, although the composition of the sintering auxiliary agent is inclined, no consideration is given to SiO 2 contained in the silicon nitride raw material which is the main component for forming the grain boundary phase together with the sintering auxiliary agent, so that sufficient abrasion resistance is obtained .

특허문헌 3에 기재된 기술에서는, 소결체의 표면에 형성되는 α-사이알론은 질화규소에 비해서 강도가 낮기 때문에 내마모성은 개선되지만 절삭 인서트의 날끝 강도가 저하된다는 문제가 있었다.In the technique described in Patent Document 3, since α-sialon formed on the surface of the sintered body has lower strength than silicon nitride, there is a problem that the abrasion resistance is improved but the edge strength of the cutting insert is lowered.

특허문헌 4에 기재된 기술에서는, 내마모성이 개선되어 있지 않기 때문에 절삭 인서트의 고속절삭에 있어서의 내마모성이 불충분하다는 문제가 있었다.In the technique described in Patent Document 4, since the abrasion resistance is not improved, there is a problem that the abrasion resistance of the cutting insert at high speed cutting is insufficient.

특허문헌 5에 기재된 기술에서는, 경사조성(傾斜組成)으로 되어 있지 않기 때문에 내마모성이 떨어질 뿐만 아니라, Al2O3 함유량이 많기 때문에 열전도가 저하되며, 결과로서 내결손성이 저하된다는 문제가 있었다.In the technique described in Patent Document 5, there is a problem that not only the abrasion resistance is lowered but also the thermal conductivity is lowered because the Al 2 O 3 content is large because the slope composition (graded composition) is not formed, and as a result, the resistance to breakage is lowered.

본 발명은 이러한 문제점을 감안하여 이루어진 것으로서, 내마모성 및 내결손성이 우수한 인서트 및 절삭 공구를 제공하는 것을 목적으로 하고 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide an insert and a cutting tool excellent in wear resistance and resistance to breakage.

[과제를 해결하기 위한 수단][MEANS FOR SOLVING THE PROBLEMS]

절삭 중의 인서트의 날끝 온도는 상대 재료나 절삭 조건에 따라 다르지만, 일반적으로 800℃ 이상의 고온이 된다고 말해지고 있다. 따라서, 내마모성을 향상시키기 위해서는 내열성 및 화학 안정성이 우수한 것이 중요하다.The cutting edge temperature of the insert varies depending on the relative materials and cutting conditions, but it is generally said to be a high temperature of 800 ° C or higher. Therefore, it is important to have excellent heat resistance and chemical stability in order to improve abrasion resistance.

또, 질화규소 소결체 중의 입계상은 조제성분과 Si, N, O로 이루어지는 비정질 유리상 혹은 결정상으로서 존재하는데, 질화규소에 비하면 내열성이나 내식성이 떨어지므로, 이 입계상의 양 및 조성이 소결체의 내열성이나 화학 안정성에 영향을 미친다.Since the grain boundary phase in the silicon nitride sintered body exists as an amorphous glass phase or a crystal phase composed of the auxiliary component and Si, N, and O, the heat resistance and the corrosion resistance are lower than that of silicon nitride. Therefore, the amount and composition of the grain boundary phase, .

상기한 관점에서, 우선 첫째로 내열성ㆍ내식성ㆍ화학 안정성이 떨어지는 입계상의 양을 감소시킬 필요가 있었다.In view of the above, firstly, it has been necessary to reduce the amount of grain boundary phase which is inferior in heat resistance, corrosion resistance and chemical stability.

본 발명자들은 소량으로도 치밀화가 가능하고, 게다가 질화규소 소성 중에는 조제로서 작용하고, 소결 중에 표면으로 이동, 휘산하기 쉬운 소결조제를 선정함에 의해서, 질화규소의 소성 단계에서 표면부 부근으로 조제성분을 약간 이동, 휘발시켜서 내부에서 표면으로 향해서 산소량을 감소시킴으로써 내마모성, 특히 고속가공에 있어서의 내연마마모성(abrasive wear resistance)을 향상시키는 것이 가능하다는 것을 발견하고, 또 휘발후의 조성을 최적화함으로써 내마모성과 내결손성을 양립시킨 질화규소 소결체로 이루어지는 인서트가 얻어지는 것을 발견하고, 본 발명을 완성하였다.The present inventors have found that the sintering assistant which can be densified even in a small amount and which acts as an auxiliary during silicon nitride firing and is easy to move and volatilize during sintering is selected so that the silicon nitride is slightly moved , It is possible to improve abrasion resistance, especially abrasive wear resistance in high-speed machining, by reducing the amount of oxygen from the inside to the surface by volatilization, and by optimizing the composition after volatilization, And an insert made of a silicon nitride sintered body that is compatible with each other can be obtained, thereby completing the present invention.

(1) 제 1 실시형태의 발명은, β-Si3N4를 주성분으로 하고, Mg과 희토류원소(Re)(Y, La, Ce, Er, Dy, Yb)를 함유하되, Mg은 MgO 환산으로 1.0∼7.0mol%, Re는 산화물 환산으로 0.4∼1.0mol%를 각각 함유하며, 그 합계가 1.7∼7.5mol%인 질화규소 소결체로 이루어지는 인서트에 있어서, 소결체 표면에서 내부로 향해서 산소량이 증가하는 경사조성(傾斜組成)으로서, 표면에서 0.5㎜ 미만의 내부까지의 사이에 산소를 0.8∼1.5질량%, 표면으로부터 0.5㎜ 이상 내부에 있어서는 산소를 1.1∼2.3질량% 함유하며, 그 산소량의 차이가 0.1∼1.0질량%인 것을 특징으로 한다.(1) The invention according to the first embodiment is characterized in that the main component is β-Si 3 N 4 and Mg contains rare earth elements Re (Y, La, Ce, Er, Dy and Yb) , And Re in an amount of 0.4 to 1.0 mol% in terms of oxide, and the total amount thereof is 1.7 to 7.5 mol%, wherein an inclination at which the oxygen amount increases from the surface of the sintered body toward the inside (Inclined composition) containing 0.8 to 1.5% by mass of oxygen and 1.1 to 2.3% by mass of oxygen within 0.5 mm or more from the surface to an inside of less than 0.5 mm from the surface, By mass to 1.0% by mass.

◎ 우선, Mg 및 희토류원소(Re)(Y, La, Ce, Er, Dy, Yb)에 관해서는, MgO 환산으로 1.0mol% 미만, Re의 산화물 환산으로 0.4mol% 미만, 합계가 1.7mol% 미만에서는 충분한 소결성이 얻어지지 않고, 각각 상한을 넘으면 필요 이상으로 소결체 중에 조제 성분이 잔류하므로 바람직하지 않다.First, Mg and rare earth elements (Re) (Y, La, Ce, Er, Dy and Yb) are contained in an amount of less than 1.0 mol% in terms of MgO, less than 0.4 mol% , Sufficient sinterability can not be obtained. If the upper limit is exceeded, the auxiliary components remain in the sintered body unnecessarily, which is not preferable.

그 중, Mg은 SiO2와 함께 입계상의 융점 및 점성을 떨어뜨려서 소결에 유효하게 작용할 뿐만 아니라, Mg과 SiO2는 세트로 되어 표면부로 이동, 증발하기 쉽기 때문에, 목적으로 하는 인서트를 얻는데 불가결한 원소이다.Among them, Mg is not only effective for sintering by lowering the melting point and viscosity of the intergranular phase together with SiO 2 , but also Mg and SiO 2 are easily set and evaporated to the surface portion, so that it is indispensable to obtain a desired insert It is an element.

한편, 희토류원소(Re)(Y, La, Ce, Er, Dy, Yb)는 질화규소의 입자를 침상화(針狀化)하기 위해서 유효하게 작용할 뿐만 아니라, 이온 반경이 작기 때문에 Mg과 함께 소결에 유효하게 작용하며, 또한 표면부로 이동, 증발하기 쉬으므로 목적으로 하는 인서트를 얻는데 최적하다.On the other hand, the rare earth element Re (Y, La, Ce, Er, Dy, Yb) not only works effectively to needle-form silicon nitride particles but also has a small ionic radius, And it is also easy to move and evaporate to the surface portion, which is optimal for obtaining the desired insert.

따라서, 본 발명에서는 상술한 바와 같이 Mg과 희토류원소(Re)(Y, La, Ce, Er, Dy, Yb)의 조성을 규정하였다.Therefore, in the present invention, the composition of Mg and the rare earth element Re (Y, La, Ce, Er, Dy, Yb) is defined as described above.

◎ 또, 소결체 표면에서 0.5㎜까지(미만)의 산소량이 0.8질량% 미만에서는 치밀화되지 않는 이른바 백색부분이 잔류하고, 1.5질량%를 넘으면 충분한 내마모성이 얻어지지 않는다.When the amount of oxygen in the sintered body surface is less than 0.5 mm (less than 0.8 mass%), the so-called white portion which is not densified remains, while when it exceeds 1.5 mass%, sufficient abrasion resistance is not obtained.

소결체 표면으로부터 0.5㎜ 이상 내부의 산소량이 1.0질량% 미만에서는 질화규소 특유의 침상 조직이 성장하지 않기 때문에 충분한 내결손성이 얻어지지 않고, 2.3질량% 넘게 산소를 함유하면 내열성이 저하되어, 특히 고속가공에 있어서 내마모성의 저하를 초래한다.When the amount of oxygen within 0.5 mm or more from the surface of the sintered body is less than 1.0% by mass, the needle-like structure peculiar to silicon nitride does not grow and sufficient resistance to cracking can not be obtained. When oxygen content exceeds 2.3% by mass, heat resistance deteriorates, The abrasion resistance is lowered.

또, 표면에서 0.5㎜까지의 산소량과 0.5㎜ 이상 내부의 산소량의 차이가 0.1질량% 미만에서는 경사가 너무 완만하기 때문에 내마모성과 내결손성의 양립이 곤란하고, 1.0질량%를 넘으면 표면과의 급격한 산소량의 차이에 의해서 잔류응력이 발생하여, 표면이 박리 결손하기 쉬워지게 되므로 바람직하지 않다.If the difference between the oxygen content from the surface to 0.5 mm and the oxygen content within 0.5 mm or more is less than 0.1 mass%, it is difficult to achieve both abrasion resistance and crack resistance because the inclination is too gentle. When the difference is more than 1.0 mass% The residual stress is generated due to the difference between the surface tension and the tensile stress, and the surface is liable to be peeled off.

따라서, 본 발명에서는 상술한 바와 같이 산소량을 규정하였다.Therefore, in the present invention, the oxygen amount is defined as described above.

따라서, 본 발명의 인서트에서는 상술한 구성에 의해서 우수한 내마모성 및 내결손성을 발휘할 수 있기 때문에, 예를 들면 주철 등을 고속으로 절삭하는 것이 가능하다.Therefore, in the insert of the present invention, excellent wear resistance and breakage resistance can be exhibited by the above-described structure, and therefore it is possible to cut, for example, cast iron or the like at a high speed.

(2) 제 2 실시형태의 발명에서는, 희토류원소(Re)가 Yb이고, Mg은 MgO 환산으로 1.0∼5.5mol%, Yb은 Yb2O3 환산으로 0.4∼1.0mol%를 각각 함유하고, 그 합계가 1.7∼6.0mol%인 것을 특징으로 한다.(2) According to the invention as a second embodiment, the rare earth element (Re) is Yb, Mg is 1.0~5.5mol% in terms of MgO, Yb is contained in the 0.4~1.0mol% Yb 2 O 3 equivalent, respectively, and And the total amount is 1.7 to 6.0 mol%.

희토류원소(Re)가 Yb, 즉 Mg과 Yb의 조합은 소량으로 소결에 유효하게 작용하고 또한 표면에서 휘산하기 쉽기 때문에, 내마모성과 내결손성을 양립시킴에 있어서 최적한 조합이다. 따라서, 본 발명에서는 상술한 바와 같이 Mg과 Yb의 조성을 규정하였다.The combination of Yb, that is, Mg and Yb, as rare earth element (Re), is an optimum combination for both abrasion resistance and resistance to breakage because it is effective in sintering in small amounts and is easy to volatilize on the surface. Therefore, in the present invention, the composition of Mg and Yb is defined as described above.

(3) 제 3 실시형태의 발명에서는, 실온에서의 열전도율이, 표면으로부터 1.0㎜의 깊이보다 외측(표면측)에서는 45W/mㆍK 이상이고, 표면으로부터 1.0㎜ 이상 내부에서는 40W/mㆍK 이상인 것을 특징으로 한다. 여기서, '실온'이란 25℃이다(이하 같음).(3) In the invention of the third embodiment, the thermal conductivity at room temperature is 45 W / m · K or more at the outer side (surface side) than at the depth of 1.0 mm from the surface, 40 W / Or more. Here, 'room temperature' is 25 ° C (hereinafter the same).

열전도율에 관해서는 높은 값인 편이 방열이 용이하고 인서트의 가열을 완화할 수 있어 열충격의 완화에 효과적이다.With respect to the thermal conductivity, a high-temperature side is easy to dissipate heat, and the heat of the insert can be relaxed, which is effective in mitigating thermal shock.

본 발명에서는 실온에서의 열전도율이, 표면으로부터 1.0㎜의 깊이보다 외측(표면측)에서는 45W/mㆍK 이상이고, 표면으로부터 1.0㎜ 이상 내부에서는 40W/mㆍK 이상이기 때문에, 열크랙의 발생ㆍ성장에 의한 질화규소 소결체(따라서, 인서트)의 결손을 현저하게 억제할 수 있다.In the present invention, since the thermal conductivity at room temperature is 45 W / m · K or more at the outer side (surface side) than the depth of 1.0 mm from the surface and is 40 W / m · K or more at 1.0 mm or more from the surface, The defect of the silicon nitride sintered body (and thus the insert) due to growth can be remarkably suppressed.

(4) 제 4 실시형태의 발명에서는, 실온에서의 항절강도(3점 굽힘강도 : JIS R1601)가 900MPa 이상인 것을 특징으로 한다.(4) The invention of the fourth embodiment is characterized in that the tensile strength at room temperature (three point bending strength: JIS R1601) is 900 MPa or more.

본 발명의 인서트는 실온에서의 항절강도(3점 굽힘강도 : JIS R1601)가 900MPa 이상이고, 바람직하게는 1000MPa 이상이다.The insert of the present invention has an elastic strength at room temperature (three point bending strength: JIS R1601) of 900 MPa or more, preferably 1,000 MPa or more.

본 발명의 인서트를 이용하여 절삭가공할 경우, 인서트를 구성하는 소결체의 강도가 클수록 단순히 강도 뿐만 아니라 열충격 저항성에도 우수하므로 안정한 가공이 가능하게 된다. 따라서, 상기 3점 굽힘강도를 가지는 인서트는 특히 최적하다. 즉, 실온 강도가 900MPa 이상인 본 발명의 인서트를 이용함으로써 안정한 가공이 가능하게 된다.In the case of cutting using the insert of the present invention, the larger the strength of the sintered body constituting the insert is, the more excellent not only the strength but also the thermal shock resistance, the stable machining becomes possible. Therefore, the insert having the three-point bending strength is particularly optimum. That is, stable machining becomes possible by using the insert of the present invention having a room temperature strength of 900 MPa or more.

또, 본 발명의 인서트는 조제 성분인 ZrO2과 Al2O3이 총량으로 0.6질량% 이하의 함유량이면, 열전도율 45W/mㆍK 이상을 유지하여 성능이 저하되지 않으므로, 소결성을 개선하는 것이 가능하다. 조제 성분인 ZrO2과 Al2O3의 함유량이 총량으로 0.6질량%를 넘으면, 조제 성분의 표면으로의 이동이 둔해져서 충분히 경사지지 않으므로, 내마모성이 저하되는 한편, 열전도율의 저하를 일으키므로, 결과로서 내결손성도 저하되기 때문에 바람직하지 않다.In the insert of the present invention, when the total amount of ZrO 2 and Al 2 O 3 , which are auxiliary components, is 0.6% by mass or less, the thermal conductivity is maintained at 45 W / m · K or more so that the performance is not deteriorated and the sinterability can be improved Do. When the total content of ZrO 2 and Al 2 O 3 as the auxiliary ingredients is more than 0.6% by mass, the movement of the auxiliary component to the surface is dull and not sufficiently inclined, so that the abrasion resistance is lowered and the thermal conductivity is lowered. And the resistance to defects is lowered.

(5) 제 5 실시형태의 발명에서는, Yb원소, Mg원소, Si원소, O원소 및 N원소로 이루어지는 결정을 입계상에 함유하는 것을 특징으로 한다.(5) The invention of the fifth embodiment is characterized in that the grain boundary phase contains crystals composed of Yb element, Mg element, Si element, O element and N element.

질화규소 소결체로 이루어지는 인서트의 입계상에 Yb원소, Mg원소, Si원소, O원소 및 N원소로 이루어지는 결정을 석출시킴으로써, 적은 첨가 조제량에 있어서도 일층 입계상 중에 존재하는 유리상의 저감이 가능하게 되며, 특히 우수한 내마모성과 내결손성을 구비한 인서트로 하는 것이 가능하게 된다. 이 Yb원소, Mg원소, Si원소, O원소 및 N원소로 이루어지는 결정은 특히 한정되는 것은 아니지만, 입계상에 존재하면, 질화규소 소결체의 내마모성과 내결손성을 특히 향상시킬 수 있는 점에서 YbMgSi2O5N인 것이 바람직하다.By precipitating crystals composed of Yb element, Mg element, Si element, O element and N element on the grain boundary of the insert consisting of the silicon nitride sintered body, it is possible to reduce the glass phase present in the first grain boundary phase even at a small addition amount, It is possible to provide an insert having excellent wear resistance and breakage resistance. The crystal composed of the Yb element, the Mg element, the Si element, the O element and the N element is not particularly limited. However, in the presence of the grain boundary phase, the abrasion resistance and the breakage resistance of the silicon nitride sintered body can be particularly improved. YbMgSi 2 O 5 < / RTI >

본 발명에 관한 질화규소 소결체로 이루어지는 인서트는 질화규소(이하에서는 "Si3N4"로 칭하는 일이 있다) 및 사이알론의 1종 이상의 결정입자를 주성분으로 하는 주결정상과, Yb원소, Mg원소, Si원소, O원소 및 N원소로 이루어지는 결정(이 결정을 주는 화합물을 이하에서는 "YbMgSi화합물"로 칭하는 일이 있다)을 함유하는 입계상으로 실질적으로 이루어진다.The insert made of the silicon nitride sintered body according to the present invention is composed of a main crystal phase mainly composed of silicon nitride (hereinafter sometimes referred to as "Si 3 N 4 ") and one or more kinds of sialon crystal grains, a Yb element, (The compound giving the crystal is sometimes referred to as "YbMgSi compound" hereinafter)) composed of an element, an O element and an N element.

상기 주결정상은 질화규소 및/또는 사이알론의 1종 이상의 결정입자를 함유한다. 주결정상에 함유되는 질화규소는 β-Si3N4를 주성분으로 하며, β-Si3N4만으로도, α-Si3N4와 β-Si3N4의 혼합물이어도 된다. 질화규소가 α-Si3N4와 β-Si3N4의 혼합물일 때는 그 α-Si3N4의 비율, 즉 α율은 0∼30%인 것이 바람직하다. α율이 30%를 넘으면, 소결체의 침상 입자 감소에 의한 인성(靭性) 저하 등의 기계적 특성 저하라는 문제점을 일으키는 일이 있다. α율은 X선회절법에 의해서 구해지는 α-Si3N4의 피크강도(Iα) 및 β-Si3N4의 피크강도(Iβ)로부터 식 : [Iα/(Iα+Iβ)]×100에 의해서 산출할 수 있다.The main crystalline phase contains at least one crystal grain of silicon nitride and / or sialon. The silicon nitride contained in the main crystal phase contains β-Si 3 N 4 as a main component and may be β-Si 3 N 4 alone or a mixture of α-Si 3 N 4 and β-Si 3 N 4 . That the silicon nitride is a ratio, i.e. ratio of α-Si 3 N 4 and the α β-Si 3 N 4, when a mixture of the α-Si 3 N 4 is 0 - 30% being preferred. If the? ratio exceeds 30%, there may be a problem that the mechanical properties such as toughness are lowered due to reduction of the needle-like particles in the sintered body. α rate of expression from the α-Si 3 N 4 of the peak intensity (Iα) and peak intensity (Iβ) of β-Si 3 N 4 as determined by X-ray diffraction method: [Iα / (Iα + Iβ )] × 100 As shown in FIG.

또, 질화규소에 함유되는 불순물로서의 산소 함유량은 통상 0.8∼2질량%이다. 상기 산소 함유량이 적으면 소결성 저하, 산소 함유량이 많으면 내열성 저하나 열전도율 저하라는 문제점을 일으키는 일이 있다. 이 질화규소의 최적한 평균입경은 0.5∼1.6㎛이다. 평균입경이 상기 0.5㎛보다도 작으면 성형성을 손상시킨다는 문제점을 일으키는 일이 있다.The content of oxygen as an impurity contained in silicon nitride is usually 0.8 to 2% by mass. If the oxygen content is low, the sinterability is deteriorated. If the oxygen content is large, the heat resistance may be lowered or the thermal conductivity may be lowered. The optimum average particle diameter of the silicon nitride is 0.5 to 1.6 탆. If the average particle diameter is less than 0.5 [micro] m, the moldability may be deteriorated.

주결정상에 함유되는 사이알론은 Si-Al-O-N계의 화합물의 총칭이다. α-사이알론은 α-Si3N4의 결정에 있어서의 규소 및 질소의 위치에 알루미늄 및 산소가 일부 치환 고용(固溶)됨과 동시에 전하 보상에 금속이온이 침입 고용된 화합물이고, β-사이알론은 β-Si3N4의 결정에 있어서의 규소 및 질소의 위치에 알루미늄 및 산소가 일부 치환 고용된 화합물이다.The sialon contained in the main crystal phase is a generic name of a compound of Si-Al-ON system. α- sialon is α-Si 3 N 4 crystal and the silicon and aluminum, and oxygen is located in the metal ion partially substituted employed (固溶) as soon at the same time the charge compensation of the nitrogen intrusion compound employed in the, between the β- Alon is a compound in which aluminum and oxygen are partially substituted and solved at positions of silicon and nitrogen in the crystal of? -Si 3 N 4 .

주결정상에 함유되는 사이알론은 특히 제한되는 것은 아니지만 α-사이알론, β-사이알론, α-사이알론과 β-사이알론의 혼합물 중 어느 것이어도 된다. 사이알론이 α-사이알론과 β-사이알론의 혼합물일 때에는 그 α-사이알론의 비율, 즉 α율은 30% 이하인 것이 바람직하다. α율이 30%를 넘으면, 소결체의 침상 입자 감소에 의해서 인성 저하 등의 기계적 특성이 저하되며, 그 결과 질화규소질 소결체의 내결손성이 떨어지는 일이 있다. α율은 X선회절법에 의해서 구해지는 α-사이알론의 피크강도 및 β-사이알론의 피크강도로부터 상기 Si3N4의 α율과 마찬가지로 하여 산출할 수 있다.The sialon contained in the main crystal phase may be any of α-sialon, β-sialon, α-sialon and β-sialon, though not particularly limited. When sialon is a mixture of? -Sialon and? -Sialon, the ratio of? -Sialon, that is, the? Ratio is preferably 30% or less. When the? ratio exceeds 30%, mechanical properties such as toughness deterioration are lowered due to reduction of needle-shaped particles in the sintered body, and as a result, the sintered body of silicon nitride is likely to have poor resistance to scratching. The? ratio can be calculated in the same manner as the? ratio of Si 3 N 4 from the peak intensity of? -sialon and the peak intensity of? -sialon determined by X-ray diffractometry.

상기 주결정상은 질화규소 및 사이알론의 1종 이상의 결정입자를 함유하고 있으면 되며, 질화규소의 결정입자를 주로 하여 함유하고 있어도 되고, 사이알론의 결정입자를 주로 하여 함유하고 있어도 되고, 또 질화규소의 결정입자와 사이알론의 결정입자를 주로 하여 함유하고 있어도 된다.The main crystal phase may contain at least one kind of crystal grains of silicon nitride and sialon. The main crystal phase may contain crystal grains of silicon nitride mainly or may contain mainly sialon crystal grains. The crystal grains of silicon nitride And sialon crystal grains may be mainly contained.

본 발명에 관한 질화규소 소결체로 이루어지는 인서트는 상기 질화규소 및/또는 사이알론의 1종 이상의 결정입자, 후술하는 입계상에 함유되는 YbMgSi화합물 및 후술하는 입계상에 함유되어도 되는 결정상 및/또는 유리질을 형성하는 화합물의 합계가 100질량%가 되도록, 주결정상, 즉 질화규소 및/또는 사이알론의 1종 이상의 결정입자를 85∼98질량%의 범위 내에서, 바람직하게는 90∼97질량%의 범위 내에서 함유한다. 이 주결정상의 함유비율이 98질량%를 넘으면, 저하된 소결성에 의해서 내마모성이 저하되는 일이 있고, 한편 85질량% 미만이면, 질화규소 또는 사이알론 자체가 가지는 우수한 기계적 성질 및 내열성 등을 충분히 확보할 수 없는 일이 있다.The insert comprising the silicon nitride sintered body according to the present invention is characterized in that it comprises at least one of the above-mentioned crystal grains of silicon nitride and / or sialon, a YbMgSi compound contained in the grain boundary phase to be described later and a crystal phase and / In the range of 85 to 98 mass%, preferably 90 to 97 mass%, of the main crystal phase, that is, one or more kinds of crystal grains of silicon nitride and / or sialon so that the total amount of the compounds is 100 mass% do. If the content of the main crystal phase exceeds 98% by mass, the abrasion resistance may deteriorate due to the reduced sinterability. If the content is less than 85% by mass, the excellent mechanical properties and heat resistance of silicon nitride or sialon itself There is something that can not be done.

(6) 제 6 실시형태의 발명에서는, 상기 질화규소 소결체의 인서트의 X선회절 차트에 있어서, 상기 결정에 있어서의 YbMgSi2O5N에 의거하는 피크 중 최대 강도를 나타내는 피크강도(IYb)가 질화규소에 의거하는 피크 중 최대 강도를 나타내는 피크강도(IS)에 대해서 0% 초과 10% 이하인 것을 특징으로 한다.(6) In the invention of the sixth embodiment, in the X-ray diffraction chart of the insert of the silicon nitride sintered body, the peak intensity (I Yb ) showing the maximum intensity in the peak based on YbMgSi 2 O 5 N in the crystal is And is not less than 0% and not more than 10% with respect to the peak intensity (I S ) indicating the maximum intensity in the peak based on silicon nitride.

YbMgSi2O5N에 의거하는 피크 중 최대 강도를 나타내는 피크강도(IYb)는 질화규소 또는 사이알론에 의거하는 피크 중 최대 강도를 나타내는 피크강도(IS)에 대해서 1∼9%가 되도록 함유되어 있는 것이 더 바람직하고, 1.5∼3.0%가 되도록 함유되어 있는 것이 특히 바람직하다. YbMgSi화합물의 질화규소에 대한 함유량이 상기 범위 내에 있으면, 질화규소 소결체로 이루어지는 인서트가 특히 우수한 내마모성과 내결손성을 발휘하는 한편, 800℃ 이상의 고온에서의 고속 절삭가공에 있어서도 특히 우수한 내마모성을 발휘한다. 또한, 상기 피크강도(IYb) 및 피크강도(IS)는 질화규소 소결체의 X선회절 차트에 있어서의 베이스 라인으로부터의 높이로서 파악된다.The peak intensity (I Yb ) showing the maximum intensity in the peak based on YbMgSi 2 O 5 N is contained so as to be 1 to 9% with respect to the peak intensity (I S ) showing the maximum intensity in the peak based on silicon nitride or sialon , More preferably from 1.5 to 3.0%, and particularly preferably from 1.5 to 3.0%. When the content of the YbMgSi compound in the silicon nitride is within the above range, the insert made of a silicon nitride sintered body exhibits particularly excellent wear resistance and breakage resistance, and exhibits particularly excellent wear resistance even in high speed cutting at a high temperature of 800 DEG C or higher. In addition, the peak intensity (I Yb ) and the peak intensity (I S ) are determined as the height from the baseline in the X-ray diffraction chart of the silicon nitride sintered body.

YbMgSi화합물은 통상 입계상에 함유되어 있지만, 그 일부가 주결정상에 함유되어 있어도 된다.The YbMgSi compound is usually contained in the grain boundary phase, but a part thereof may be contained in the main crystal phase.

상기 입계상은 YbMgSi화합물 외에 소결조제 등을 구성하는 원소를 주성분으로 하는 결정상 및/또는 유리상을 가지고 있어도 된다. 이와 같은 결정상 및/또는 유리상은 소결조제, 질화규소 및 질화규소에 불순물로서 함유되는 실리카 성분 등이 소결시에 액상화되어 소결에 기여한 후, 냉각시에 고화되어 유리상 또는 결정상으로서 생성된다. 이와 같은 결정상으로서는 예를 들면, YAG상, YAM상, Yb2Si2O7 등을 들 수 있으며, 이와 같은 결정상은 통상 저인성(低靭性)이기 때문에 적절한 존재량(질량%)으로 제어된다.The grain boundary phase may have a crystal phase and / or a glass phase mainly composed of elements constituting a sintering assistant etc. in addition to the YbMgSi compound. The crystalline phase and / or the glass phase are liquefied at the time of sintering, contributing to sintering, and then solidified at the time of cooling to form a glass phase or a crystal phase, such as a sintering aid, a silicon component contained as silicon nitride and silicon nitride as impurities. Examples of such a crystal phase include a YAG phase, a YAM phase, and Yb 2 Si 2 O 7. Since such a crystal phase is generally low in toughness, it is controlled to a suitable amount (mass%).

또, 유리상은 통상 저융점 또한 저인성, 저경도이기 때문에 소결체를 소결할 때의 소결성 등을 고려하여 적절한 존재량(질량%)으로 제어된다. 이들 결정상 및 유리상의 존재량은 질화규소 소결체 및 YbMgSi화합물 등에 의해서 적절하게 조정되지만, 극히 적은 편이 좋고, 실질적으로 존재하지 않는 것이 좋다.In addition, since the glass phase generally has a low melting point, a low hardness and a low hardness, it is controlled to an appropriate amount (mass%) in consideration of sintering property when the sintered body is sintered. The abundance of these crystal phases and glass phases is suitably adjusted by the silicon nitride sintered body and the YbMgSi compound, but it is preferable that the crystal phase and the glass phase are extremely small and substantially not exist.

(7) 제 7 실시형태의 발명은, 상기 제 1∼제 6 실시형태 중 어느 1개의 실시형태에 기재된 인서트를 홀더에 장착한 절삭 공구이다.(7) The invention of the seventh embodiment is a cutting tool equipped with an insert according to any one of the first to sixth embodiments described above on a holder.

상기 인서트를 홀더에 장착한 절삭 공구를 이용함으로써 최적하게 절삭가공을 할 수 있다.It is possible to optimally perform the cutting work by using the cutting tool having the insert mounted on the holder.

여기서, 상술한 질화규소 소결체(즉, 인서트)를 제조할 경우에는 Mg원으로서 MgCO3 원료분말을 이용하는 것이 최적하다.Here, when the silicon nitride sintered body (i.e., insert) described above is produced, it is optimal to use the MgCO 3 raw material powder as the Mg source.

즉, 질화규소 소결체의 원료로서는 MgO 분말을 사용하는 것이 일반적이지만, 본 발명과 같이 조제성분을 표면에서 휘발시킨 질화규소 소결체는 분위기를 잘 제어하지 않으면 표면이 과도하게 휘발되어 치밀화되지 않는 이른바 백색부가 생성되게 된다.In other words, MgO powder is generally used as a raw material of the silicon nitride sintered body. However, in the silicon nitride sintered body obtained by volatilizing the auxiliary component on the surface as in the present invention, a so-called white part in which the surface is excessively volatilized do.

그래서, 출발원료로서 MgCO3을 이용하면, 소성중에 비교적 저온에서 분해되어 발생하는 CO2(MgCO3→MgO+CO2↑)가 질소분위기 중에 존재함으로써, 표면에서 필요 이상의 조제성분의 휘발을 억제하기 때문에, 백색화되지 않는 안정한 표면의 질화규소 소결체를 제작할 수 있다.Therefore, when MgCO 3 is used as a starting material, the presence of CO 2 (MgCO 3 ? MgO + CO 2? ) Generated by decomposition at relatively low temperature during firing is suppressed in the nitrogen atmosphere, Therefore, a silicon nitride sintered body having a stable surface which is not whitened can be produced.

도 1에 있어서, (a)는 실시형태의 인서트의 사시도, (b)는 인서트의 노즈부분을 확대하여 나타내는 사시도이다.1 (a) is a perspective view of an insert of the embodiment, and (b) is a perspective view enlarging and showing a nose portion of the insert. Fig.

도 2는 절삭방법을 나타내는 설명도이다.2 is an explanatory view showing a cutting method.

도 3은 실험예의 시료의 소성조건과 배합조성을 기재한 표 1을 나타내는 설명도이다.3 is an explanatory diagram showing Table 1 showing firing conditions and compositional composition of the sample in the experimental example.

도 4는 실험결과를 기재한 표 2를 나타내는 설명도이다.4 is an explanatory view showing Table 2 showing the experimental results.

도 5는 실시예에 있어서의 시료 2의 X선회절 차트이다.5 is an X-ray diffraction chart of the sample 2 in the example.

도 6에 있어서, (a)는 피삭재의 횡단면도, (b)는 피삭재의 종단면도, (c)는 절삭방향을 나타내는 설명도이다.6, (a) is a cross-sectional view of the workpiece, (b) is a longitudinal sectional view of the workpiece, and (c) is an explanatory diagram showing the cutting direction.

도 7은 실험결과를 나타내는 그래프이다.7 is a graph showing experimental results.

[부호의 설명][Description of Symbols]

1 - 인서트 3 - 절삭날1 - insert 3 - cutting edge

5 - 쳄퍼(chamfer) 7 - 노즈(nose)5 - chamfer 7 - nose

9 - 홀더 11 - 절삭 공구9 - Holder 11 - Cutting tool

[발명을 실시하기 위한 최선의 형태]BEST MODE FOR CARRYING OUT THE INVENTION [

이하, 본 발명의 실시형태를 도면을 참조하면서 설명한다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[실시형태][Embodiment Mode]

a) 우선 본 실시형태의 인서트의 구성에 대해서 설명한다.a) First, the structure of the insert of the present embodiment will be described.

도 1의 (a),(b)에 나타낸 바와 같이, 본 실시형태의 인서트(1)는 질화규소 소결체로 이루어지는 대략 정사각형 판형상(즉, ISO규격의 SNGN120408형상)의 절삭팁이다.As shown in Figs. 1 (a) and 1 (b), the insert 1 of the present embodiment is a cutting tip of a substantially square plate shape (i.e., an ISO standard SNGN120408 shape) made of a silicon nitride sintered body.

이 인서트(1)는 그 양면(경사면)에 있어서의 코너에 절삭날(3)을 가지고 있으며, 이 절삭날(3)에는 쳄퍼(5)가 형성되어 있다. 또, 인서트(1)의 노즈(7)는 매끄럽게 만곡되어 있다.The insert 1 has a cutting edge 3 at a corner of its both surfaces (inclined surfaces), and a chamfer 5 is formed on the cutting edge 3. In addition, the nose 7 of the insert 1 is smoothly curved.

본 실시형태의 인서트(1)는 Mg과 희토류원소(Re)(Y, La, Ce, Er, Dy, Yb)를 함유하되, Mg은 MgO 환산으로 1.0∼7.0mol%, Re는 산화물 환산으로 0.4∼1.0mol%를 각각 함유하며, 그 합계가 1.7∼7.5mol%이다.The insert 1 of the present embodiment contains Mg and rare earth elements Re (Y, La, Ce, Er, Dy, Yb), Mg is 1.0 to 7.0 mol% in terms of MgO, Re is 0.4 To 1.0 mol%, respectively, and the total amount thereof is 1.7 to 7.5 mol%.

또, 이 인서트(1)는 그 소결체 표면에서 내부로 향해서 산소량이 증가하는 경사조성(傾斜組成)을 가지며, 표면에서 0.5㎜ 미만의 내부까지의 사이에 산소를 0.8∼1.5질량%, 표면으로부터 0.5㎜ 이상 내부에 있어서는 산소를 1.1∼2.3질량% 함유하며, 그 산소량의 차이가 0.1∼1.0질량%이다.The insert 1 has an inclined composition (graded composition) in which the amount of oxygen increases from the surface of the sintered body toward the inside, and oxygen is contained in an amount of 0.8 to 1.5 mass% and 0.5 Mm or more, oxygen is contained in 1.1 to 2.3 mass%, and the difference in oxygen amount is 0.1 to 1.0 mass%.

또한, 인서트(1)는 실온에서의 열전도율이 45W/mㆍK 이상이고, 또한 표면으로부터 1.0㎜ 이상 내부에서는 40W/mㆍK 이상이고, 같은 실온에서의 항절강도(3점 굽힘강도 : JIS R1601)가 900MPa 이상이다.The insert 1 has a thermal conductivity of at least 45 W / m 占 에서 at room temperature and a tensile strength of not less than 40 W / m 占 내부 in 1.0 mm or more from the surface and a tensile strength at the same room temperature (3 point bending strength: JIS R1601) is 900 MPa or more.

또, 인서트(1)는 Yb원소, Mg원소, Si원소, O원소 및 N원소로 이루어지는 결정을 입계상에 함유하는 질화규소 소결체로 이루어진다.The insert 1 is made of a silicon nitride sintered body containing crystals composed of Yb element, Mg element, Si element, O element and N element in the grain boundary phase.

또한, 이 인서트(1)는, X선회절 차트에 있어서, 결정에 있어서의 YbMgSi2O5N에 의거하는 피크 중 최대 강도를 나타내는 피크강도(IYb)가 질화규소 또는 사이알론에 의거하는 피크 중 최대 강도를 나타내는 피크강도(IS)에 대해서 0% 초과 10% 이하이다.This insert (1) is characterized in that, in the X-ray diffraction chart, the peak intensity (I Yb ) indicating the maximum intensity among the peaks based on YbMgSi 2 O 5 N in the crystal is a peak based on silicon nitride or sialon Is not less than 0% and not more than 10% with respect to the peak intensity (I S ) indicating the maximum intensity.

따라서, 본 실시예의 인서트(1)는 이와 같은 구성에 의해서 후술하는 실험예에서 나타내는 바와 같이 높은 내마모성 및 내결손성을 모두 구비하고 있다.Accordingly, the insert 1 of this embodiment has both high abrasion resistance and breakage resistance as shown in the experimental example described later by this structure.

상술한 인서트(1)는 도 2에 예시한 바와 같이, 예를 들면 강제의 기둥형상 홀더(9)의 선단에 접합되어 절삭 공구(11)로서 사용된다.The above-mentioned insert 1 is used as a cutting tool 11, for example, joined to the tip end of a forcible columnar holder 9, as shown in Fig.

예를 들면, 인서트(1)를 이용하여 절삭가공을 할 경우에는, 프런트 플랭크와 사이드 플랭크의 사이의 노즈(7)를 회전하는 워크(W)에 눌러 맞닿게 하여 절삭가공을 한다.For example, when cutting is performed using the insert 1, the nose 7 between the front flank and the side flank is pressed against the rotating workpiece W to perform cutting.

b) 이어서, 본 실시형태의 인서트의 제조방법에 대해서 설명한다.b) Next, a method of manufacturing the insert of the present embodiment will be described.

우선, 주성분인 평균입경 1.0㎛ 이하의 α-Si3N4 분말과, 소결조제로서 평균 입경 1.0㎛ 이하의 Yb2O3 분말, Y2O3 분말, La2O3 분말, CeO2 분말, Er2O3 분말, Dy2O3 분말, MgO 분말, MgCO3 분말, Al2O3 분말, ZrO2 분말을 도 3(표 1)에 나타내는 배합비율로 칭량하였다.First, α-Si 3 N 4 powder having an average particle diameter of 1.0 μm or less as a main component and Yb 2 O 3 powder, Y 2 O 3 powder, La 2 O 3 powder, CeO 2 powder, Er 2 O 3 powder, Dy 2 O 3 powder, MgO powder, MgCO 3 powder, Al 2 O 3 powder and ZrO 2 powder were weighed in the mixing ratios shown in FIG. 3 (Table 1).

이 칭량된 재료를, Al2O3의 혼입을 최소한으로 하기 위해서, 질화규소제 내벽 포트, 질화규소제 볼을 이용하여 에탄올 또는 물 용매에서 96시간 혼합하여 슬러리로 하였다.The weighed material was mixed for 96 hours in an ethanol or water solvent using an inner wall port made of silicon nitride and a ball made of silicon nitride so as to minimize the incorporation of Al 2 O 3 to obtain a slurry.

이 슬러리를 325메쉬의 체에 통과시키고, 에탄올 또는 물에 용해한 왁스계의 유기 바인더를 5.0질량% 첨가하고 스프레이 드라이하였다.The slurry was passed through a sieve of 325 mesh, added with 5.0 wt% of a wax-based organic binder dissolved in ethanol or water, and spray-dried.

그리고, 얻어진 조립(造粒)분말을 ISO규격의 SNGN120408형상으로 프레스 성형한 후에, 가열장치 내에서 1기압의 질소분위기 중에서 600℃로 60분 탈지하였다.Then, the obtained granulated powder was press-molded into the shape of SNGN120408 of ISO standard, and then degreased at 600 deg. C for 60 minutes in a nitrogen atmosphere at 1 atm in a heating apparatus.

계속해서, 탈지된 성형체의 1차 소결을 하였다. 구체적으로는 SiC 도가니 또는 질화규소제 도가니 내에 세트하되, 제 1 단계에서는 1800∼1900℃ 및 도 3(표 1)에 기재된 분위기 압력(시료 1∼20의 분위기 압력)에서 60∼180분 유지한 후, 제 2 단계에서는 제 1 단계보다도 낮은 온도(1800℃ 이하) 및 대기압 이하의 분위기 압력에서 120∼360분 유지하여 소결을 하였다.Subsequently, the degreased molded body was first sintered. Specifically, in a SiC crucible or a silicon nitride crucible, the crucible is held at 1800 to 1900 ° C in the first step and at 60 to 180 minutes in the atmospheric pressure (atmospheric pressure of the samples 1 to 20) shown in FIG. 3 (table 1) In the second step, sintering was carried out by holding at a temperature lower than the first step (1800 DEG C or lower) and an atmospheric pressure or lower than the atmospheric pressure for 120 to 360 minutes.

이와 같이 하여 얻은 질화규소 소결체를 ISO규격의 SNGN120408형상으로 연마가공하여 본 실시형태의 인서트(1), 즉 후술하는 실험에 이용되는 본 발명의 범위 내의 실시예의 인서트(시료 1∼20)를 얻었다.The thus-obtained silicon nitride sintered body was polished into the shape of SNGN120408 of ISO standard to obtain insert (1) of this embodiment, that is, inserts (samples 1 to 20) of the embodiment within the scope of the present invention used in the experiment described later.

이와 같이, 본 실시형태에서는 상술한 배합조성의 원재료(특히 MgCO3)를 이 용하여 2기압 이하의 저압에서 1차 소성을 하기 때문에, 상술한 구성을 가지며 우수한 특성을 발휘하는 인서트(1)를 얻을 수 있다.As described above, in the present embodiment, the raw material (particularly, MgCO 3 ) of the above-described compounding composition is used to perform the first calcination at a low pressure of 2 atm or less. Thus, the insert 1 having the above- .

또한, 본 발명의 범위 외의 비교예의 인서트(시료 A∼O)에 대해서도 상기한 바와 같은 방법으로 제작하였다{단, 도 3(표 1)에 나타내는 조건을 채용하였다}.In addition, the inserts (samples A to O) of the comparative example outside the scope of the present invention were also produced by the above-mentioned method (the conditions shown in Fig. 3 (Table 1) were adopted).

[실험예][Experimental Example]

이어서, 각 시료를 이용하여 실시한 실험예에 대해서 설명한다.Next, an experimental example using each sample will be described.

a) 우선, 각 시료의 인서트의 특성 등의 측정방법에 대해서 설명한다.a) First, the measurement method of the characteristics of the insert of each sample will be described.

◎ 각 시료(소결체) 내의 각 원소(비금속원소는 제외한다. 이하 같다)의 양을 주지의 형광 X선이나 화학분석 등에 의해 분석하고, 각 원소를 산화물이나 질화물 등의 화합물로 간주하여, 예를 들면 Si는 Si3N4, Mg은 MgO, Yb은 Yb2O3 등으로 하여 질량비를 산출하였다.◎ The amount of each element (excluding nonmetal elements) in each sample (sintered body) is analyzed by well-known fluorescent X-ray or chemical analysis, and each element is regarded as a compound such as oxide or nitride, For Si, Si 3 N 4 , Mg for MgO, Yb for Yb 2 O 3 , and the like, mass ratios were calculated.

또한, 후술하는 도 4(표 2)에 있어서의 소결체 내의 조제성분은 몰%로 되어 있지만, 이 숫자에 각 성분의 분자량을 곱하고, 소결체 전체가 100%가 되도록 조정함으로써 질량%로 환산할 수 있다.The prepared component in the sintered body in FIG. 4 (Table 2) to be described later is in mol%, but it can be converted to the mass% by multiplying the number by the molecular weight of each component and adjusting the whole sintered body to be 100% .

◎ 산소량은, 각 시료를 그 표면으로부터 0.5㎜를 경계로 하여 절단한 후, 이 경계로부터 표면측과 내부측으로 나누어 분쇄한 시료를 임펄스 가열ㆍ융해하고, 비분산 적외선 흡수법에 의해서 산소량을 각각 측정하였다.◎ The amount of oxygen was measured by cutting each specimen at 0.5 mm from its surface as a boundary, and then pulverizing the specimen divided into the front side and the inside side from the boundary by impulse heating and melting and measuring the oxygen amount by non-dispersion infrared absorption method Respectively.

◎ 열전도율에 대해서는, 각 시료를 직경 10㎜, 두께 1∼2㎜의 원판형상으로 연마가공하고, JIS R1611법(통칭으로서 '레이저 플래시법')에 의해서 실온에서 측 정한 값을 나타내었다. 구체적으로는, 표면에서 1㎜까지의 열전도율은 두께 1㎜의 시료로 측정하고, 표면으로부터 1㎜ 이상 내부의 열전도율에 대해서는 두께 2㎜의 시료로 측정하였다.? The thermal conductivity was evaluated by grinding each specimen in the shape of a disk having a diameter of 10 mm and a thickness of 1 to 2 mm and measuring the value at room temperature by the JIS R1611 method (commonly referred to as "laser flash method"). Specifically, the thermal conductivity from the surface to 1 mm was measured with a sample having a thickness of 1 mm, and with respect to the thermal conductivity within 1 mm from the surface, the sample was measured with a sample having a thickness of 2 mm.

◎ 강도에 대해서는, 각 시료에 대해서 세로 3㎜×가로 4㎜×길이 36㎜ 이상의 샘플을 제작하여 연마가공하고, JIS R1601법에 의해서 실온에서 3점 굽힘시험을 5회 이상 실시하고, 그 평균치를 구하였다. 또한, 시험시의 스팬은 30㎜가 바람직하지만, 이것 이하(하한 10㎜)이어도 된다.◎ For the strength, a sample having a length of 3 mm × 4 mm × 36 mm or more was prepared for each sample, and the sample was polished and subjected to a three-point bending test at room temperature by JIS R1601 at least five times. Respectively. Further, the span at the time of the test is preferably 30 mm, but it may be smaller (lower limit 10 mm).

◎ α-Si3N4가 β-Si3N4로 되어 있는지 아닌지 및 Yb원소, Mg원소, Si원소, O원소 및 N원소로 이루어지는 결정이 입계상에 있는지 아닌지를 조사하기 위해서, 각 시료를 이학(理學)전기공업 주식회사제의 X선회절장치를 이용하여, Cu튜브, 수직방향의 고니어메터, 튜브전압 50kV의 조건하에서 2θ가 20∼70°의 범위를 X선회절하였다. 얻어진 X선회절 차트에 있어서의 피크를 PDF 카드 데이터를 참조하여 추정하였다. 각 시료의 X선회절 차트에서는 β-Si3N4의 피크가 인정되어, 원료로서 이용한 α-Si3N4가 β-Si3N4로 되어 있는 것을 확인할 수 있었다.◎ α-Si 3 N 4 is β-Si 3 N whether or 4 is in and Yb element, Mg elements, in order to examine the crystal made of a Si atom, an O element and an N element is whether or not the grain boundary phase, the respective samples Using an X-ray diffractometer manufactured by Riken Electric Industry Co., Ltd., X-ray diffraction of 2? In the range of 20 to 70 was performed under the condition of a Cu tube, a gonearmeter in a vertical direction, and a tube voltage of 50 kV. The peak in the obtained X-ray diffraction chart was estimated with reference to PDF card data. In the X-ray diffraction chart of each sample, a peak of? -Si 3 N 4 was recognized, and? -Si 3 N 4 used as a raw material was confirmed to be? -Si 3 N 4 .

시료 1, 2, 4, 13∼18의 X선회절 차트에서는 β-Si3N4에 대한 특유한 피크에 더하여, YbMgSi2O5N에 대한 특유한 피크가 인정되었다(YbMgSi2O5N의 인정은 PDF 카드 48-1634를 이용하여 실시하였다). 시료 N의 X선회절 차트에서는 β-Si3N4에 대한 특유한 피크에 더하여, Yb2Si2O7에 대한 특유한 피크가 인정되었다. 한편, 시료 3, 5 ∼12, 19, 20 및 시료 A∼M, O의 X선회절 차트에서는 β-Si3N4에 대한 특유한 피크 외에, YbMgSi 화합물의 결정에 특유한 피크가 인정되지 않았다.In the X-ray diffraction charts of Samples 1, 2, 4, and 13 to 18, a distinctive peak for YbMgSi 2 O 5 N was recognized in addition to the specific peak for β-Si 3 N 4 (YbMgSi 2 O 5 N PDF card 48-1634). In the X-ray diffraction chart of sample N, a specific peak for Yb 2 Si 2 O 7 was recognized in addition to a specific peak for β-Si 3 N 4 . On the other hand, in the X-ray diffraction charts of Samples 3, 5 to 12, 19 and 20 and Samples A to M and O, no peak distinctive to the crystals of the YbMgSi compound was found other than the peculiar peak for β-Si 3 N 4 .

X선회절 차트에 있어서의 피크강도비는, 각 X선회절 차트에 있어서, YbMgSi2O5N에 대한 특유한 피크 중 최대 강도를 나타내는 피크강도(IYb)와 β-Si3N4 또는 사이알론에 의거하는 피크 중 최대 강도를 나타내는 피크강도(IS)를 각 X선회절 차트의 베이스 라인으로부터의 높이를 기준으로 하여 각각 구하고, 식 (IYb/IS)×100(%)에 따라서 산출하였다. 예를 들면, 도 4(표 2) 중의 시료 2에 있어서의 X선회절 차트를 도 5에 나타낸다.The peak intensity of the X-ray diffraction chart ratio, in the diffraction chart of each X-ray, YbMgSi 2 O 5 N peak intensity (I Yb) indicating a maximum intensity of the characteristic peaks for the β-Si 3 N 4 or sialon to obtain respectively the peak intensity (I S) that represents the maximum intensity of the peak on the basis of the height from the respective X-ray base line of the diffraction chart, formula (I Yb / I S) calculated according to × 100 (%) based on Respectively. For example, an X-ray diffraction chart of the sample 2 in Fig. 4 (Table 2) is shown in Fig.

이 X선회절 차트에 있어서, YbMgSi2O5N에 대한 특유한 피크(도 5에서 ▲로 표시되어 있는 피크) 중 최대 강도를 나타내는 피크는 2θ(deg)가 30°인 근방에서 인정되고{이 피크강도를 'IYb'라 한다}, β-Si3N4에 의거하는 피크(도 5에서 ●로 표시되어 있는 피크) 중 최대 강도를 나타내는 피크는 2θ(deg)가 36°인 근방에서 인정되므로{이 피크강도를 'IS'라 한다}, 상기 피크강도(IYb)와 상기 피크강도(IS)를 이용하여 산출하였다. 이와 같이 하여 산출한 각 인서트의 피크강도비를 상기 도 4(표 2)에 나타낸다.In this X-ray diffraction chart, the peak showing the maximum intensity among the specific peaks (indicated by a black circle in FIG. 5) for YbMgSi 2 O 5 N is recognized in the vicinity of 2 ° (deg) at 30 ° It referred to} the intensity 'I Yb', β-Si 3 N 4 peak based on the peak indicating the maximum intensity of the (in Fig. 5 peaks marked with ●) is therefore recognized in the vicinity of 2θ (deg) is 36 ° (This peak intensity is referred to as 'I S '), and the peak intensity (I Yb ) and the peak intensity (I S ) were used. The peak intensity ratio of each insert thus calculated is shown in Fig. 4 (Table 2).

◎ 각 시료를 아르키메데스법에 의해서 밀도 측정하고, 이론 밀도로 나누어서 이론 밀도비를 산출하였다. 본 발명의 범위(실시예)의 모든 샘플은 이론 밀도비가 충분히 높아(구체적으로는 99.0 이상), 소결체 중에 마이크로 포어가 잔존하지 않아 치밀화되어 있었다.Each sample was measured for density by the Archimedes method and divided by the theoretical density to calculate the theoretical density ratio. All the samples of the scope of the present invention (Examples) were sufficiently densified because the theoretical density ratio was sufficiently high (more specifically, not less than 99.0) and no micropores remained in the sintered body.

상기 이론 밀도비 이외의 측정결과를 도 4(표 2)에 나타낸다.Measurement results other than the theoretical density ratio are shown in Fig. 4 (Table 2).

b) 이어서, 각 시료의 인서트의 성능시험에 대해서 설명한다.b) Next, the performance test of the insert of each sample will be described.

(1) 내연마마모성(abrasive wear resistance)(1) abrasive wear resistance

SNGN120408형상, 쳄퍼 0.2㎜의 인서트를 사용하여, 도 6에 나타낸 바와 같이, 피삭재로서 양 단면에 주사(鑄砂,cast sand)가 남은 FC200을 선택하고, 인서트를 화살표 A방향으로 이동시켜서 절삭가공을 하였다.As shown in Fig. 6, an insert having a shape of SNGN120408 of 0.2 mm and a chamfer of 0.2 mm is used to select an FC 200 in which a scan (sand) is left on both end faces as a workpiece, and the insert is moved in the direction of arrow A to perform cutting Respectively.

구체적으로는 절삭속도 ; 500㎜/min, 절삭깊이 ; 1.5 ㎜, 이송속도 ; 0.2㎜/회전 및 건식의 조건하에서 절삭가공을 실시하여, 플랭크 최대 마모량을 측정하고, 내연마마모량(단위:㎜)으로 하였다.Specifically, the cutting speed; 500 mm / min, cutting depth; 1.5 mm, feed rate; The cutting operation was performed under the condition of 0.2 mm / rotation and dry, and the flank maximum wear amount was measured and the abrasion wear amount (unit: mm) was determined.

또한, 도 6에 있어서, L1는 260㎜, L2는 300㎜, L3는 100㎜, 벽두께는 20㎜이다.In Fig. 6, L1 is 260 mm, L2 is 300 mm, L3 is 100 mm, and the wall thickness is 20 mm.

그 결과를 도 4(표 2)에 나타낸다.The results are shown in Fig. 4 (Table 2).

(2) 내결손성(2) Internal defectiveness

SNGN432형상, 쳄퍼 0.1㎜의 인서트를 사용하여 절삭가공을 하였다.SNGN432 shape, insert with a chamfer 0.1 mm.

구체적으로는 피삭재로서 FC200을 선택하고, 절삭속도 ; 150m/min, 절삭깊이 ; 2.0㎜, 이송속도는 0.60㎜/rev에서 스타트하여 각 프로세스 패스(process path)마다 0.05㎜/회전씩 증가시키는 평가방법으로, 건식의 조건하에서 절삭가공을 실시하여, 결손에 이르는 이송속도에 의해서 평가하였다.Specifically, FC200 was selected as the workpiece, and cutting speed; 150 m / min, cutting depth; 2.0 mm, and the feed rate is 0.60 mm / rev, and is incremented by 0.05 mm / rotation for each process path. The cutting process is performed under the dry condition, and evaluation is made by the feed rate to the defect Respectively.

그 결과를 도 7 및 도 4(표 2)에 나타낸다.The results are shown in Fig. 7 and Fig. 4 (Table 2).

도 7 및 도 4(표 2)에서 분명한 바와 같이, 본 발명의 범위의 실시예의 시료는 비교예의 시료에 비해서 연마마모량이 적고 또한 결손시의 이송속도가 높기 때문에, 내마모성 및 내결손성이 모두 우수한 것임을 알 수 있다.As is apparent from Fig. 7 and Fig. 4 (Table 2), the samples of the examples of the present invention have a lower abrasion wear amount and a higher feed rate at the time of defect than the samples of the comparative example, .

또한, 본 발명은 상기한 실시형태나 실시예에 하등 한정되는 것이 아니며, 본 발명을 일탈하지 않는 범위에 있어서 여러 가지 형태로 실시할 수 있는 것은 말할 필요도 없다.It is needless to say that the present invention is not limited to the above-described embodiments and examples, but can be carried out in various forms within the scope not departing from the present invention.

Claims (7)

β-Si3N4를 주성분으로 하고, Mg과 희토류원소(Re)(Y, La, Ce, Er, Dy, Yb)를 함유하되, Mg은 MgO 환산으로 1.0∼7.0mol%, Re는 산화물 환산으로 0.4∼1.0mol%를 각각 함유하며, 그 합계가 1.7∼7.5mol%인 질화규소 소결체로 이루어지는 인서트에 있어서,as a main component a β-Si 3 N 4, and but containing Mg and a rare earth element (Re) (Y, La, Ce, Er, Dy, Yb), Mg is 1.0~7.0mol% in terms of MgO, Re is in terms of oxide By mass of silicon nitride, and 0.4 to 1.0% by mole of silicon nitride, and the total amount is 1.7 to 7.5% by mole, 소결체 표면에서 내부로 향해서 산소량이 증가하는 경사조성으로서, 표면에서 0.5㎜ 미만의 내부까지의 사이에 산소를 0.8∼1.5질량%, 표면으로부터 0.5㎜ 이상 내부에 있어서는 산소를 1.1∼2.3질량% 함유하며, 그 산소량의 차이가 0.1∼1.0질량%인 것을 특징으로 하는 인서트.An inclined composition in which the amount of oxygen increases from the surface of the sintered body toward the inside and contains oxygen in an amount of 0.8 to 1.5% by mass, oxygen in an amount of 0.5 mm or more from the surface and 1.1 to 2.3% , And the difference in oxygen amount is 0.1 to 1.0 mass%. 청구항 1에 있어서,The method according to claim 1, 희토류원소(Re)가 Yb이고, Mg은 MgO 환산으로 1.0∼5.5mol%, Yb은 Yb2O3 환산으로 0.4∼1.0mol%를 각각 함유하며, 그 합계가 1.7∼6.0mol%인 것을 특징으로 하는 인서트.A rare earth element (Re) is Yb, Mg contains at 1.0~5.5mol%, Yb is 0.4~1.0mol% Yb 2 O 3 in terms of the terms of MgO, respectively, characterized in that the sum of the% 1.7~6.0mol Insert. 청구항 1에 있어서,The method according to claim 1, 실온에서의 열전도율이, 표면으로부터 1.0㎜의 깊이보다 외측에서는 45W/mㆍK 이상이고, 표면으로부터 1.0㎜ 이상 내부에서는 40W/mㆍK 이상인 것을 특징으로 하는 인서트.Wherein the thermal conductivity at room temperature is 45 W / m · K or more at the outer side than the depth of 1.0 mm from the surface, and 40 W / m · K or more at the inner side of 1.0 mm or more from the surface. 청구항 1에 있어서,The method according to claim 1, 실온에서의 항절강도(3점 굽힘강도 : JIS R1601)가 900MPa 이상인 것을 특징으로 하는 인서트.Wherein the tensile strength at room temperature (three-point bending strength: JIS R1601) is 900 MPa or more. 청구항 1에 있어서,The method according to claim 1, Yb원소, Mg원소, Si원소, O원소 및 N원소로 이루어지는 결정을 입계상에 함유하는 것을 특징으로 하는 인서트.Wherein the grain boundary phase contains crystals composed of Yb element, Mg element, Si element, O element and N element in the grain boundary phase. 청구항 5에 있어서,The method of claim 5, 상기 질화규소 소결체의 인서트의 X선회절 차트에 있어서, 상기 결정에 있어서의 YbMgSi2O5N에 의거하는 피크 중 최대 강도를 나타내는 피크강도(IYb)가 질화규소에 의거하는 피크 중 최대 강도를 나타내는 피크강도(IS)에 대해서 0% 초과 10% 이하인 것을 특징으로 하는 인서트.In the X-ray diffraction chart of the insert of the silicon nitride sintered body, the peak intensity (I Yb ) showing the maximum intensity in the peak based on YbMgSi 2 O 5 N in the crystal is a peak showing the maximum intensity among the peaks based on silicon nitride Is not less than 0% and not more than 10% with respect to the strength (I S ). 상기 청구항 1 내지 청구항 6 중 어느 한 항에 기재된 인서트를 홀더에 장착한 것을 특징으로 하는 절삭 공구.A cutting tool characterized in that the insert according to any one of claims 1 to 6 is mounted on a holder.
KR1020097019547A 2007-03-22 2008-03-14 Insert and cutting tool KR101407160B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007075301 2007-03-22
JPJP-P-2007-075301 2007-03-22
JPJP-P-2007-155130 2007-06-12
JP2007155130 2007-06-12
PCT/JP2008/054810 WO2008114752A1 (en) 2007-03-22 2008-03-14 Insert and cutting tool

Publications (2)

Publication Number Publication Date
KR20100014477A KR20100014477A (en) 2010-02-10
KR101407160B1 true KR101407160B1 (en) 2014-06-13

Family

ID=39765861

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097019547A KR101407160B1 (en) 2007-03-22 2008-03-14 Insert and cutting tool

Country Status (6)

Country Link
US (1) US8492300B2 (en)
EP (1) EP2138252B1 (en)
JP (1) JP4478198B2 (en)
KR (1) KR101407160B1 (en)
CN (1) CN101646518B (en)
WO (1) WO2008114752A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5340028B2 (en) * 2009-05-18 2013-11-13 京セラ株式会社 Cutting tools
WO2011020667A1 (en) * 2009-08-21 2011-02-24 Ceramtec Gmbh Precision pressing and sintering of cutting inserts, particularly indexable cutting inserts
EP2546216B1 (en) * 2010-03-09 2016-08-03 Kyocera Corporation Ceramic sintered compact, circuit board using the same, electronic device and thermoelectric conversion module
JP5563878B2 (en) * 2010-04-21 2014-07-30 日本特殊陶業株式会社 Cutting tool and manufacturing method thereof
EP2703103B1 (en) * 2011-04-28 2016-10-05 Kyocera Corporation Cutting tool
EP2850041A1 (en) 2012-05-16 2015-03-25 MDA Ileri Teknoloji Seramikleri Sanayi Ticaret Ltd. STi. Silicon nitride ceramics with improved wear resistance and production method therefore
CN104684870B (en) 2012-09-29 2016-08-17 京瓷株式会社 Silicon nitride based sintered material and heater and adsorbent equipment
RU2540674C2 (en) * 2013-02-27 2015-02-10 Общество с ограниченной ответственностью "Малое инновационное предприятие "Реализация инженерно-технических целей порошковой металлургии" Method of making articles from silicon nitride
US11865624B2 (en) * 2018-08-28 2024-01-09 Kyocera Corporation Insert and cutting tool
JP2021147272A (en) 2020-03-19 2021-09-27 株式会社東芝 Structure and joined composite
CN112226702A (en) * 2020-08-17 2021-01-15 蓬莱市超硬复合材料有限公司 Tungsten oxide alloy material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206409A (en) * 1994-01-12 1995-08-08 Denki Kagaku Kogyo Kk Silicon nitride powder and its production
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
JPH0987037A (en) * 1995-07-18 1997-03-31 Ngk Spark Plug Co Ltd Silicon nitride-base sintered compact and its production
JP2005255462A (en) 2004-03-11 2005-09-22 Hitachi Metals Ltd Silicon nitride sintered compact, method for manufacturing the same and circuit board using the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892848A (en) * 1985-07-30 1990-01-09 Kyocera Corporation Silicon nitride sintered body and process for preparation thereof
JP3266200B2 (en) 1989-01-12 2002-03-18 日本特殊陶業株式会社 Silicon nitride based sintered body
US5382273A (en) 1993-01-15 1995-01-17 Kennametal Inc. Silicon nitride ceramic and cutting tool made thereof
JP2786595B2 (en) 1994-03-29 1998-08-13 日本碍子株式会社 Method for producing silicon nitride powder, silicon nitride sintered body and method for producing the same
JP3550420B2 (en) 1994-03-30 2004-08-04 日本特殊陶業株式会社 Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
JPH092878A (en) 1995-02-08 1997-01-07 Sumitomo Electric Ind Ltd Silicon nitride sintered compact and its production
JP3588162B2 (en) 1995-05-31 2004-11-10 京セラ株式会社 Silicon nitride cutting tool and method of manufacturing the same
JPH09183667A (en) 1995-12-27 1997-07-15 Dijet Ind Co Ltd Silicon nitride ceramics and its production
JPH10279360A (en) 1997-03-31 1998-10-20 Kyocera Corp Silicon nitride structural parts and its production
JP3975016B2 (en) 1997-12-26 2007-09-12 日本特殊陶業株式会社 Silicon nitride sintered body and manufacturing method thereof
JPH11268957A (en) 1998-03-25 1999-10-05 Ngk Spark Plug Co Ltd Machine tool made of silicon nitride
CN1230531A (en) * 1998-12-22 1999-10-06 武汉工业大学 Sintered silicon nitride ceramic with additive of magnesia and rare earth oxide
JP4822573B2 (en) 1999-12-17 2011-11-24 京セラ株式会社 Method for producing silicon nitride sintered body
JP4744704B2 (en) * 2000-03-16 2011-08-10 株式会社東芝 Method for manufacturing wear-resistant member
JP2002012474A (en) 2000-06-22 2002-01-15 Ngk Spark Plug Co Ltd Silicon nitride-based sintered compact and cutting tool using it
US6613443B2 (en) 2000-10-27 2003-09-02 Kabushiki Kaisha Toshiba Silicon nitride ceramic substrate, silicon nitride ceramic circuit board using the substrate, and method of manufacturing the substrate
JP3797905B2 (en) 2000-10-27 2006-07-19 株式会社東芝 Silicon nitride ceramic substrate, silicon nitride ceramic circuit substrate using the same, and manufacturing method thereof
JP4795588B2 (en) * 2001-01-12 2011-10-19 株式会社東芝 Wear resistant parts made of silicon nitride
JP3775335B2 (en) * 2002-04-23 2006-05-17 日立金属株式会社 Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206409A (en) * 1994-01-12 1995-08-08 Denki Kagaku Kogyo Kk Silicon nitride powder and its production
JPH0987037A (en) * 1995-07-18 1997-03-31 Ngk Spark Plug Co Ltd Silicon nitride-base sintered compact and its production
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
JP2005255462A (en) 2004-03-11 2005-09-22 Hitachi Metals Ltd Silicon nitride sintered compact, method for manufacturing the same and circuit board using the same

Also Published As

Publication number Publication date
EP2138252A1 (en) 2009-12-30
US20100040424A1 (en) 2010-02-18
US8492300B2 (en) 2013-07-23
CN101646518A (en) 2010-02-10
JP4478198B2 (en) 2010-06-09
EP2138252B1 (en) 2017-08-09
JPWO2008114752A1 (en) 2010-07-08
EP2138252A4 (en) 2016-10-12
WO2008114752A1 (en) 2008-09-25
CN101646518B (en) 2011-08-03
KR20100014477A (en) 2010-02-10

Similar Documents

Publication Publication Date Title
KR101407160B1 (en) Insert and cutting tool
WO2006068220A1 (en) Sialon insert and cutting tool equipped therewith
JP2014506194A (en) Cutting tools made of sialon-based materials
KR101609090B1 (en) Sialon sintered body and cutting insert
US7629281B2 (en) Ceramic material and cutting tools made thereof
US20080188369A1 (en) Ceramic material and cutting tools made thereof
JP5685523B2 (en) Sialon sintered body and cutting insert
KR101912548B1 (en) Sialon sintered body and cutting insert
JP2019063921A (en) Sialon tool
KR102328799B1 (en) Ceramic material and cutting tools made thereof
JP2015009327A (en) Cutting insert
JPH07267738A (en) Wear resistant silicon nitride sintered compact and its production
JP5275744B2 (en) Cutting insert, silicon nitride cutting tool, and method of manufacturing silicon nitride sintered body used for cutting insert
JP4383225B2 (en) Ceramic sintered body, cutting insert, cutting tool and manufacturing method thereof
JP2008094684A (en) Silicon nitride sintered compact, cutting tool, cutting insert and tool

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180518

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190516

Year of fee payment: 6