JPH0720395Y2 - Vacuum exhaust device - Google Patents
Vacuum exhaust deviceInfo
- Publication number
- JPH0720395Y2 JPH0720395Y2 JP1988013916U JP1391688U JPH0720395Y2 JP H0720395 Y2 JPH0720395 Y2 JP H0720395Y2 JP 1988013916 U JP1988013916 U JP 1988013916U JP 1391688 U JP1391688 U JP 1391688U JP H0720395 Y2 JPH0720395 Y2 JP H0720395Y2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- pump
- purge gas
- magnetic bearing
- molecular pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Non-Positive Displacement Air Blowers (AREA)
Description
【考案の詳細な説明】 (産業上の利用分野) 本考案は半導体製造,表面分析,核融合実験,或いは加
速器等の様々な技術分野に於いて汚染のない清浄な高真
空雰囲気を提供し得る真空排気装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention can provide a clean, high-vacuum atmosphere free from pollution in various technical fields such as semiconductor manufacturing, surface analysis, fusion experiments, and accelerators. The present invention relates to a vacuum exhaust device.
(従来の技術) 従来、主として10-1Paより低圧の清浄な高真空領域を得
る手段としては、クライオポンプ,スパッタイオンポン
プ,サブリメーションポンプ等の所謂オイルレスの気体
溜込式の真空ポンプ、或いは気体輸送式のターボ分子ポ
ンプを用いる手段が実用されているが、これらの高真空
ポンプを正常に作動させるにはその背圧を通常10pa程度
以下まで補助ポンプによって予備排気させる必要があ
る。(Prior Art) Conventionally, as a means for obtaining a clean high vacuum region mainly at a pressure lower than 10 -1 Pa, a so-called oilless gas storage type vacuum pump such as a cryopump, a sputter ion pump, and a sublimation pump, Alternatively, a means using a gas transportation type turbo molecular pump has been put into practical use, but in order to operate these high vacuum pumps normally, it is necessary to pre-evacuate the back pressure to about 10 pa or less by an auxiliary pump.
ところが、この補助ポンプとしては、油回転ポンプや油
潤滑の軸受等を具備するルーツ真空ポンプが適用される
ために、これら補助ポンプは油蒸気を発生し、この油分
子が真空容器側に逆拡散してその内部を汚染させてしま
う。However, as this auxiliary pump, an oil rotary pump or a roots vacuum pump equipped with an oil-lubricated bearing is applied, so these auxiliary pumps generate oil vapor, and these oil molecules are reversely diffused to the vacuum container side. And it pollutes the inside.
そこで、従来では、この様な難点を解消させるための手
段として、第3図の所謂フォアライントラップ、及び第
4図のパージガス導入の各手段が考案されている。Therefore, conventionally, as means for solving such a difficulty, so-called foreline traps in FIG. 3 and purge gas introduction means in FIG. 4 have been devised.
すなわち、第3図の手段は、真空容器1に接続されたク
ライオポンプの如き高真空用ポンプ2eと後段の補助真空
ポンプ22との間に油凝縮用のトラップ40(コールドトラ
ップ)を設けたものである。That is, the means shown in FIG. 3 has an oil condensing trap 40 (cold trap) provided between a high vacuum pump 2e such as a cryopump connected to the vacuum container 1 and an auxiliary vacuum pump 22 in the subsequent stage. Is.
また、第4図の手段は、補助真空ポンプ22から油分子が
逆流しない様に該補助真空ポンプ22の前段側にパージガ
スの導入手段30eを設けたものである。The means shown in FIG. 4 is provided with a purge gas introducing means 30e in front of the auxiliary vacuum pump 22 so that oil molecules do not flow backward from the auxiliary vacuum pump 22.
(考案が解決しようとする問題点) しかしながら、前記前者のトラップ40を設ける手段で
は、油を溜めたトラップ40を真空装置の停止期間中等に
誤って空気導入弁42を開かずに再生操作したり、或いは
トラップ40の未冷却時にポンプを作動させた様な場合に
はトラップ40内又は補助真空ポンプ22内から油分子が真
空容器1や高真空ンプ2e側に逆拡散する恐れを有し、実
用上その確実な作業性に於いて難点を有していた。(Problems to be solved by the invention) However, in the former means for providing the trap 40, the trap 40 containing the oil may be regenerated without accidentally opening the air introduction valve 42 during the period when the vacuum device is stopped. Alternatively, if the pump is operated while the trap 40 is not cooled, there is a risk that oil molecules will be reversely diffused from the trap 40 or the auxiliary vacuum pump 22 to the vacuum container 1 or the high vacuum pump 2e side. Above all, there was a difficulty in its reliable workability.
他方、油分子は通常15Pa程度以下の圧力状態に於いて配
管内の逆拡散が顕著となることが知られているが、前記
後者のパージガスの導入手段によってこれを防止するに
は、配管3aの内圧を常時15Pa程度以上に維持しておく必
要がある。On the other hand, it is known that the oil molecules usually have a remarkable reverse diffusion in the pipe in a pressure state of about 15 Pa or less, but in order to prevent this by the latter purge gas introduction means, the pipe 3a It is necessary to maintain the internal pressure at least 15 Pa at all times.
ところが、この様な圧力条件ではクライオポンプの如き
気体溜込式高真空用ポンプ2eの運転起動が困難となり、
又ターボ分子ポンプは正常運転中には背圧を5Paより低
く維持する必要があり、所望の高真空域が得られなくな
る問題点を生じるのである。However, under such pressure conditions, it becomes difficult to start the operation of the gas storage type high vacuum pump 2e such as the cryopump,
Further, the turbo molecular pump must maintain the back pressure lower than 5 Pa during normal operation, which causes a problem that a desired high vacuum region cannot be obtained.
尚、この様なポンプ作動に係る難点を解消するには、前
記第4図の手段に於いてクライオポンプ等よりも予備排
気圧力或いは最大許容背圧の高い複合分子ポンプを高真
空用ポンプ2eとして適用することも考えられる。しかる
に、この複合分子ポンプ2eはその駆動機構部内に油潤滑
の軸受を備えてなるために、排気系のバルブ操作等を誤
れば当該複合分子ポンプ2e内及び真空容器1内が油汚染
される難点を生じる。また、実用面では装置停止時等に
複合分子ポンプ2eから真空容器1側への油拡散を防止す
べくストップバルブ41を設ける必要があるが、この複合
分子ポンプ2eの前段の配管3の口径は後段の配管3aより
もかなり大きい。よって、当該ストップバルブ41は必然
的に大型のものとなって非常に高価となり、経済性の面
でも難点を生じるのである。Incidentally, in order to eliminate such a difficulty associated with the pump operation, a compound molecular pump having a higher preliminary exhaust pressure or maximum allowable back pressure than the cryopump in the means shown in FIG. 4 is used as the high vacuum pump 2e. It is also possible to apply. However, since the composite molecular pump 2e is provided with an oil-lubricated bearing in its drive mechanism, if the valve operation of the exhaust system is mistaken, the interior of the composite molecular pump 2e and the vacuum container 1 are contaminated with oil. Cause Further, from a practical point of view, it is necessary to provide a stop valve 41 in order to prevent oil diffusion from the composite molecular pump 2e to the vacuum container 1 side when the device is stopped, but the diameter of the pipe 3 in the preceding stage of the composite molecular pump 2e is It is considerably larger than the latter pipe 3a. Therefore, the stop valve 41 inevitably becomes large in size and becomes very expensive, which causes a problem in terms of economy.
それ故、本考案は真空容器側への油分子の逆拡散を簡易
な手段により確実に防止させて、真空容器内の清浄な高
真空雰囲気を安価な装置構成により達成することを、そ
の目的とする。Therefore, the object of the present invention is to reliably prevent the reverse diffusion of oil molecules to the vacuum container side by a simple means, and to achieve a clean high vacuum atmosphere in the vacuum container with an inexpensive device configuration. To do.
(問題点を解決するための手段) 本考案は従来のパージガス導入手段を適用する装置に於
ける高真空用ポンプとして背圧の高い条件下で大排気速
度が得られるオイルレスのポンプを適用し、もって上記
従来の問題点を解決せんとして構成されたものである。(Means for Solving Problems) The present invention applies an oilless pump that can obtain a large exhaust speed under high back pressure conditions as a high vacuum pump in a device to which a conventional purge gas introducing means is applied. Therefore, it is configured to solve the above-mentioned conventional problems.
すなわち、本考案は、真空容器1に連結された磁気軸受
復号分子ポンプ2と、該磁気軸受複合分子ポンプ2の後
段側に連結された補助真空ポンプ22と、前記磁気軸受複
合分子ポンプ2のガス圧縮位置よりも後段で補助真空ポ
ンプ22よりも前段の真空排気経路の途中位置から補助真
空ポンプ22側にパージガスを供給するパージガス供給手
段30とから構成された真空排気装置において、前記パー
ジガス供給手段30には、真空排気経路へのパージガスの
供給停止を行うための開閉バルブ26が備えられ、且つ磁
気軸受複合分子ポンプ2のガス圧縮位置よりも後段で且
つ補助真空ポンプ22よりも前段の真空排気経路には真空
計29が設けて、しかも該真空計29には、真空排気経路内
の測定圧が予め設定された所定設定圧力値以下に減圧し
た際に前記開閉バルブ26を開放させて真空排気経路内に
パージガスを供給可能とするバルブ開閉用の制御手段28
を設けたものである。That is, the present invention relates to a magnetic bearing decoding molecular pump 2 connected to a vacuum container 1, an auxiliary vacuum pump 22 connected to a rear side of the magnetic bearing composite molecular pump 2, and a gas of the magnetic bearing composite molecular pump 2. In the vacuum evacuation device including the purge gas supply means 30 for supplying the purge gas to the auxiliary vacuum pump 22 side from the middle position of the vacuum evacuation path in the latter stage than the compression position and before the auxiliary vacuum pump 22, the purge gas supply means 30 Is provided with an opening / closing valve 26 for stopping the supply of the purge gas to the vacuum exhaust path, and is a vacuum exhaust path in a stage subsequent to the gas compression position of the magnetic bearing composite molecular pump 2 and in a stage preceding the auxiliary vacuum pump 22. The vacuum gauge 29 is provided in the vacuum gauge 29, and the opening / closing valve 26 is provided in the vacuum gauge 29 when the measured pressure in the vacuum exhaust path is reduced to a preset pressure value or less. It was opened by control means 28 for the valve opening and closing of the purge gas can be supplied into the vacuum exhaust path
Is provided.
(作用) 従って、上記構成を特徴とする真空排気装置では、磁気
軸受複合分子ポンプ2はその内部に潤滑用等の油が不要
なオイルレスであるために、当該磁気軸受複合分子ポン
プ2から真空容器1側に油汚染を生じさせることが一切
なく、また磁気軸受複合分子ポンプ2の後段側の真空排
気経路には、真空容器1から吸入する気体流量が極く少
ない場合であってもパージガス供給手段30から補助真空
ポンプ22側にパージガスを供給させて当該排気経路内の
圧力を高めることにより、油回転ポンプ等の補助真空ポ
ンプ22から前段側への油分子の逆拡散を適切に防止でき
ることとなる。(Operation) Therefore, in the vacuum evacuation device characterized by the above structure, since the magnetic bearing composite molecular pump 2 does not need oil for lubrication or the like inside thereof, the magnetic bearing composite molecular pump 2 is vacuumed. No oil pollution is caused on the container 1 side, and a purge gas is supplied to the vacuum evacuation path on the subsequent stage of the magnetic bearing composite molecular pump 2 even when the flow rate of gas sucked from the vacuum container 1 is extremely small. By supplying a purge gas from the means 30 to the auxiliary vacuum pump 22 side to increase the pressure in the exhaust path, it is possible to appropriately prevent the reverse diffusion of oil molecules from the auxiliary vacuum pump 22 such as an oil rotary pump to the preceding stage side. Become.
而して、前記パージガスの供給により磁気軸受複合分子
ポンプ2の背圧は通常のターボ分子ポンプではその吸入
圧領域で大排気速度が得られない背圧領域となるが、こ
の磁気軸受複合分子ポンプ2はこの様な背圧条件であっ
ても大排気速度が得られる。よって、小型の補助真空ポ
ンプ22を用いて、真空容器1内に油汚染のない清浄な高
真空領域に高速で達成できることとなる。By the supply of the purge gas, the back pressure of the magnetic bearing composite molecular pump 2 becomes a back pressure region where a large exhaust speed cannot be obtained in the suction pressure region of a normal turbo molecular pump. In No. 2, a large pumping speed can be obtained even under such a back pressure condition. Therefore, by using the small-sized auxiliary vacuum pump 22, it is possible to quickly achieve a clean high vacuum region without oil contamination in the vacuum container 1.
更に、真空排気作業を行う場合に於いて、パージガス供
給手段30に備えられた開閉バルブ26が、真空排気経路内
の圧力が油分子の逆拡散現象を生じる圧力値に減圧する
以前に開放する様に設定し、又その所定圧力値以上の場
合にはパージガスの導入を阻止する閉じ状態となる様に
制御手段28によって制御させれば、パージガスの導入に
よる油分子の逆拡散を自動制御で防止でき、しかも油分
子の逆拡散の恐れがない場合にはパージガスの供給を停
止してその節約が図れることとなる。Further, in the case of performing the vacuum exhaust work, the opening / closing valve 26 provided in the purge gas supply means 30 is opened before the pressure in the vacuum exhaust path is reduced to a pressure value that causes the reverse diffusion phenomenon of oil molecules. If the control means 28 is set to a closed state that prevents the introduction of the purge gas when the pressure is equal to or higher than the predetermined pressure value, the reverse diffusion of oil molecules due to the introduction of the purge gas can be automatically prevented. Moreover, when there is no fear of back diffusion of oil molecules, the supply of purge gas can be stopped to save the gas.
(実施例) 以下、本考案の実施例について説明する。(Example) Hereinafter, the Example of this invention is described.
第1図中、1は真空容器、2は該真空容器1に配管3を
介して接続された磁気軸受複合分子ポンプを示す。当該
ポンプ2は、第2図の如くモーター部31を有する駆動軸
4に取着されたロータ5側の多数枚の動翼6…とステー
タ側の静翼7…とを交互に配置し、又動翼6の後段のロ
ータ5の外周にはステータ15との間隙部でネジ溝ポンプ
作用を発揮するネジ溝8を形成して、吸気口16側から排
気口17側にガスを圧縮排気する複合分子ポンプである
が、前記駆動軸4の回転支持機構としては磁気軸受が採
用されている。In FIG. 1, 1 is a vacuum container, and 2 is a magnetic bearing composite molecular pump connected to the vacuum container 1 through a pipe 3. As shown in FIG. 2, the pump 2 includes a large number of rotor blades 6 attached to a drive shaft 4 having a motor portion 31 and rotor blades 7 attached to a rotor 5 and the stator vanes 7 attached alternately. A screw groove 8 that exhibits a screw groove pumping action is formed in the gap with the stator 15 on the outer periphery of the rotor 5 at the rear stage of the rotor blade 6, and the gas is compressed and exhausted from the intake port 16 side to the exhaust port 17 side. Although it is a molecular pump, a magnetic bearing is adopted as a rotation support mechanism of the drive shaft 4.
即ち、9,9aは駆動軸4の上下部の磁石10,10aを無接触で
支承するラジアル軸受電磁石で、上下のラジアルセンサ
ー11,11aにより駆動軸4の偏芯量を検出しながら駆動軸
4のラジアル方向の偏芯移動を抑制してラジアル方向の
荷重を支持する。12は駆動軸4の略中央部に突設された
鍔部13を無接触状態で上下挟装するスラスト軸受電磁石
で、駆動軸4の下方のスラストセンサー14により駆動軸
4の軸長方向の変位量を検出しながら駆動軸4を常時所
定の一定高さに維持してスラスト荷重を支持する。18,1
8aはラジアル軸受電磁石9,9aと磁石10,10aとの不当な接
触を確実に阻止させるべく駆動軸4駆動軸4の上下部と
無接触状態で設けられたタッチダウンドライベアリング
を示す。That is, 9 and 9a are radial bearing electromagnets that support the upper and lower magnets 10 and 10a of the drive shaft 4 in a contactless manner. The upper and lower radial sensors 11 and 11a detect the eccentric amount of the drive shaft 4 and the drive shaft 4 The radial load is supported by suppressing the eccentric movement in the radial direction. Reference numeral 12 is a thrust bearing electromagnet which vertically holds a flange portion 13 projecting from the substantially central portion of the drive shaft 4 in a non-contact state. The thrust sensor 14 below the drive shaft 4 displaces the drive shaft 4 in the axial direction. While detecting the amount, the drive shaft 4 is constantly maintained at a predetermined constant height to support the thrust load. 18,1
Reference numeral 8a denotes a touch-down dry bearing which is provided in a non-contact state with the upper and lower parts of the drive shaft 4 and the drive shaft 4 in order to surely prevent an improper contact between the radial bearing electromagnets 9 and 9a and the magnets 10 and 10a.
以上の磁気軸受複合分子ポンプ2は、その駆動機構部19
等の何れにも潤滑用等の油を使用しておらず、又使用す
る必要がない。20は開閉バルブ27を有する配管33を介し
て外部から駆動機構部19内にパージガスを導入可能とす
る連通孔を示す。32はモータ部31等への電気配線用のコ
ネクタを示す。The magnetic bearing composite molecular pump 2 described above has a drive mechanism section 19
No oil for lubrication is used in any of the above, and it is not necessary to use it. Reference numeral 20 denotes a communication hole through which purge gas can be introduced into the drive mechanism section 19 from the outside via a pipe 33 having an opening / closing valve 27. Reference numeral 32 denotes a connector for electric wiring to the motor section 31 and the like.
また第1図中、22は前記磁気軸受複合分子ポンプ2の後
段に配管3aを介して連結された補助真空ポンプで、油真
空ポンプやルーツ真空ポンプ等が適宜適用される。23は
配管3aの途中に設けられた真空配管用のストップバルブ
を示す。Further, in FIG. 1, reference numeral 22 denotes an auxiliary vacuum pump connected to the rear stage of the magnetic bearing composite molecular pump 2 through a pipe 3a, and an oil vacuum pump, a roots vacuum pump or the like is appropriately applied. Reference numeral 23 denotes a vacuum pipe stop valve provided in the middle of the pipe 3a.
30はストップバルブ23の後段の真空排気経路に接続され
て配管3a内が補助真空ポンプ22の排気速度に対応して15
Pa以上に保つだけの流量のパージガスを供給する手段
で、具体的には配管3aに接続された開閉バルブ26を有す
る配管24に清浄な窒素等のガスの供給器(図示せず)を
接続したものである。尚、室内空気をパージガスとして
用いる場合には一定量の空気を通すオリフィスと開閉バ
ルブ26とだけで構成できるものである。30 is connected to the vacuum exhaust path at the latter stage of the stop valve 23, and the inside of the pipe 3a corresponds to the exhaust speed of the auxiliary vacuum pump 22.
A means for supplying a purge gas at a flow rate sufficient to maintain Pa or more, specifically, a pipe 24 having an opening / closing valve 26 connected to the pipe 3a was connected to a gas supply device (not shown) of clean nitrogen or the like. It is a thing. When the room air is used as the purge gas, it can be constituted only by an opening / closing valve 26 and an orifice through which a fixed amount of air is passed.
29は前記配管24からパージガスが供給される配管3a内の
圧力検知を行う真空計で、ポンプ2,22の運転制御用に利
用される他、前記各バルブ23,26,27を予め設定した圧力
値に応じて自動開閉制御するための制御回路28を備えて
いる。29 is a vacuum gauge for detecting the pressure in the pipe 3a to which the purge gas is supplied from the pipe 24, which is used for controlling the operation of the pumps 2 and 22, and the pressure set in advance for each of the valves 23, 26 and 27. A control circuit 28 for automatic opening / closing control according to the value is provided.
本考案に係る真空排気装置は以上の構成からなり、次に
その使用例について説明する。The vacuum evacuation device according to the present invention has the above-mentioned structure. Next, an example of its use will be described.
先ず、真空容器1内が大気圧で、各バルブ23,26が閉じ
た初期状態に於いて、補助真空ポンプ22と磁気軸受複合
分子ポンプ2とを同時に起動させる。これによりストッ
プバルブ23よりも後段側の配管3a内は極めて短時間で減
圧されるから、当該配管3a内が例えば15Pa近くまで減圧
されると真空計29に接続された制御回路28の指令により
ストップバルブ23を開放し、前段の真空容器1及び磁気
軸受複合分子ポンプ2内の排気を開始する。又、これと
同時に開閉バルブ26を開放し、配管24側から補助真空ポ
ンプ22側にパージガスが供給される。First, the auxiliary vacuum pump 22 and the magnetic bearing composite molecular pump 2 are simultaneously activated in an initial state where the vacuum container 1 is at atmospheric pressure and the valves 23 and 26 are closed. As a result, the pressure inside the pipe 3a on the rear side of the stop valve 23 is reduced in an extremely short time, and when the pressure inside the pipe 3a is reduced to, for example, about 15 Pa, the control circuit 28 connected to the vacuum gauge 29 causes a stop. The valve 23 is opened and the evacuation of the vacuum container 1 and the magnetic bearing composite molecular pump 2 in the preceding stage is started. At the same time, the opening / closing valve 26 is opened and the purge gas is supplied from the pipe 24 side to the auxiliary vacuum pump 22 side.
而して、前記パージガス用の開閉バルブ26は配管3a内が
15Paよりも低圧に減圧しない様にパージガスを配管3a内
に供給させるべく真空計29の測定圧に応じて開閉する様
に設定しておけば、補助真空ポンプ22から磁気軸受複合
分子ポンプ2側への油分子の拡散が好適に阻止されるこ
ととなる。Thus, the purge gas opening / closing valve 26 is installed in the pipe 3a.
If it is set to open and close according to the measurement pressure of the vacuum gauge 29 so as to supply the purge gas into the pipe 3a so as not to reduce the pressure to less than 15 Pa, the auxiliary vacuum pump 22 moves to the magnetic bearing composite molecular pump 2 side. Therefore, the diffusion of the oil molecules is suitably prevented.
一方、磁気軸受複合分子ポンプ2はその背圧が300〜500
Pa程度に高い圧力であっても大排気速度が得られるか
ら、配管3a内が上記の如くパージガスの導入によって15
Pa以上の圧力に維持されていても何らその作動に支障が
生じず、真空容器1内を所定の高真空に排気できる。よ
って、補助真空ポンプ22としては小型のものを使用すれ
ばよい。On the other hand, the magnetic bearing composite molecular pump 2 has a back pressure of 300 to 500.
Even if the pressure is as high as Pa, a large pumping speed can be obtained.
Even if the pressure is maintained at Pa or higher, its operation is not hindered and the inside of the vacuum container 1 can be evacuated to a predetermined high vacuum. Therefore, a small one may be used as the auxiliary vacuum pump 22.
また、磁気軸受複合分子ポンプ2はその駆動機構部19等
の何れにも油を用いておらないから、該磁気軸受複合分
子ポンプ2から真空容器1側に油分子の逆拡散を生じさ
せて汚染する様なことがない。即ち、磁気軸受複合分子
ポンプ2からの油分子の逆拡散は生じず、またその後段
の配管3a側を介しての油分子の逆拡散はパージガス供給
用配管24を介するパージガスの導入により阻止されてい
るために、真空容器1は勿論、磁気軸受複合分子ポンプ
2内の何ら油汚染されない。Further, since the magnetic bearing composite molecular pump 2 does not use oil for any of its drive mechanism portions 19 and the like, it causes back diffusion of oil molecules from the magnetic bearing composite molecular pump 2 to the vacuum container 1 side to cause contamination. There is nothing to do. That is, the reverse diffusion of the oil molecules from the magnetic bearing composite molecular pump 2 does not occur, and the reverse diffusion of the oil molecules through the pipe 3a side in the subsequent stage is prevented by the introduction of the purge gas through the purge gas supply pipe 24. Therefore, the vacuum container 1 as well as the magnetic bearing composite molecular pump 2 is not contaminated with oil.
更に、磁気軸受複合分子ポンプ2自体がオイルレスであ
るために、真空排気装置の停止中にストップバルブ23を
閉じておけば前記複合分子ポンプ2と真空容器1の油汚
染が好適に阻止できる。Further, since the magnetic bearing composite molecular pump 2 itself is oilless, if the stop valve 23 is closed while the vacuum exhaust device is stopped, oil contamination of the composite molecular pump 2 and the vacuum container 1 can be suitably prevented.
よって、配管3aよりも大径の配管3には大型で高価なス
トップバルブを設ける必要がなくなり、装置コストの大
幅な低減化が図れる。この種真空用のバルブは極めて高
い加工精度が要求されこれらバルブのコストはその配管
口径に大きく左右され、本考案に係るストップバルブ23
のコストに比較して前記配管3に設けるバルブは数倍以
上の非常に高価なものとなるが、本考案ではこの高価な
バルブを設ける必要が一切ないのである。Therefore, it is not necessary to provide a large and expensive stop valve in the pipe 3 having a diameter larger than that of the pipe 3a, and the cost of the device can be significantly reduced. This kind of vacuum valve requires extremely high processing accuracy, and the cost of these valves greatly depends on the pipe diameter.
Although the valve provided in the pipe 3 is several times more expensive than the above cost, the present invention does not need to provide this expensive valve at all.
尚、上記実施例では、磁気軸受複合分子ポンプ2の駆動
機構部19内に別途パージガスを導入可能としたが、この
パージガスは当該ポンプ2自身が吸気した有害なガスを
駆動機構部19内に浸入させないためのもので、これは運
転中常時或いは一時的に適宜必要に応じて供給すればよ
いものである。よって、当該ポンプ2からパージガスを
供給させることは本考案の必須要件ではない。In the above-described embodiment, the purge gas can be separately introduced into the drive mechanism section 19 of the magnetic bearing composite molecular pump 2, but the purge gas intrudes into the drive mechanism section 19 harmful gas sucked by the pump 2 itself. This is to prevent it from being supplied, and this may be supplied constantly or temporarily during operation as occasion demands. Therefore, supplying the purge gas from the pump 2 is not an essential requirement of the present invention.
また、本考案は補助真空ポンプ22からの油分子の逆拡散
を阻止するためのパージガス供給手段を上記実施例の如
く配管3aの途中位置に設けることに限定されない。例え
ば上記の如く磁気軸受複合分子ポンプ2の駆動機構部19
内にパージガスを導入させる場合には、配管3aに接続し
たパージガス供給手段30を除去することも可能である。
けだし、磁気軸受複合分子ポンプ2の駆動機構部19内に
供給するパージガスが各磁気軸受部を通過して当該ポン
プ2の排気口17側に流出することにより補助真空ポンプ
22から上段側への油分子の逆拡散が防止できるからであ
る。パージガスを導入する位置は、要は補助真空ポンプ
22よりも前段側で且つ磁気軸受複合分子ポンプ2のネジ
溝8が設けられてガス圧縮位置よりも後段の真空排気経
路の何れかの位置であればよい。又そのパージガス供給
手段は少なくとも一以上設けられておればよく、パージ
ガスの具体的な種類も問わない。Further, the present invention is not limited to providing the purge gas supply means for preventing the reverse diffusion of the oil molecules from the auxiliary vacuum pump 22 in the middle of the pipe 3a as in the above embodiment. For example, as described above, the drive mechanism section 19 of the magnetic bearing composite molecular pump 2 is used.
When introducing the purge gas into the inside, the purge gas supply means 30 connected to the pipe 3a can be removed.
At first, the purge gas supplied into the drive mechanism portion 19 of the magnetic bearing composite molecular pump 2 passes through each magnetic bearing portion and flows out to the exhaust port 17 side of the pump 2, thereby forming an auxiliary vacuum pump.
This is because the reverse diffusion of oil molecules from 22 to the upper side can be prevented. The position where the purge gas is introduced must be an auxiliary vacuum pump.
It suffices that the screw groove 8 of the magnetic bearing composite molecular pump 2 is provided on the upstream side of 22 and at any position on the vacuum exhaust path downstream of the gas compression position. At least one purge gas supply means may be provided, and the specific type of purge gas does not matter.
更に、本考案に係る磁気軸受複合分子ポンプ2の具体的
な構成も決して上記実施例の如く限定されず、要は動翼
6等を有するローター5を回転させるための駆動軸4が
磁気軸受で支承されて、オイルフリーに構成された複合
分子ポンプであればよく、各部の具体的な構成は任意に
設計変更自在である。Further, the specific configuration of the magnetic bearing composite molecular pump 2 according to the present invention is not limited to the above embodiment, and the point is that the drive shaft 4 for rotating the rotor 5 having the moving blades 6 is a magnetic bearing. Any complex molecular pump that is supported and configured to be oil-free may be used, and the specific configuration of each part can be arbitrarily changed in design.
更に、本考案はパージガス供給手段30の開閉バルブ26が
開放する設定圧は15Pa程度に限定されない。油分子の逆
拡散は通常15Pa程度以下で顕著となるが、この圧力値は
油分子の量や配管径等の諸条件により左右されるから、
一層確実に油分子の逆拡散を防止するにはそれよりも高
めの設定圧にしておくことが好ましい。よって、その設
定圧は例えば20Paや30Paとしてもよく、その具体的な設
定値は問わない。要はパージガス供給手段に備えられた
開閉バルブ26が所望の設定圧に減圧された際に自動開放
する様に真空計29に対応して制御自在であればよい。Further, in the present invention, the set pressure at which the open / close valve 26 of the purge gas supply means 30 is opened is not limited to about 15 Pa. The reverse diffusion of oil molecules is usually remarkable at about 15 Pa or less, but this pressure value depends on various conditions such as the amount of oil molecules and the pipe diameter.
In order to more surely prevent the reverse diffusion of oil molecules, it is preferable to set the set pressure higher than that. Therefore, the set pressure may be, for example, 20 Pa or 30 Pa, and its specific set value does not matter. The point is that the on-off valve 26 provided in the purge gas supply means can be controlled correspondingly to the vacuum gauge 29 so as to automatically open when the pressure is reduced to a desired set pressure.
その他、本考案は補助真空ポンプ22,真空計29,バルブ開
閉制御用の制御回路28,バルブ23,26等の各機器の具体的
な種類等も一切問わない。In addition, the present invention does not require any specific types of devices such as the auxiliary vacuum pump 22, the vacuum gauge 29, the control circuit 28 for valve opening / closing control, and the valves 23 and 26.
(考案の効果) 叙上の様に、本考案は高真空用ポンプとしてオイルレス
の磁気軸受複合分子ポンプを採用して、該分子ポンプの
後段側で且つ補助真空ポンプよりも前段側の真空排気経
路にパージガスを導入して得る様に構成したために、磁
気軸受複合分子ポンプによって真空容器側を油汚染させ
ることがないばかりか、補助真空ポンプ側へのパージガ
スの導入により該補助真空ポンプからの油汚染を防止さ
せた比較的高圧の背圧条件下であっても、従来のクライ
オポンプ等を用いた手段の如く高真空の本引き作業が困
難となる様なことがなく、磁気軸受複合分子ポンプはそ
の背圧が比較的高圧であってもスムースな起動が行え、
大排気速度の本引き作業が行えることとなった。(Effects of the Invention) As described above, the present invention adopts an oilless magnetic bearing composite molecular pump as a high vacuum pump, and evacuates the latter side of the molecular pump and the front side of the auxiliary vacuum pump. Since the purge gas is introduced into the passage to obtain the oil, the magnetic bearing composite molecular pump does not contaminate the vacuum container side with oil, and the purge gas is introduced into the auxiliary vacuum pump side to prevent the oil from the auxiliary vacuum pump from being contaminated. Even under a relatively high back pressure condition where contamination is prevented, there is no difficulty in main vacuuming work unlike the conventional means using a cryopump, and a magnetic bearing composite molecular pump. Can be started smoothly even if its back pressure is relatively high.
It became possible to perform the main pulling work at a high pumping speed.
その結果、本考案によれば高速,短時間で油汚染のない
高真空域を達成することができて、これを半導体製造の
如き各種の広範囲な利用用途に提供でき、その実用的価
値は極めて高いものとなる実益を得るに至った。As a result, according to the present invention, it is possible to achieve a high vacuum region free of oil pollution at high speed and in a short time, and to provide this for a wide variety of applications such as semiconductor manufacturing, and its practical value is extremely high. It came to a high profit.
また、本考案は磁気軸受複合分子ポンプを採用したこと
により、従来の真空容器と高真空用ポンプとの相互間に
必要とされていた大型で高価なストップバルブを設ける
ことなく油汚染を防止できることとなり、装置の製作費
用の低減化が適切に図れる利点をも有する。Further, since the present invention adopts the magnetic bearing composite molecular pump, it is possible to prevent oil contamination without providing a large and expensive stop valve which is required between the conventional vacuum container and the high vacuum pump. Therefore, there is an advantage that the manufacturing cost of the device can be appropriately reduced.
更に、本考案はパージガスの供給手段に備えた開閉バル
ブを予め設定した所定の圧力値に減圧した際に開放する
様に真空計の測定圧に対応して自動制御させることによ
り、補助真空ポンプから油分子の逆拡散が発生する恐れ
のある条件下に於いてパージガスを自動で供給して油汚
染の確実な防止が行えるばかりか、無駄なパージガスの
供給を極力防止できて、パージガスの節約も図れるとい
う効果をも有する。Further, according to the present invention, the on-off valve provided in the purge gas supply means is automatically controlled according to the measurement pressure of the vacuum gauge so as to be opened when the pressure is reduced to a preset predetermined pressure value. Under conditions where reverse diffusion of oil molecules may occur, not only can purge gas be automatically supplied to reliably prevent oil contamination, but useless purge gas supply can also be prevented as much as possible to save purge gas. It also has the effect.
第1図は本考案に係る真空排気装置の一例を示す説明
図。 第2図は磁気軸受複合分子ポンプの一例を示す断面図。 第3図及び第4図は従来例を示す説明図。 1……真空容器、2……磁気軸受複合分子ポンプ 22……補助真空ポンプ、26……開閉バルブ 28……制御手段、29……真空計FIG. 1 is an explanatory view showing an example of a vacuum exhaust device according to the present invention. FIG. 2 is a sectional view showing an example of a magnetic bearing composite molecular pump. 3 and 4 are explanatory views showing a conventional example. 1 ... Vacuum container, 2 ... Magnetic bearing compound molecular pump 22 ... Auxiliary vacuum pump, 26 ... Open / close valve 28 ... Control means, 29 ... Vacuum gauge
Claims (1)
ポンプ2と、該磁気軸受複合分子ポンプ2の後段側に連
結された補助真空ポンプ22と、前記磁気軸受複合分子ポ
ンプ2のガス圧縮位置よりも後段で補助真空ポンプ22よ
りも前段の真空排気経路の位置から補助真空ポンプ22側
にパージガスを供給するパージガス供給手段30とからな
る真空排気装置において、前記パージガス供給手段30に
は、真空排気経路へのパージガスの供給停止を行うため
の開閉バルブ26が備えられ、且つ磁気軸受複合分子ポン
プ2のガス圧縮位置よりも後段で且つ補助真空ポンプ22
よりも前段の真空排気経路には真空計29が設けられ、し
かも該真空計29には真空排気経路内の測定圧が予め設定
された所定設定圧力値以下に減圧した際に、前記開閉バ
ルブ26を開放させて真空排気経路内にパージガスを供給
可能とするバルブ開閉用の制御手段28が設けられてなる
ことを特徴とする真空排気装置。1. A magnetic bearing composite molecular pump 2 connected to a vacuum container 1, an auxiliary vacuum pump 22 connected to a rear side of the magnetic bearing composite molecular pump 2, and a gas compression of the magnetic bearing composite molecular pump 2. In the vacuum exhaust device comprising the purge gas supply means 30 for supplying the purge gas to the auxiliary vacuum pump 22 side from the position of the vacuum exhaust path at the stage subsequent to the position and before the auxiliary vacuum pump 22, the purge gas supply means 30 is provided with a vacuum. An on-off valve 26 for stopping the supply of the purge gas to the exhaust path is provided, and the auxiliary vacuum pump 22 is provided after the gas compression position of the magnetic bearing composite molecular pump 2.
A vacuum gauge 29 is provided in the vacuum evacuation path in the preceding stage, and the opening / closing valve 26 is provided in the vacuum gauge 29 when the measured pressure in the vacuum evacuation path is reduced to a predetermined preset pressure value or less. A vacuum exhaust device, characterized in that a control means 28 for opening and closing the valve is provided to open the valve and supply purge gas to the vacuum exhaust path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1988013916U JPH0720395Y2 (en) | 1988-02-03 | 1988-02-03 | Vacuum exhaust device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1988013916U JPH0720395Y2 (en) | 1988-02-03 | 1988-02-03 | Vacuum exhaust device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01118190U JPH01118190U (en) | 1989-08-09 |
JPH0720395Y2 true JPH0720395Y2 (en) | 1995-05-15 |
Family
ID=31224637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1988013916U Expired - Lifetime JPH0720395Y2 (en) | 1988-02-03 | 1988-02-03 | Vacuum exhaust device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0720395Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2584881B (en) * | 2019-06-19 | 2022-01-05 | Edwards Vacuum Llc | Multiple vacuum chamber exhaust system and method of evacuating multiple chambers |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60110685U (en) * | 1983-12-28 | 1985-07-26 | 日本電子株式会社 | Exhaust system using turbo molecular pump |
JPS60163663U (en) * | 1984-04-09 | 1985-10-30 | 株式会社日立製作所 | Vacuum exhaust equipment for electron microscopes, etc. |
JPS61277896A (en) * | 1985-05-31 | 1986-12-08 | Shimadzu Corp | Magnetic bearing device of turbo molecular pump |
JPS62168992A (en) * | 1985-11-27 | 1987-07-25 | Shimadzu Corp | Method for exhausting corrosive gas for turbo molecular pump |
-
1988
- 1988-02-03 JP JP1988013916U patent/JPH0720395Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01118190U (en) | 1989-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6446651B1 (en) | Multi-chamber vacuum system and a method of operating the same | |
JP2786955B2 (en) | Inlet device for injecting high-speed rotary vacuum pump | |
US5542828A (en) | Light-gas-isolation, oil-free, scroll vaccum-pump system | |
KR20170062513A (en) | Pumping system for generating a vacuum and method for pumping by means of this pumping system | |
JPH0720395Y2 (en) | Vacuum exhaust device | |
EP1739308B1 (en) | Vacuum pump | |
TWI725943B (en) | Pumping system for generating a vacuum and pumping method by means of this pumping system | |
JP3038432B2 (en) | Vacuum pump and vacuum device | |
JP2007231938A (en) | Vacuum device, method of quickly reducing water vapor partial pressure in vacuum device, method of preventing rise of water vapor partial pressure in load lock chamber, and vacuum pump for vacuum device | |
JPH0457878B2 (en) | ||
JPH03107599A (en) | Control system of axial-flow pump device | |
JP2002168192A (en) | Vacuum pump | |
US7896625B2 (en) | Vacuum pumping system and method of operating a vacuum pumping arrangement | |
JP2003232292A (en) | Vacuum pump | |
JP3034968B2 (en) | Gas bearing device for vacuum pump | |
JPS6045792A (en) | Turbo molecular pump | |
JP4131754B2 (en) | Vacuum valve for automatic delay vent and automatic delay vent mechanism of vacuum equipment using the same | |
JP2557551Y2 (en) | Vacuum pump | |
JP3754236B2 (en) | Oil-free screw compressor | |
JPH06630Y2 (en) | Turbo molecular pump | |
JPH0315678A (en) | Vacuum pump system | |
JP2004270653A (en) | Evacuation device | |
JPH056195U (en) | Vacuum pump | |
JPS6346718Y2 (en) | ||
JPS63280894A (en) | Exhaust system using turbo molecular pump |