JPH03107599A - Control system of axial-flow pump device - Google Patents

Control system of axial-flow pump device

Info

Publication number
JPH03107599A
JPH03107599A JP24604789A JP24604789A JPH03107599A JP H03107599 A JPH03107599 A JP H03107599A JP 24604789 A JP24604789 A JP 24604789A JP 24604789 A JP24604789 A JP 24604789A JP H03107599 A JPH03107599 A JP H03107599A
Authority
JP
Japan
Prior art keywords
pump
flow pump
axial flow
axial
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24604789A
Other languages
Japanese (ja)
Inventor
Takami Ozaki
孝美 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP24604789A priority Critical patent/JPH03107599A/en
Publication of JPH03107599A publication Critical patent/JPH03107599A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the entire body of an axial-flow pump device in an optimum condition by accurately detecting a suction force condition of the axial- flow pump, and by controlling the driving and stopping of the axial-flow pump, as well as the opening/closing of inlet/exhaust valves, and so on, based on the detected information. CONSTITUTION:In a turbo-molecular pump 2 as an axial-flow pump, a pump load detector 5 is mounted. Based on a detection signal from the pump load detector 5, through a controller 6 of the turbo-molecular pump 2 as well as main controller 7 of an axial-flow pump device, a valve 1 on the suction force side and a valve 3 on the exhaust force side are controlled, respectively. When the ultra vacuum pressure exceeds, for example, a set value, the turbo-molecular pump 2 is temporarily stopped by the controller 6, and the valve 1 on the suction force side is closed. So as to meet the ultra vacuum condition controlled by the controller 6, a front stage pump 4 is controlled by the main controller 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、軸流ポンプとその周辺装置を含む軸流ポン
プ装置の制御システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control system for an axial flow pump device including an axial flow pump and its peripheral devices.

C従来の技術〕 軸流ポンプ、特に超高真空圧を作り出すポンプとしてタ
ーボ分子ポンプが一般に使用されている。
C. Prior Art] Turbomolecular pumps are generally used as axial flow pumps, especially pumps that generate ultra-high vacuum pressure.

このターボ分子ポンプは、軸流タービンと似た構造の翼
に一定の傾きを持つロータと、このロータとは逆の傾き
を持つステータとを交互に多段に重ねて回転翼を高速回
転させることにより排気作用を得て超真空を作る。
This turbo-molecular pump has a structure similar to that of an axial flow turbine, in which a rotor with a constant inclination and a stator with an inclination opposite to the rotor are alternately stacked in multiple stages to rotate the rotor blades at high speed. Creates an ultra-vacuum by obtaining exhaust action.

か−るターボ分子ポンプでは、窒素、水素、ヘリウム等
の気体を吸引し、一般に10弓〜10− ” Torr
程度の超真空が得られる。しかし、ターボ分子ポンプで
得られる真空圧が極めて低いため、一般にはターボ分子
ポンプの排気側には、その排気を大気圧に排出する前段
ポンプが設けられ、対象装置の真空槽とターボ分子ポン
プ、ターボ分子ポンプと前段ポンプとの間にはその排気
を制御するための吸気圧側バルブ、排気圧側バルブ等が
設けられている。
Turbomolecular pumps suck gases such as nitrogen, hydrogen, helium, etc., and generally operate at a pressure of 10 to 10" Torr.
A degree of ultra-vacuum can be obtained. However, since the vacuum pressure obtained with a turbo-molecular pump is extremely low, a pre-stage pump is generally installed on the exhaust side of the turbo-molecular pump to discharge the exhaust gas to atmospheric pressure. An intake pressure side valve, an exhaust pressure side valve, etc. are provided between the turbomolecular pump and the pre-stage pump to control the exhaust.

上述したターボ分子ポンプや前段ポンプ等の軸流ポンプ
を大きなガス流量、低真空環境下で運転すると、その大
きな負荷のため動翼温度が上昇したり、回転軸がずれた
りしてポンプが損傷する原因となるため、ポンプをその
ポンプに許容される最大吸気圧及び最大排気圧以下で動
作させることが必要である。
When axial flow pumps such as the turbomolecular pumps and pre-stage pumps mentioned above are operated in a low vacuum environment with a large gas flow rate, the large load can cause the temperature of the rotor blades to rise or the axis of rotation to shift, causing damage to the pump. Therefore, it is necessary to operate the pump below the maximum suction pressure and maximum exhaust pressure allowed for the pump.

そこで従来は、安全に軸流ポンプを運転させるため、軸
流ポンプの吸気圧及び排気圧をポンプ外部に配置した真
空計で制御していた。
Conventionally, in order to operate an axial flow pump safely, the intake pressure and exhaust pressure of the axial flow pump have been controlled using a vacuum gauge placed outside the pump.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述したターボ分子ポンプ等の軸流ポン
プの真空圧を検知する真空計は、圧力が超真空であるた
め極めて低い圧力に耐えられる特殊で高価なものを使用
しなければならない。
However, the vacuum gauge for detecting the vacuum pressure of an axial flow pump such as the above-mentioned turbo-molecular pump has to be a special and expensive one that can withstand extremely low pressure because the pressure is ultra-vacuum.

さらに、上述真空計によるポンプ負荷状態の情報は、単
にターボ分子ポンプの運転にのみしか利用されず、ター
ボ分子ポンプの周辺装置の運転を安全に実施するのには
直接使用することができない。
Furthermore, the information on the pump load state obtained from the vacuum gauge is used only for the operation of the turbo-molecular pump, and cannot be directly used for safely operating the peripheral devices of the turbo-molecular pump.

この発明は、上記のような従来の軸流ポンプの作動状態
を検知する技術の現状に鑑みてなされたものであり、そ
の目的は高価な真空計を使用せずに軸流ポンプのロータ
回転数、モータ駆動電流、ロータの回転駆動トルクのい
ずれかを検知する検知器、又はそのいくつかを組合せた
ものにより測定した軸流ポンプ駆動状態から真空圧を求
め、その情報により軸流ポンプだけでなくその周辺機器
をも含めて装置を全体的に最適に制御できる制御システ
ムを提供するにある。
This invention was made in view of the current state of technology for detecting the operating status of conventional axial flow pumps as described above, and its purpose is to detect the rotor rotational speed of an axial flow pump without using an expensive vacuum gauge. , the vacuum pressure is determined from the axial flow pump drive status measured by a detector that detects either the motor drive current, the rotational drive torque of the rotor, or a combination of some of these, and from that information, it is possible to detect not only the axial flow pump but also the axial flow pump. It is an object of the present invention to provide a control system that can optimally control a device as a whole including its peripheral devices.

〔課題を解決するための手段〕[Means to solve the problem]

そこでこの発明では上記課題を解決するための手段とし
て吸気圧側バルブ、軸流ポンプ、排気圧側バルブ、前段
ポンプ等を含む軸流ポンプ装置に対し、軸流ポンプの適
宜位置にロータ回転数、モータ駆動電流、又は動翼回転
トルクのいずれかを検知する検知器又はそのいくつかを
組合せたものを設け、この検知器による信号を軸流ポン
プ装置のコントローラに送り、その制御信号により上記
軸流ポンプ周辺の装置を制御する軸流ポンプ装置の制御
システムの構成を採用したのである。
Therefore, in this invention, as a means to solve the above problem, for an axial flow pump device including an intake pressure side valve, an axial flow pump, an exhaust pressure side valve, a pre-stage pump, etc., the rotor rotation speed and motor drive are set at appropriate positions of the axial flow pump. A detector that detects either current or rotor blade rotation torque, or a combination of several of them, is provided, and a signal from this detector is sent to the controller of the axial flow pump device, and the control signal is used to detect the area around the axial flow pump. The configuration of the control system for an axial flow pump device was adopted to control the device.

〔作用〕[Effect]

以上のように構成したこの発明による制御システムでは
、軸流ポンプ作動状態、吸引圧(超真空圧)は上記検知
器のいずれか又はそのいくつかを組合わせたものにより
正確に捉えられ、その情報は電気信号に変換されてコン
トローラへ送られる。
In the control system according to the present invention configured as described above, the operating state of the axial flow pump and the suction pressure (ultra vacuum pressure) can be accurately detected by any one of the above-mentioned detectors or a combination of some of them, and the information thereof can be accurately detected. is converted into an electrical signal and sent to the controller.

コントローラは上記情報に基づいて軸流ポンプの起動、
停止の制御は勿論、その周辺機器のバルブ、前段ポンプ
等も制御し、従って軸流ポンプ装置の全体を最適な運転
状態に駆動制御する。従って、高価な真空計による圧力
の測定は不要であり、しかもより精度の高い圧力測定、
制御が可能である。
The controller starts the axial flow pump based on the above information,
In addition to controlling the stoppage, it also controls peripheral equipment such as valves and pre-stage pumps, thereby driving and controlling the entire axial flow pump device to an optimal operating state. Therefore, it is not necessary to measure pressure using an expensive vacuum gauge, and moreover, it is possible to measure pressure with higher accuracy.
Control is possible.

〔実施例〕〔Example〕

以下この発明の実施例について添付図を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は、この実施例の軸流ポンプ装置の全体概略ブロ
ック図である。01はプロセス室である。
FIG. 1 is an overall schematic block diagram of the axial flow pump device of this embodiment. 01 is a process chamber.

1は吸気圧側バルブ、2は軸流ポンプの一種のターボ分
子ポンプ、3は排気圧側バルブ、4は前段ポンプである
1 is an intake pressure side valve, 2 is a turbo molecular pump which is a type of axial flow pump, 3 is an exhaust pressure side valve, and 4 is a front stage pump.

各バルブは制御弁である。ターボ分子ポンプは、前述し
たように翼に一定の傾きを持つロータと、このロータと
逆の向きを持つステータを交互に多段に重ねて回転翼を
高速回転させ、超真空圧を得るものである。
Each valve is a control valve. As mentioned above, a turbomolecular pump uses a rotor whose blades have a certain inclination and a stator whose blades are oriented in the opposite direction, which are alternately stacked in multiple stages to rotate the rotor blades at high speed and obtain ultra-vacuum pressure. .

前段ポンプ4は、ターボ分子ポンプ2で超真空から大気
圧にこのポンプ−段では排気することが困難であるため
、ターボ分子ポンプ2の排気圧を大気圧に吸引するため
のポンプであり、例えば通常の油圧駆動の軸流ポンプが
一般に用いられている。
The pre-stage pump 4 is a pump for suctioning the exhaust pressure of the turbo-molecular pump 2 to atmospheric pressure, since it is difficult to exhaust from ultra-vacuum to atmospheric pressure with the turbo-molecular pump 2, for example. Conventional hydraulically driven axial flow pumps are commonly used.

5は上記ターボ分子ポンプ内に取り付けられたポンプ負
荷検知器である。この検知器5は、例えばロータ回転数
を検知するロークリエンコーダのような回転数検知器を
用いることができる。あるいは、モータ駆動電流検知器
、もしくは動翼回転軸の回転トルク計を用いてもよい。
5 is a pump load detector installed in the turbo molecular pump. As this detector 5, for example, a rotation speed detector such as a rotor encoder that detects the rotor rotation speed can be used. Alternatively, a motor drive current detector or a rotary torque meter of the rotor blade rotating shaft may be used.

上記検知器5は、それぞれの形式に応じてポンプ負荷状
態をその特性曲線から予め知ることができるから、これ
によりその負荷状態を電気信号に変えてこれを情報とし
て外部へ出力することができるように設けられている。
The detector 5 can know the pump load condition in advance from its characteristic curve according to each type, so it can convert the load condition into an electrical signal and output it to the outside as information. It is set in.

上記検知器5の信号はターボ分子ポンプのコントローラ
6へ与えられ、さらにその信号は軸流ポンプ装置の主コ
ントローラ7へも送られる。そして上記コントローラ6
、主コントローラ7からの制御信号により吸気圧側バル
ブ1、排気圧側バルブ3をそれぞれ必要な作動状態に制
御するため、それぞれのバルブへ制御信号を送るための
図示のような制御回路が設けられている。
The signal from the detector 5 is given to the controller 6 of the turbomolecular pump, and the signal is also sent to the main controller 7 of the axial flow pump device. And the controller 6
In order to control the intake pressure side valve 1 and the exhaust pressure side valve 3 to the required operating states using control signals from the main controller 7, a control circuit as shown in the figure is provided to send control signals to the respective valves. .

上記のように構成したこの実施例の軸流ポンプ装置は、
ターボ分子ポンプ2を起動させると、プロセス室01を
吸引してその内部を超真空圧にする。その超真空圧状態
は上記検知器5のいずれかの形式のものによりポンプ負
荷を求め、その負荷状態により超真空圧の情報に換算し
た電気信号が検知器5よりコントローラ6へ送られる。
The axial flow pump device of this embodiment configured as described above is
When the turbo molecular pump 2 is started, the process chamber 01 is sucked and the inside thereof is brought to ultra-vacuum pressure. The ultra-vacuum pressure state is determined by one of the types of the detector 5 described above to determine the pump load, and the detector 5 sends an electric signal converted into ultra-vacuum pressure information based on the load state to the controller 6.

上記検知器5の形式によるポンプ負荷状態の情報は、例
えば第2図に示す性能曲線により求めることができる。
Information on the pump load state based on the type of the detector 5 can be obtained, for example, from the performance curve shown in FIG.

これによると、一般にポンプ負荷が大になるとロータ回
転数は減少し、モータ駆動電流、動翼駆動トルクはポン
プ負荷の増大につれて増加する。
According to this, in general, as the pump load increases, the rotor rotational speed decreases, and the motor drive current and rotor blade drive torque increase as the pump load increases.

従って、上記検知器の種類に応じた性能曲線のいずれか
をアナログデータ、あるいはディジタルのデータとして
コントローラ6に記憶する記憶部を設けておけば、その
負荷状態を簡単に求めることができる。
Therefore, if the controller 6 is provided with a storage section that stores any of the performance curves corresponding to the type of the detector as analog data or digital data, the load state can be easily determined.

なお、上記ポンプ負荷状態の算出は、上記検知器5のい
ずれかの形式のものをいくつか組み合せて求めるように
すればさらに高精度の情報を得ることもできる。
Note that even more accurate information can be obtained by calculating the pump load state by combining several types of detectors 5.

上記コントローラ6へ送られた超真空圧の情報に基づい
て、コントローラ6は超真空圧が所定よりも過大な超真
空圧になると一時的にターボ分子ポンプ2を停止させ吸
気圧側バルブ1を閉じ、所定真空圧に保持し、超真空圧
が所定以下になると再びターボ分子ポンプ2を起動させ
、所定の超真空圧へ近づけるように制御信号を出力する
Based on the ultra-vacuum pressure information sent to the controller 6, the controller 6 temporarily stops the turbo molecular pump 2 and closes the intake pressure side valve 1 when the ultra-vacuum pressure exceeds a predetermined value. A predetermined vacuum pressure is maintained, and when the ultra-vacuum pressure falls below a predetermined value, the turbo molecular pump 2 is activated again and a control signal is output so as to bring the ultra-vacuum pressure closer to the predetermined ultra-vacuum pressure.

主コントローラ7は上記コントローラ6による制御に対
し、その制御信号による超真空状態に適合するように前
段ポンプへ指令を与え、これによって装置全体の運転状
態を監視制御する。
In response to the control by the controller 6, the main controller 7 gives commands to the pre-stage pump to adapt to the ultra-vacuum state according to the control signal, thereby monitoring and controlling the operating state of the entire apparatus.

〔効果〕〔effect〕

以上詳細に説明したように、この発明ではポンプのロー
タ回転数、モータ駆動電流、あるいは動翼回転トルクの
いずれか又はそのいくつかを組合せて検知する検知器に
よりポンプの吸引圧状態を正確に検知し、その情報に基
づいてコントローラにより軸流ポンプの駆動、停止、又
吸排気バルブの開閉等の周辺機器を制御するようにした
から、従来のように超真空圧を高価な真空計を用いて測
定する必要もなく、経済的で正確な測定ができ、かつそ
の情報に基づいて軸流ポンプ装置全体を最適状態に制御
できるという利点が得られる。
As explained in detail above, in the present invention, the suction pressure state of the pump is accurately detected by a detector that detects any one or a combination of the rotor rotation speed, motor drive current, and rotor blade rotation torque of the pump. Based on this information, the controller controls peripheral equipment such as driving and stopping the axial flow pump, as well as opening and closing the intake and exhaust valves, so it is no longer possible to measure ultra-vacuum pressure using an expensive vacuum gauge as in the past. There is no need to measure, economical and accurate measurements can be made, and the entire axial flow pump device can be controlled in an optimal state based on the information.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による軸流ポンプ装置の全体概略系統
図、第2図はポンプ負荷に対し検知器の種類ごとに異な
る性能曲線を表わすグラフである。 01・・・・・・プロセス室、 1・・・・・・吸気圧
側バルブ、2・・・・・・ターボ分子ポンプ、 3・・・・・・排気圧側バルブ、4・・・・・・前段ポ
ンプ、5・・・・・・検知器、     6・・・・・
・コントローラ、7・・・・・・主コントローラ。
FIG. 1 is a general schematic system diagram of an axial flow pump device according to the present invention, and FIG. 2 is a graph showing different performance curves for each type of detector with respect to pump load. 01... Process chamber, 1... Intake pressure side valve, 2... Turbo molecular pump, 3... Exhaust pressure side valve, 4... Pre-stage pump, 5...Detector, 6...
- Controller, 7... Main controller.

Claims (1)

【特許請求の範囲】[Claims] (1)吸気圧側バルブ、軸流ポンプ、排気圧側バルブ、
前段ポンプ等を含む軸流ポンプ装置に対し、軸流ポンプ
の適宜位置にロータ回転数、モータ駆動電流、又は動翼
回転トルクのいずれかを検知する検知器又はそのいくつ
かを組合せたものを設け、この検知器による信号を軸流
ポンプ装置のコントローラに送り、その制御信号により
上記軸流ポンプ周辺の装置を制御する軸流ポンプ装置の
制御システム。
(1) Intake pressure side valve, axial flow pump, exhaust pressure side valve,
For axial flow pump devices including front-stage pumps, etc., a detector for detecting either rotor rotation speed, motor drive current, or rotor blade rotation torque, or a combination of these, is installed at an appropriate position on the axial flow pump. A control system for an axial flow pump device that sends a signal from this detector to a controller of the axial flow pump device, and controls devices around the axial flow pump using the control signal.
JP24604789A 1989-09-20 1989-09-20 Control system of axial-flow pump device Pending JPH03107599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24604789A JPH03107599A (en) 1989-09-20 1989-09-20 Control system of axial-flow pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24604789A JPH03107599A (en) 1989-09-20 1989-09-20 Control system of axial-flow pump device

Publications (1)

Publication Number Publication Date
JPH03107599A true JPH03107599A (en) 1991-05-07

Family

ID=17142677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24604789A Pending JPH03107599A (en) 1989-09-20 1989-09-20 Control system of axial-flow pump device

Country Status (1)

Country Link
JP (1) JPH03107599A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443368A (en) * 1993-07-16 1995-08-22 Helix Technology Corporation Turbomolecular pump with valves and integrated electronic controls
JP2000064959A (en) * 1998-08-18 2000-03-03 Nichiden Mach Ltd Exhaust system
US6062810A (en) * 1997-08-15 2000-05-16 Ebara Corporation Turbomolecular pump
US6454524B1 (en) 1998-07-21 2002-09-24 Seiko Instruments Inc. Vacuum pump and vacuum apparatus
US6607365B1 (en) 1998-08-28 2003-08-19 Seiko Seki Kabushiki Kaisha Vacuum pump and vacuum apparatus
US6755028B2 (en) 1988-09-13 2004-06-29 Helix Technology Corporation Electronically controlled cryopump
US7413411B2 (en) 1993-07-16 2008-08-19 Brooks Automation, Inc. Electronically controlled vacuum pump
JP2009511248A (en) * 2005-10-07 2009-03-19 エドワーズ・バキューム・インコーポレーテッド Wide range pressure control using turbo pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163013A (en) * 1980-04-25 1981-12-15 Asea Ab Regulator for rolling mill
JPS5956406A (en) * 1982-09-27 1984-03-31 Mitsui Petrochem Ind Ltd Modification of titanium catalyst component
JPS60128996A (en) * 1983-12-15 1985-07-10 Ulvac Corp Operation monitoring equipment for turbomolecular pump
JPS60190696A (en) * 1984-03-09 1985-09-28 Seiko Seiki Co Ltd Motor control system for turbo molecular pump
JPS63176694A (en) * 1987-01-14 1988-07-20 Seiko Seiki Co Ltd Measuring device for degree of vacuum in turbo molecular pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163013A (en) * 1980-04-25 1981-12-15 Asea Ab Regulator for rolling mill
JPS5956406A (en) * 1982-09-27 1984-03-31 Mitsui Petrochem Ind Ltd Modification of titanium catalyst component
JPS60128996A (en) * 1983-12-15 1985-07-10 Ulvac Corp Operation monitoring equipment for turbomolecular pump
JPS60190696A (en) * 1984-03-09 1985-09-28 Seiko Seiki Co Ltd Motor control system for turbo molecular pump
JPS63176694A (en) * 1987-01-14 1988-07-20 Seiko Seiki Co Ltd Measuring device for degree of vacuum in turbo molecular pump

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6755028B2 (en) 1988-09-13 2004-06-29 Helix Technology Corporation Electronically controlled cryopump
US7155919B2 (en) 1988-09-13 2007-01-02 Brooks Automation, Inc. Cryopump temperature control of arrays
US5443368A (en) * 1993-07-16 1995-08-22 Helix Technology Corporation Turbomolecular pump with valves and integrated electronic controls
US7413411B2 (en) 1993-07-16 2008-08-19 Brooks Automation, Inc. Electronically controlled vacuum pump
US6062810A (en) * 1997-08-15 2000-05-16 Ebara Corporation Turbomolecular pump
US6454524B1 (en) 1998-07-21 2002-09-24 Seiko Instruments Inc. Vacuum pump and vacuum apparatus
JP2000064959A (en) * 1998-08-18 2000-03-03 Nichiden Mach Ltd Exhaust system
US6607365B1 (en) 1998-08-28 2003-08-19 Seiko Seki Kabushiki Kaisha Vacuum pump and vacuum apparatus
JP2009511248A (en) * 2005-10-07 2009-03-19 エドワーズ・バキューム・インコーポレーテッド Wide range pressure control using turbo pump

Similar Documents

Publication Publication Date Title
US5561240A (en) Leak detecting apparatus using compound turbo-molecular pump
EP0340685A2 (en) Composite vacuum pump
JP2786955B2 (en) Inlet device for injecting high-speed rotary vacuum pump
JP3382627B2 (en) Motor-driven high-speed rotating body drive control device and model discriminating method used in the drive control device
JPH03107599A (en) Control system of axial-flow pump device
JP2663549B2 (en) Pressure control method for vacuum equipment
JPH05231381A (en) Method and device for controlling vacuum exhaust capacity of dry vacuum pump and dry vacuum pump and semiconductor manufacturing vacuum processor
JP3038432B2 (en) Vacuum pump and vacuum device
JP3716068B2 (en) Turbo molecular pump and vacuum vessel having the same
JP2003232292A (en) Vacuum pump
JP2019120157A (en) Vacuum pump, device for detecting deposit for vacuum pump and method for detecting deposit for vacuum pump
JPH0726623B2 (en) Vacuum unit
JP3874993B2 (en) Turbo molecular pump
JP3978018B2 (en) Turbomolecular pump and method of operating turbomolecular pump
JPH06249187A (en) Vacuum pump and driving method therefor
JPS62282194A (en) Turbo molecular pump
JPH04301200A (en) Control method of surging of fluid machinery
JPS61175285A (en) Vacuum pump monitor
JP3034968B2 (en) Gas bearing device for vacuum pump
KR20020001816A (en) Vacuum pump
JPH02153294A (en) Variable capacity type vacuum pump
JPH0725632Y2 (en) Vacuum exhaust system flow rate detector
JP3510497B2 (en) Turbo molecular pump
WO2022219028A1 (en) Vacuum pump and method for monitoring a vacuum pump
JP2003148470A (en) Magnetic bearing control device