JPH07201891A - Growth of ii-vi semiconductor crystal - Google Patents

Growth of ii-vi semiconductor crystal

Info

Publication number
JPH07201891A
JPH07201891A JP33797093A JP33797093A JPH07201891A JP H07201891 A JPH07201891 A JP H07201891A JP 33797093 A JP33797093 A JP 33797093A JP 33797093 A JP33797093 A JP 33797093A JP H07201891 A JPH07201891 A JP H07201891A
Authority
JP
Japan
Prior art keywords
gas
group
type
growth
nse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33797093A
Other languages
Japanese (ja)
Inventor
Toru Suzuki
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP33797093A priority Critical patent/JPH07201891A/en
Publication of JPH07201891A publication Critical patent/JPH07201891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To realize growth of II-VI semiconductor crystal without any unstability and mixture of impurity by using molecule which does not include hydrogen, has simple structure and weak biding force but is stable as the molecule as a dopant raw material gas but without using an accelerated electrons for dissociation. CONSTITUTION:In a method of causing a p-type ZnSe to grow on a GaAs substrate by the MBE process, a GaAs substrate introduced from a sample inlet 11 is attached to a substrate holder 12 installed within a growth chamber 10 kept under the ultra high vacuum condition of 10<-10>Torr or more and it is kept at the temperature of 350 deg.C. Growth of ZnSe is realized by heating solid raw material Zn (2) and Se (3). When two atom electron NSe (4), for example, is used, the N-doped p type ZnSe is grown by guiding the ZnSe gas compressed in a bomb 5 as the dopant gas to a gas cell 8 through a needle valve 6 and a flow meter 7 and then introducing the gas into an MBE growth chamber for irradiation to the GaAs substrate. Thereby the N-doped p-type ZnSe is grown. Hole concentration can be controlled precisely up to 10<16> to 10<19>cm<-3> depending on the flow rate of NSe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子工業、特に、緑青
色発光ダイオード、半導体レーザなど半導体発光素子の
製造に利用される。
BACKGROUND OF THE INVENTION The present invention is used in the electronics industry, particularly in the manufacture of semiconductor light emitting devices such as green-blue light emitting diodes and semiconductor lasers.

【0002】[0002]

【従来の技術】半導体レーザは小型・低消費電力・高信
頼などの特徴をもち、通信用、光ディスク用などさまざ
まな応用分野をもつ。赤色、すなわち、波長600nm
帯までの長波長レーザはAlGaInP、AlGaA
s、InGaAsPなどの結晶が開発されすでにデバイ
スの実用化・量産が行われ、産業界に大きな貢献を行っ
ている。しかし、潜在的に大きな需要が見込まれなが
ら、緑から青にかけての短波長域では、II−VIへの
p型ドーピングが技術的に困難であることが原因で、い
まだに実用に耐えるレーザ素子は開発されていない。
2. Description of the Related Art Semiconductor lasers have characteristics such as small size, low power consumption and high reliability, and have various application fields such as communication and optical disks. Red color, ie wavelength 600nm
Long-wavelength lasers up to the band are AlGaInP, AlGaA
Crystals such as s and InGaAsP have been developed, and devices have already been put into practical use and mass-produced, making a great contribution to the industry. However, due to the technical difficulty in p-type doping of II-VI in the short wavelength range from green to blue, a laser device that can still be put to practical use has been developed, while a large potential demand is expected. It has not been.

【0003】現在最もよいp型不純物のドーピング法と
されているのは、分子線エピタキシー法(以下MBE
法)において窒素分子(N2 )に、加速した電子を衝突
させて原子状窒素とした後にZnSeなどのII−VI
族半導体の成長中の表面にこれを照射しつつ結晶成長さ
せる方法である(例えば、M.H.F.Martin他
によるイクステンド・アブストラクト・オブ・1993
・インターナショナル・コンファレンス・オン・ソリッ
ド・ステイト・デバイス・アンド・マテアリアル、Ex
tended Abstracts of the 1
993 International Confere
nce on Solid StateDevices
and Materials,Makuhari,
1993, pp56−58参照)。
Currently, the best p-type impurity doping method is the molecular beam epitaxy method (hereinafter referred to as MBE).
Method), an accelerated electron is made to collide with a nitrogen molecule (N 2 ) to form atomic nitrogen, and then II-VI such as ZnSe.
This is a method of crystal growth while irradiating a growing surface of a group III semiconductor (for example, Extended Abstract of 1993 by MH Martin et al.
・ International Conference on Solid State Device and Material, Ex
tended Abstracts of the 1
993 International Confere
nce on Solid State Devices
and Materials, Makuhari,
1993, pp 56-58).

【0004】また、気相成長、MBEで、Nのドーパン
トガスとしてNH3 が用いられることもあるが、この場
合、NH3 のHが結晶中に取り込まれ、Nアクセプター
を不活性化する、いわゆる「水素パッシベーション」の
問題がある。
Further, in vapor phase growth and MBE, NH 3 may be used as a dopant gas of N. In this case, H of NH 3 is taken into the crystal to inactivate the N acceptor. There is a problem of "hydrogen passivation".

【0005】[0005]

【発明が解決しようとする課題】従来の方法は、N原子
をつくる際、放電等による電子の加速機構を使うが、放
電状態を安定的に精密に制御することは困難が大きく、
再現性等に問題があり、未だに良好な低抵抗p型結晶は
得られていない。またこの方法は、高速に加速された電
子をN2 の解離に使うため、解離装置の壁面等で発生し
た余分な不純物原子が結晶中に取り込まれることから、
結晶の発光効率を低下させ、レーザの特性に悪影響を及
ぼしている。
The conventional method uses an electron acceleration mechanism by discharge or the like when forming N atoms, but it is very difficult to stably and precisely control the discharge state.
There is a problem in reproducibility, and a good low resistance p-type crystal has not been obtained yet. In addition, since this method uses electrons accelerated at high speed for the dissociation of N 2 , extra impurity atoms generated on the wall surface of the dissociation device are taken into the crystal,
It reduces the luminous efficiency of the crystal and adversely affects the characteristics of the laser.

【0006】本発明の目的は、こうした不安定性の原因
であり、不純物混入の原因となっているN2 分子の電子
による解離、によらないp型II−VI族結晶成長法を
提供することにある。また、本発明は、前記「水素パッ
シベーション」の問題の無いp型ドーピング法を提供す
る。
An object of the present invention is to provide a p-type II-VI group crystal growth method that does not rely on electron dissociation of N 2 molecules that cause such instability and cause contamination of impurities. is there. The present invention also provides a p-type doping method that does not have the above-mentioned "hydrogen passivation" problem.

【0007】[0007]

【課題を解決するための手段】p型II−VI族半導体
が低抵抗になりにくい原因は、ドーパントガスとして用
いられるN2 がN−Nボンド結合力が9.76eV、と
結合が強い分子であり、結晶中に取り込まれにくいこと
にある。これは、InGaAsPなどのIII-V族化合物
半導体MBE成長におけるV族元素の原料であるP2
As2 の解離エネルギーがそれぞれ5.03eV,
3.96eVであるのとくらべるとよく理解される。
The reason why a p-type II-VI semiconductor is unlikely to have a low resistance is that N 2 used as a dopant gas has a strong N—N bond bonding force of 9.76 eV. Yes, it is difficult to be taken into the crystal. This dissociation energy of P 2 and As 2 is a raw material of group V element in the group III-V compound semiconductor MBE growth, such as InGaAsP, respectively 5.03EV,
It is well understood that it is 3.96 eV.

【0008】本発明は、上記問題点である、結合力の問
題、および、水素パッシベーションの問題を、窒素を含
み、水素を含まず、構造が簡単で、結合力はN2 に比較
すればはるかに弱いが、一方、分子としては比較的安定
である分子をドーパント原料ガスとして用い、これの解
離に加速電子を用いないことを特徴としているが、もう
ひとつの特徴は、ドーパントガスが、ドーパントである
N以外は当該II−VI族結晶のVI族元素またはその
等電子(アイソエレクトロニック)元素から構成されて
いることである。
The present invention solves the above-mentioned problems of bond strength and hydrogen passivation by containing nitrogen and not hydrogen, having a simple structure, and having a bond strength far superior to that of N 2. On the other hand, it is characterized by using a molecule that is relatively stable as a dopant source gas and does not use accelerated electrons for its dissociation, but another characteristic is that the dopant gas is Except for some N, it means that it is composed of the VI group element of the II-VI crystal or its isoelectronic (isoelectronic) element.

【0009】具体的には、ZnSeへのNドーピングを
考えるとき、ドーパントガスは2原子分子NSeなどと
すればよい。NSやNTeを用いた場合、等電子原子と
は、SやTeがそれにあたる。等電子原子がZnSe結
晶中のVI族副格子上に微量に導入されても、Seと同
じ族に属するため、ドナーや深い準位をつくらず、発光
素子にとり、悪影響はない。これらの技術的条件を満足
するものとして本発明ではドーパントガスの2原子分子
として、NS、NSeなど、3原子分子として、N
2 、NSe2 などが例としてあげられる。分子の結合
エネルギーはNSでは5.0eV、NSeでは4.0e
Vであり、P2 やAs2 のそれと同程度であり解離しや
すいことがわかる。また、これらを、MBE法、気相成
長エピタキシー法で用いることにより、低抵抗p型II
−VI族結晶が得られる。
Specifically, when considering the N doping to ZnSe, the dopant gas may be diatomic molecule NSe or the like. When NS or NTe is used, S or Te corresponds to the isoelectronic atom. Even if a small amount of isoelectronic atoms is introduced onto the group VI sublattice in the ZnSe crystal, it does not form a donor or a deep level because it belongs to the same group as Se, and has no adverse effect on the light emitting device. To satisfy these technical conditions, in the present invention, as a diatomic molecule of a dopant gas, NS, NSe, etc.
Examples are S 2 and NSe 2 . The binding energy of the molecule is 5.0 eV for NS and 4.0 e for NSe.
It is V, which is almost the same as that of P 2 and As 2 , and it is understood that they are easily dissociated. Further, by using these in the MBE method and the vapor phase epitaxy method, a low resistance p-type II
-Group VI crystals are obtained.

【0010】[0010]

【実施例】以下に本発明の実施例を述べる。第一の実施
例は、GaAs基板上へのp型ZnSeのMBEによる
成長である。図1はその模式図である。10-10 Tor
r以上の超高真空成長室(10)内に設置された基板ホ
ルダー(12)に試料導入口(11)から導入されたG
aAs基板がはりつけてあり、温度350℃に保たれて
いる。ZnSeの成長は、固体原料Zn(2)およびS
e(3)を加熱して行われる。ドーパントガスは、例え
ば、2原子分子NSe(4)を使うとき、ボンベ(5)
づめされたNSeガスをニードル弁(6)、流量計
(7)を通してガスセル(8)に導き、MBE成長室内
に導入しGaAs基板に向けて照射する。ZnSeの成
長と同時にNSeガスを照射する事によって、Nドープ
された、p型ZnSeが成長する。正孔濃度は、NSe
の流量により精密に1016から1019cm-3まで制御す
る事ができる。
EXAMPLES Examples of the present invention will be described below. The first example is MBE growth of p-type ZnSe on a GaAs substrate. FIG. 1 is a schematic diagram thereof. 10 -10 Tor
G introduced from the sample introduction port (11) into the substrate holder (12) installed in the ultra-high vacuum growth chamber (10) of r or more.
The aAs substrate is attached and kept at a temperature of 350 ° C. The growth of ZnSe is based on the solid raw materials Zn (2) and S.
e (3) is heated. The dopant gas is, for example, a gas (5) when using a diatomic molecule NSe (4).
The filled NSe gas is guided to the gas cell (8) through the needle valve (6) and the flow meter (7), introduced into the MBE growth chamber, and irradiated toward the GaAs substrate. By irradiating NSe gas at the same time as ZnSe growth, N-doped p-type ZnSe grows. The hole concentration is NSe
It is possible to precisely control from 10 16 to 10 19 cm -3 by the flow rate of.

【0011】NSeガスは、NO、NS、NTeであっ
てもよく、また、NO2 、NS2 、NSe2 、NTe2
であってもよい。これは、O、S、TeがVI族で等電
子元素であるため、ZnSeに混入しても電気的に悪影
響はないためである。
The NSe gas may be NO, NS, NTe, or NO 2 , NS 2 , NSe 2 , NTe 2
May be This is because O, S, and Te are in the VI group and are isoelectronic elements, and therefore, even if mixed into ZnSe, there is no electrical adverse effect.

【0012】II−VI族は、ZnSeばかりでなく、
ZnSSeなどII−VI−VI型、あるいは、ZnM
gSSeなどII−II−VI−VI型、或いは他の型
のII−VI族混晶であってもよく、II−VI族の混
晶一般に適用される。この様にZn、Se以外のII
族、VI族を含む場合は、それらのための専用の原料セ
ルを成長室に増設すればよい。例えば、ZnSSeを成
長する際にも、p型ドーパントガスはNSeでよい。こ
の場合、NSeとNSの混合ガスを用いてもよい。特
に、ドーパントガスからの微量のVI族元素の混入によ
る組成ズレが問題になるような用途には、NSeとNS
を適当な割合で混合して使用することで、ドーパントガ
スからのVI族混入組成をZnSx Se1-x のS,Se
組成と同一にすることも可能である。
Group II-VI includes not only ZnSe but also
II-VI-VI type such as ZnSSe, or ZnM
It may be a II-II-VI-VI type crystal such as gSSe, or another type II-VI group mixed crystal, and is generally applied to the II-VI mixed crystal. In this way, II other than Zn and Se
In the case of containing a group or a group VI, a dedicated raw material cell for them may be added to the growth chamber. For example, when growing ZnSSe, the p-type dopant gas may be NSe. In this case, a mixed gas of NSe and NS may be used. In particular, for applications in which composition deviation due to the inclusion of a minute amount of Group VI element from the dopant gas poses a problem, NSe and NS
Are mixed at an appropriate ratio, the composition mixed with the VI group from the dopant gas is changed to S, Se of ZnS x Se 1-x.
It is also possible to have the same composition.

【0013】本発明で使用するドーパントガスは分解が
従来のN2 ガスにくらべ、はるかに容易であるが、分解
をさらに促すための手段として高温(例えば1200℃
程度)に加熱したヒーター(9)を設け、これにガスを
接触させたのちに基板に照射してもよい。
Although the dopant gas used in the present invention is much easier to decompose than the conventional N 2 gas, it is used at a high temperature (for example, 1200 ° C.) as a means for further promoting the decomposition.
It is also possible to provide a heater (9) which is heated to a temperature of about 1), bring this into contact with gas, and then irradiate the substrate.

【0014】本発明をp型II−VI族薄膜をその一部
に含むへテロ構造レーザ素子などに適用するには、当該
p型II−VI族層のみに本発明を適用し、他の層に対
しては従来の成長法を適用すればよい。
To apply the present invention to a heterostructure laser device including a p-type II-VI group thin film as a part thereof, the present invention is applied only to the p-type II-VI group layer and other layers. For this, a conventional growth method may be applied.

【0015】本発明を気相成長法において実施するに
は、例えば、p型ZnSe有機金属気相成長法に適用す
るには、ディメチルヂンクをZnの、ディメチルセレン
をSeの原料ガスとして、成長温度例えば350℃に加
熱したカーボンサセプター上設置したGaAs基板結晶
上に水素ガスをキャリアーとしてこれらガスとともにN
SeまたはNSなどのドーパントガスを流す。これによ
り低抵抗p型ZnSeがえられる。この際、キャリアー
ガスの水素は、前述した水素パッシベーション現象をお
こさず、ドーパントガスも、従来用いられてきたNH3
をはじめとする水素を含む窒素化合物ガスとことなり、
水素パッシベーションをおこさないので、効率のよいp
型ドーピングが可能である。また他の気相成長方法とし
てクロライドVPE法やハイドライドVPE法でも本発
明を実施することができる。
To carry out the present invention in a vapor phase growth method, for example, to apply it to p-type ZnSe metalorganic vapor phase epitaxy method, using dimethyl zinc as a source gas of Zn and dimethyl selenium as a source gas of Se, a growth temperature is increased. For example, hydrogen gas is used as a carrier on a GaAs substrate crystal installed on a carbon susceptor heated to 350 ° C. together with these gases, and N
A dopant gas such as Se or NS is flown. As a result, low resistance p-type ZnSe is obtained. At this time, hydrogen as a carrier gas does not cause the above-mentioned hydrogen passivation phenomenon, and the dopant gas is also NH 3 which has been conventionally used.
Different from nitrogen compound gas containing hydrogen, such as
Since hydrogen passivation does not occur, efficient p
Type doping is possible. The present invention can also be implemented by other vapor phase growth methods such as the chloride VPE method and the hydride VPE method.

【0016】なお、本発明で使用されるドーピングガス
は、Ar、He等の希ガスなど、希釈ガスで希釈してボ
ンベに保管して、使用時にそのままMBE成長室、ある
いは、有機金属気相成長時は反応管に導入することも可
能である。
The doping gas used in the present invention is diluted with a diluting gas such as a rare gas such as Ar or He and stored in a cylinder, and is stored in the MBE growth chamber or the metal organic chemical vapor deposition as it is at the time of use. It is also possible to introduce it into the reaction tube at times.

【0017】[0017]

【発明の効果】本発明の適用によって、従来不可能であ
った低抵抗p型II−VI族半導体が容易に得られるよ
うになり、また、放電等の手段でガスを解離する必要が
無くなったため、不純物濃度の制御精度が著しく向上す
る。その結果、4V以下の立ち上がり電圧の電圧電流特
性が得られるようになる。また、ドーパント以外の不純
物濃度が減少し、発光効率が大幅に向上する。この結果
はII−VI族ヘテロ構造半導体レーザへの適用が直ち
に可能であり、大幅な直列抵抗の減少と発振閾値の減少
が得られる。
By applying the present invention, a low-resistance p-type II-VI group semiconductor, which has hitherto been impossible, can be easily obtained, and it is no longer necessary to dissociate gas by means such as discharge. The accuracy of controlling the impurity concentration is significantly improved. As a result, a voltage-current characteristic with a rising voltage of 4 V or less can be obtained. Further, the concentration of impurities other than the dopant is reduced, and the luminous efficiency is significantly improved. This result can be immediately applied to the II-VI group heterostructure semiconductor laser, and a large reduction in series resistance and a reduction in oscillation threshold can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】低抵抗Nドープp型ZnSeのMBE成長を説
明するための模式図である。
FIG. 1 is a schematic diagram for explaining MBE growth of low resistance N-doped p-type ZnSe.

【符号の説明】[Explanation of symbols]

1 GaAs基板結晶 2 II−VI族結晶成長用の固体Znとセル 3 II−VI族結晶成長用の固体Seとセル 4 ドーパント2原子分子ガスNSe 5 NSeが収容されているボンベ 6 流量調整用ニードル弁 7 流量計 8 ドーパントガス用ガスセル 9 ヒーター 10 MBE成長室 11 試料導入口 12 基板ホルダー 13 成長室排気用ホルダー 1 GaAs Substrate Crystal 2 Solid Zn and Cell for II-VI Group Crystal Growth 3 Solid Se and Cell for II-VI Group Crystal Growth 4 Cylinder 6 Dopant 2 Atom Molecular Gas NSe 5 NSe Accommodating Needle 6 Flow Rate Adjusting Needle Valve 7 Flow meter 8 Gas cell for dopant gas 9 Heater 10 MBE growth chamber 11 Sample introduction port 12 Substrate holder 13 Growth chamber exhaust holder

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 分子線エピタキシー法または気相エピタ
キシー法によるII−VI族2元または多元混晶半導体
の成長において、V族とVI族よりなる2ないし3原子
分子ガスをp型ドーパント原料として用いることを特徴
とするp型II−VI族半導体結晶成長方法。
1. In the growth of a II-VI group binary or multi-element mixed crystal semiconductor by a molecular beam epitaxy method or a vapor phase epitaxy method, a 2 to 3 atomic molecular gas consisting of a group V and a group VI is used as a p-type dopant material. A method for growing a p-type II-VI group semiconductor crystal, comprising:
【請求項2】 2原子分子ドーパントガスが、NO、N
S、NSe、NTeの中の一つの種類のガス、または、
複数の種類からなる混合ガスであることを特徴とする請
求項1記載のp型II−VI族半導体結晶成長方法。
2. The diatomic molecule dopant gas is NO, N
One kind of gas among S, NSe, and NTe, or
The p-type II-VI group semiconductor crystal growth method according to claim 1, wherein the mixed gas is composed of a plurality of types.
【請求項3】 3原子分子ドーパントガスが、NO2
NS2 、NSe2 、NTe2 の中の一つの種類のガス、
または複数の種類のガス、またはそれらとNOまたはN
SまたはNSeまたはNTeとの混合ガスであることを
特徴とする請求項1記載のp型II−VI族半導体結晶
成長方法。
3. The triatomic molecule dopant gas is NO 2 ,
One kind of gas among NS 2 , NSe 2 and NTe 2 ,
Or multiple types of gas, or NO and N with them
The method for growing a p-type II-VI group semiconductor crystal according to claim 1, wherein the mixed gas is S, NSe, or NTe.
【請求項4】 II−VI族元素のII族元素がZn,
Cd,Mg、Mnの中の一つまたは複数のものからな
り、VI族元素がS、Se、Teの中の一つまたは複数
からなることを特徴とする請求項1記載のp型II−V
I族半導体結晶成長方法。
4. The group II element of the group II-VI element is Zn,
The p-type II-V according to claim 1, wherein the p-type II-V is composed of one or more of Cd, Mg and Mn, and the group VI element is composed of one or more of S, Se and Te.
Group I semiconductor crystal growth method.
【請求項5】 2ないし3原子分子ドーパントガスのV
I族元素が、II−VI族半導体のVI族元素の全部ま
たは一部に一致することを特徴とする請求項1または請
求項2または請求項3または請求項4記載のp型II−
VI族半導体結晶成長方法。
5. V of a 2 to 3 atomic molecule dopant gas
The p-type II- according to claim 1 or claim 2 or claim 3 or claim 4, wherein the group I element corresponds to all or part of the group VI element of the group II-VI semiconductor.
Group VI semiconductor crystal growth method.
【請求項6】 ドーパントガスを熱的に解離した後、成
長表面に照射してドーピングを行うことを特徴とする請
求項1または請求項2または請求項3または請求項4ま
たは請求項5記載のp型II−VI族半導体結晶成長方
法。
6. The method according to claim 1, wherein the dopant gas is thermally dissociated, and then the growth surface is irradiated to perform doping. Method for growing p-type II-VI semiconductor crystal.
JP33797093A 1993-12-28 1993-12-28 Growth of ii-vi semiconductor crystal Pending JPH07201891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33797093A JPH07201891A (en) 1993-12-28 1993-12-28 Growth of ii-vi semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33797093A JPH07201891A (en) 1993-12-28 1993-12-28 Growth of ii-vi semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH07201891A true JPH07201891A (en) 1995-08-04

Family

ID=18313712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33797093A Pending JPH07201891A (en) 1993-12-28 1993-12-28 Growth of ii-vi semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH07201891A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142514A (en) * 1993-11-19 1995-06-02 Sony Corp Growth of ii-vi compound semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142514A (en) * 1993-11-19 1995-06-02 Sony Corp Growth of ii-vi compound semiconductor

Similar Documents

Publication Publication Date Title
US5210051A (en) High efficiency light emitting diodes from bipolar gallium nitride
US4868615A (en) Semiconductor light emitting device using group I and group VII dopants
WO2000022202A1 (en) p-TYPE ZnO SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JPH0637355A (en) Iii-v alloy semiconductor and its manufacture
Sato Growth of GaAsN by low-pressure metalorganic chemical vapor deposition using plasma-cracked N2
DenBaars et al. Atomic layer epitaxy of compound semiconductors with metalorganic precursors
CA2497266A1 (en) Nitrogen sources for molecular beam epitaxy
JPH08172055A (en) Method and equipment for growing nitride semiconductor crystal
EP0656431B1 (en) Metal-organic chemical vapor-phase deposition process
JPH07201891A (en) Growth of ii-vi semiconductor crystal
Evans et al. Gallium incorporation kinetics during gas source molecular beam epitaxy growth of GaN
JPH0553759B2 (en)
Hayafuji et al. Atomic layer epitaxy of device quality AlGaAs and AlAs
JP3369816B2 (en) Method for manufacturing p-type semiconductor crystal
JPH0722343A (en) Vapor growth device
JPH0463040B2 (en)
Grodzinski et al. From research to manufacture—The evolution of MOCVD
JPH09246596A (en) Compound-semiconductor growing layer and manufacture thereof
JP2646841B2 (en) Crystal growth method
Dhese et al. The growth of diffusion doped ZnSe: Te epilayers by atmospheric pressure metalorganic chemical vapour deposition
WO2003034510A1 (en) P-type zinc oxide thin film, compound semiconductor using the same and method for producing the same
JPH05234892A (en) Growing method for crystal and radical generator for growing crystal
JPH07283167A (en) Iii-v compound semiconductor electrode material
JPH0666279B2 (en) Method and apparatus for growing compound semiconductor thin film
JP3557295B2 (en) Method for producing p-type II-VI compound semiconductor thin film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970930