JPH0666279B2 - Method and apparatus for growing compound semiconductor thin film - Google Patents

Method and apparatus for growing compound semiconductor thin film

Info

Publication number
JPH0666279B2
JPH0666279B2 JP2539188A JP2539188A JPH0666279B2 JP H0666279 B2 JPH0666279 B2 JP H0666279B2 JP 2539188 A JP2539188 A JP 2539188A JP 2539188 A JP2539188 A JP 2539188A JP H0666279 B2 JPH0666279 B2 JP H0666279B2
Authority
JP
Japan
Prior art keywords
thin film
compound semiconductor
gas
plasma
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2539188A
Other languages
Japanese (ja)
Other versions
JPH01200637A (en
Inventor
柴田  典義
徹 佐々木
明憲 勝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2539188A priority Critical patent/JPH0666279B2/en
Publication of JPH01200637A publication Critical patent/JPH01200637A/en
Publication of JPH0666279B2 publication Critical patent/JPH0666279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、元素の周期律表IIb族元素およびVIb族元素
よりなる化合物半導体のp型伝導性薄膜の成長方法およ
び成長装置に関するものである。
TECHNICAL FIELD The present invention relates to a method and an apparatus for growing a p-type conductive thin film of a compound semiconductor composed of an element of Group IIb and an element of Group VIb of the Periodic Table of Elements. .

〔従来の技術及びその問題点〕[Conventional technology and its problems]

近年、青色発光材料として注目されているZnS,ZnSeなど
のIIb−VIb族化合物半導体薄膜を成長させる方法とし
て有機金属気相成長法(MOVPE)と呼ばれる方法が多く
採用されるようになった。このMOVPE法では、例えばジ
エチル亜鉛[(CHZn]等の周期律表IIb族元素を
含む有機金属化合物とセレン化水素(HSe)などのVI
b族元素を含む化合物を基板上で気相熱分解させること
によって、ZnSeなどのIIb−VIb族化合物半導体薄膜を
基板上に成長させていた。そしてp型伝導性を有する化
合物半導体薄膜を得ることを目的とした従来の方法で
は、Vb族元素であるPまたはAsをドーピングしている
が、この方法ではPまたはAsが深い不純物準位を形成し
易いため、青色発光を示さなくなるという欠点があっ
た。一方、上記欠点を解消するため、同じVb族元素で
あるNを含む化合物であるアンモニア(NH)を用いる
方法が試みられている。Nは浅いアクセプタレベルを形
成し易いことが判明しているが、上記のアンモニアガス
を用いた場合には、アンモニアの熱分解温度(約900
℃)が化合物半導体薄膜の成長温度(約300〜500℃)に
比べて非常に高温であるため、アンモニアはほとんど分
解せず化合物半導体薄膜中へのNの高濃度ドーピングが
極めて難しいといった問題があった。本発明は、この様
な従来技術の欠点を解決し、窒素のドーピング量が制御
されたp型伝導性のIIb−VIb族化合物半導体薄膜の成
長方法を提供するとともに、該薄膜を容易に成長させる
ことの出来る成長装置を提供するものである。
In recent years, a method called metal organic vapor phase epitaxy (MOVPE) has been widely adopted as a method for growing a IIb-VIb group compound semiconductor thin film such as ZnS and ZnSe, which has been attracting attention as a blue light emitting material. In this MOVPE method, for example, an organic metal compound containing an element of Group IIb of the periodic table such as diethyl zinc [(CH 3 ) 2 Zn] and a VI such as hydrogen selenide (H 2 Se).
A IIb-VIb group compound semiconductor thin film such as ZnSe has been grown on the substrate by vapor-decomposing a compound containing a group b element on the substrate. In the conventional method for obtaining a compound semiconductor thin film having p-type conductivity, Pb or As which is a Vb group element is doped, but in this method, P or As forms a deep impurity level. However, it has a drawback that it does not emit blue light. On the other hand, in order to solve the above-mentioned drawback, a method using ammonia (NH 3 ) which is a compound containing N which is the same Vb group element has been attempted. It has been found that N easily forms a shallow acceptor level, but when the above-mentioned ammonia gas is used, the thermal decomposition temperature of ammonia (about 900
C.) is much higher than the growth temperature of the compound semiconductor thin film (about 300 to 500.degree. C.), ammonia is hardly decomposed and high concentration doping of N into the compound semiconductor thin film is extremely difficult. It was The present invention solves the above drawbacks of the prior art, provides a method for growing a p-type conductive IIb-VIb group compound semiconductor thin film in which the doping amount of nitrogen is controlled, and easily grows the thin film. It provides a growth device that can

〔問題点を解決するための手段〕[Means for solving problems]

従来の欠点を除去するため、本発明はp型伝導性IIb−
VIb族化合物半導体薄膜の有機金属気相成長法によるエ
ピタキシャル成長において、プラズマ励起した窒素イオ
ンを真空室に供給することにより、窒素をドーパントと
して含む薄膜を得ることを特徴としている。
In order to eliminate the conventional drawbacks, the present invention uses p-type conductivity IIb-.
In the epitaxial growth of a VIb group compound semiconductor thin film by a metal organic chemical vapor deposition method, plasma-excited nitrogen ions are supplied to a vacuum chamber to obtain a thin film containing nitrogen as a dopant.

詳述すると、本発明は元素周期律表IIb族元素であるZn
およびCdよりなる群と、元素周期律表VIb族元素である
S,SeおよびTeよりなる群からそれぞれ選ばれた元素を、
有機金属化合物ガスとして反応容器内に導入し、該反応
容器内に設置され所定の温度に加熱された基板上で熱気
相分解し、同時に、プラズマ励起した窒素イオンを前記
基板上に照射し、前記基板上に窒素をドーパントとして
含む化合物半導体薄膜を得るものである。
More specifically, the present invention relates to Zn which is a group IIb element of the periodic table of elements.
And a group consisting of Cd, and a group VIb element of the periodic table of elements.
An element selected from the group consisting of S, Se and Te,
Introduced into the reaction vessel as an organometallic compound gas, hot gas phase decomposition on a substrate placed in the reaction vessel and heated to a predetermined temperature, at the same time, plasma-excited nitrogen ions are irradiated on the substrate, A compound semiconductor thin film containing nitrogen as a dopant is obtained on a substrate.

特にプラズマ励起において、プラズマを電子サイクロト
ロン共鳴(ECR)励起により高活性な窒素イオンプラズ
マとすることにより、より良い効果が得られる。
Particularly in plasma excitation, a better effect can be obtained by converting the plasma into highly active nitrogen ion plasma by electron cyclotron resonance (ECR) excitation.

次に本発明の成長方法を行うための成長装置を説明す
る。本発明の成長装置は、反応容器が、真空室と、該真
空室に高活性窒素イオンを供給するプラズマ発生室とか
ら構成され、前記真空室には、有機金属化合物ガスを導
入するノズルと、加熱機構を有する基板ホルダと、排気
口とを備え、前記プラズマ発生室には、プラズマ励起用
ガス導入ノズルと、マイクロ波導入導波管と、プラズマ
発生室に静磁界を印加する磁界発生コイルとを備えた構
成である。
Next, a growth apparatus for carrying out the growth method of the present invention will be described. In the growth apparatus of the present invention, the reaction container is composed of a vacuum chamber and a plasma generation chamber for supplying highly active nitrogen ions to the vacuum chamber, and the vacuum chamber has a nozzle for introducing an organometallic compound gas, A substrate holder having a heating mechanism; and an exhaust port, wherein the plasma generation chamber has a plasma excitation gas introduction nozzle, a microwave introduction waveguide, and a magnetic field generation coil for applying a static magnetic field to the plasma generation chamber. It is a configuration provided with.

本発明の成長方法及び成長装置は、IIb−VIb族化合物
半導体を対象とするものであって、その種類として具体
的にZnS,ZnSe,ZnTe,CdS,CdSe,CdTeおよびこれらの固溶
体、たとえばZnSSe1−xなど、を挙げることができ
る。
The growth method and growth apparatus of the present invention are intended for IIb-VIb group compound semiconductors, and the types thereof are specifically ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe and solid solutions thereof, such as ZnS x. Se 1-x and the like can be mentioned.

〔作用〕[Action]

本発明は、プラズマ励起された高活性の窒素イオンを使
用するので、薄膜へのドーピング効率が良くなり、従来
の方法では不可能であった1016cm-3以上の高濃度の窒素
ドーピングが容易となる。また、低ガス圧、かつ低温成
長であることから、高品質エピタキシャル膜の成長が可
能になる。
Since the present invention uses highly excited nitrogen ions excited by plasma, the doping efficiency of the thin film is improved, and high-concentration nitrogen doping of 10 16 cm −3 or more, which was impossible by the conventional method, is easy. Becomes Further, since the gas pressure is low and the growth is at a low temperature, a high quality epitaxial film can be grown.

以下、図面を用いて本発明の実施例を説明する。Embodiments of the present invention will be described below with reference to the drawings.

〔実施例〕〔Example〕

(実施例1) 第1図は本発明に於て使用したZnSe化合物半導体の単結
晶薄膜の成長装置の実施例を示す構成図であり、第2図
は第1図の成長装置における反応容器の一実施例を示す
図である。1は反応容器、2は有機金属化合物ガス導入
口、3はセレン化水素のガスボンベ、4、6、8はガス
流量コントローラ、5は水素ガスボンベ、7はバブラー
容器、9はアンモニアガスボンベ、10はGaAs基板、11は
基板ホルダ、12は基板加熱機構、13は窒素ドープZnSe薄
膜、14はプラズマ発生室、15はマイクロ波導入導波管、
16は磁界発生コイル、17はプラズマ励起用ガス導入口、
18は真空排気口、19はプラズマ流、22は真空室、23はマ
イクロ波導入窓である。本実施例では、第2図に示した
ようにプラズマ励起には、電子サイクロトロン共鳴を利
用している。
(Example 1) FIG. 1 is a configuration diagram showing an example of an apparatus for growing a ZnSe compound semiconductor single crystal thin film used in the present invention, and FIG. 2 is a view showing a reaction vessel of the growth apparatus in FIG. It is a figure which shows one Example. 1 is a reaction container, 2 is an organometallic compound gas inlet, 3 is a hydrogen selenide gas cylinder, 4, 6 and 8 are gas flow controllers, 5 is a hydrogen gas cylinder, 7 is a bubbler container, 9 is an ammonia gas cylinder, and 10 is GaAs. Substrate, 11 substrate holder, 12 substrate heating mechanism, 13 nitrogen-doped ZnSe thin film, 14 plasma generation chamber, 15 microwave introduction waveguide,
16 is a magnetic field generation coil, 17 is a gas inlet for plasma excitation,
18 is a vacuum exhaust port, 19 is a plasma flow, 22 is a vacuum chamber, and 23 is a microwave introduction window. In this embodiment, electron cyclotron resonance is used for plasma excitation as shown in FIG.

以下、ZnSe化合物半導体の単結晶薄膜を成長させる場合
を例にとり、本発明の装置を用いた薄膜成長の手順を説
明する。
The procedure for growing a thin film using the apparatus of the present invention will be described below, taking the case of growing a single crystal thin film of a ZnSe compound semiconductor as an example.

まず真空室22内を真空排気口18に接続した拡散ポンプな
どの真空排気装置により、10-7Torr以下の高真空にす
る。次に、基板ホルダ11に通電することにより基板10を
250〜400℃に加熱する。窒素プラズマを発生させるため
に、プラズマ励起用ガス導入口17からアンモニアガスま
たは窒素ガスまたは窒素ガスと水素ガスの混合ガスを導
入し、10-5〜10-3Torrのガス圧にする。マイクロ波導入
導波管15より、2.45GHzのマイクロ波をプラズマ発生室1
4に導入し、これと同時に磁界発生コイル16により静磁
界をプラズマ発生室14に印加する。静磁界に晒されたプ
ラズマ発生室14の電子は、ローレンツ力により円運動を
行うが、その周波数と導入したマイクロ波の周波数を一
致させると電子サイクロトロン共鳴吸収を生じ、マイク
ロ波を吸収し、高活性の窒素プラズマを発生する。この
電子サイクロトロン共鳴によるプラズマは、通常のグロ
ー放電によるプラズマに比べ、2桁以上低ガス圧で発生
し、イオン化率、電子温度も2桁程度大きく極めて高活
性なプラズマである。発生した窒素プラズマはプラズマ
流19として、発散磁界により真空室22内に引き出され
る。
First, the inside of the vacuum chamber 22 is made into a high vacuum of 10 −7 Torr or less by a vacuum exhaust device such as a diffusion pump connected to the vacuum exhaust port 18. Next, the substrate 10 is turned on by energizing the substrate holder 11.
Heat to 250-400 ° C. In order to generate nitrogen plasma, ammonia gas or nitrogen gas or a mixed gas of nitrogen gas and hydrogen gas is introduced from the plasma excitation gas inlet 17 to a gas pressure of 10 −5 to 10 −3 Torr. 2.45 GHz microwave from the microwave introduction waveguide 15 to the plasma generation chamber 1
4, and at the same time, a static magnetic field is applied to the plasma generation chamber 14 by the magnetic field generation coil 16. The electrons in the plasma generation chamber 14 exposed to the static magnetic field perform circular motion due to the Lorentz force, but when the frequency of the electrons is matched with the frequency of the introduced microwave, electron cyclotron resonance absorption occurs, and the microwaves are absorbed, and Generates active nitrogen plasma. The plasma generated by the electron cyclotron resonance is generated at a gas pressure lower than that of a normal glow discharge by two digits or more, and has an ionization rate and an electron temperature of about two digits and is extremely highly active plasma. The generated nitrogen plasma is drawn as a plasma flow 19 into the vacuum chamber 22 by the divergent magnetic field.

一方、ZnSeを構成するZnを含む原料である液体のジエチ
ル亜鉛[(C2H5)2Zn]が封入されている一定温度のバブ
ラー容器7内に、ガス流量コントローラ6により流量調
節された水素ガスをバブリングさせ、ジエチル亜鉛を所
要量含む水素ガスを形成する。この場合、ジエチル亜鉛
が充填されているガスボンベより流量コントローラを介
して所要量を供給することもある。また、ZnSeを構成す
るSeを含む原料であるセレン化水素が充填されているガ
スボンベ3より、流量コントローラ4を介して所要量を
供給し、上記のジエチル亜鉛を含む原料ガスと共に、気
相で有機金属化合物ガス導入口2より真空室22内に導入
する。
On the other hand, in the raw material diethylzinc liquid which is a constant temperature [(C 2 H 5) 2 Zn] it is sealed bubbler vessel 7 containing Zn constituting the ZnSe, flow regulating hydrogen by gas flow controller 6 The gas is bubbled to form hydrogen gas containing the required amount of diethylzinc. In this case, a required amount may be supplied from a gas cylinder filled with diethylzinc through a flow rate controller. In addition, a required amount is supplied from a gas cylinder 3 filled with hydrogen selenide, which is a raw material containing Se, which constitutes ZnSe, via a flow rate controller 4, and together with the raw material gas containing diethylzinc described above, an organic phase is formed in a gas phase. It is introduced into the vacuum chamber 22 through the metal compound gas inlet 2.

真空室22内には、GaAs基板10が基板ホルダ11の上に配置
されていて、基板加熱機構12により所定の温度に加熱さ
れ、窒素をドーパントとして含むZnSe単結晶薄膜がGaAs
基板10上に成長される。
In the vacuum chamber 22, a GaAs substrate 10 is placed on a substrate holder 11, heated to a predetermined temperature by a substrate heating mechanism 12, and a ZnSe single crystal thin film containing nitrogen as a dopant is formed of GaAs.
It is grown on the substrate 10.

ここで、ドープ量は、プラズマ励起用ガス導入口17から
導入されるアンモニアガスまたは窒素ガスまたは窒素ガ
スと水素ガスの混合ガスの供給量により制御する。
Here, the doping amount is controlled by the supply amount of the ammonia gas or the nitrogen gas or the mixed gas of the nitrogen gas and the hydrogen gas introduced from the plasma excitation gas introduction port 17.

(実施例2) 実施例1に示した装置を用いてZnSe単結晶薄膜を成長し
た場合を示す。
(Example 2) A case where a ZnSe single crystal thin film is grown using the apparatus shown in Example 1 is shown.

真空室22内を10-7Torr以下の高真空にした後、プラズマ
発生室14内にNHガスを1〜100cc/minの割合で供給
し、10-5〜2×10-4Torrの低ガス圧にし、マイクロ波
(2.45GHz)と磁界(875Gauss)を印加し、窒素プラズ
マを発生させる。マイクロ波入力は100〜300Wに設定す
る。次に、ジエチル亜鉛を5℃の温度に設定し、水素ガ
スバブリングにより10cc/minの速度で供給し、セレン化
水素ガスを2.5cc/minの速度で供給して原料ガスとし反
応容器1内に導入する。この際、NHと原料ガスの供給
モル比は5〜200の範囲になるようにする。また、有機
金属化合物ガス導入口2と基板10間の距離は5〜12cmの
範囲に設定する。このようにして、250℃に加熱されたG
aAs基板10上に吹き付けることにより、窒素をドーパン
トとして含むZnSe単結晶膜を1時間当り0.5μmの速度
で成長させた。得られたZnSe単結晶膜の表面は、良好な
鏡面が形成され結晶性にも問題はなかった。また、ZnSe
単結晶膜の抵抗は、数Ω.cm以下の低い抵抗値を示し
た。p型キャリア濃度は5×1016個/cm3であり、従来
のアンモニアを窒素原料として用いた場合に比べて一桁
程度以上ドープ量を増すことができた。さらに、77Kの
温度におけるフォトルミネッセンス特性を第3図に示
す。20の破線は従来のようなPやAsをドーピングした場
合であり、青色以外の発光が支配的になる。それに対し
て、実線21は本実施例によりNをドーピングした場合で
あり、薄膜の発光スペクトルは青色発光(約462nm付
近)のみが強い極めて良好な結果が得られた。
After the vacuum chamber 22 is evacuated to a high vacuum of 10 -7 Torr or less, NH 3 gas is supplied into the plasma generation chamber 14 at a rate of 1 to 100 cc / min to reduce the pressure to 10 -5 to 2 × 10 -4 Torr. A gas pressure is applied, and a microwave (2.45 GHz) and a magnetic field (875 Gauss) are applied to generate nitrogen plasma. Set the microwave input to 100-300W. Next, diethyl zinc was set at a temperature of 5 ° C., hydrogen gas bubbling was supplied at a rate of 10 cc / min, and hydrogen selenide gas was supplied at a rate of 2.5 cc / min to form a raw material gas into the reaction vessel 1. Introduce. At this time, the supply molar ratio of NH 3 to the raw material gas is set to be in the range of 5 to 200. The distance between the organometallic compound gas inlet 2 and the substrate 10 is set within the range of 5 to 12 cm. In this way, G heated to 250 ° C
By spraying on the aAs substrate 10, a ZnSe single crystal film containing nitrogen as a dopant was grown at a rate of 0.5 μm per hour. On the surface of the obtained ZnSe single crystal film, a good mirror surface was formed and there was no problem in crystallinity. Also, ZnSe
The resistance of the single crystal film is several Ω. The resistance value was as low as cm or less. p-type carrier concentration is 5 × 10 16 atoms / cm 3, was a conventional ammonia can increase the doping amount more than about one order of magnitude as compared with the case of using as a nitrogen source. Furthermore, FIG. 3 shows the photoluminescence characteristics at a temperature of 77K. The broken line 20 indicates the case where P or As is doped as in the conventional case, and light emission other than blue is dominant. On the other hand, the solid line 21 represents the case where N was doped according to the present example, and the emission spectrum of the thin film was extremely good only in blue emission (around 462 nm), and very good results were obtained.

(実施例3) 実施例1に示した装置に硫化水素導入系を付加し、ZnSS
e単結晶薄膜を成長した場合の実施例を示す。
(Example 3) A hydrogen sulfide introduction system was added to the apparatus shown in Example 1 to obtain ZnSS.
An example of growing an e single crystal thin film will be described.

真空室22内を10-7Torr以下の高真空にした後、プラズマ
発生室14内にNHガスを1〜100cc/minの割合で供給
し、10-5〜2×10-4Torrの低ガス圧にし、マイクロ波
(2.45GHz)と磁界(875Gauss)を印加し、窒素プラズ
マを発生させる。マイクロ波入力は100〜300Wに設定す
る。次に、流量コントローラを通った水素ガスを5℃の
温度のジエチル亜鉛液中にバブリングさせジエチル亜鉛
の飽和蒸気を含んだガスを10cc/minの速度で供給する。
またセレン化水素ガスを2.5cc/min、硫化水素を0.25cc/
minの速度で供給して原料ガスとし、反応容器1内に導
入する。この際、NHと原料ガスの供給モル比は5〜20
0の範囲になるようにする。また、有機金属化合物ガス
導入口2と基板10間の距離は5〜12cmの範囲に設定す
る。このようにして、300℃に加熱されたGaAs基板10上
に吹き付けることにより窒素をドーパントとして含むZn
S0.06Se0.94単結晶膜を1時間当り0.5μmの速度で成長
させた。得られたZnSSe単結晶膜の表面は、良好な鏡面
が形成され結晶性にも問題はなかった。また、ZnSSe単
結晶膜の抵抗は、1Ω・cm以下の低い抵抗値を示した。
p型キャリア濃度は1017個/cm3まで得られ、従来のア
ンモニアを窒素原料として用いた場合に比べて一桁程度
以上ドープ量を増すことができた。さらにフォトルミネ
ッセンス特性は、青色発光(約460nm付近)のみが強い
極めて良好な結果が得られた。
After the vacuum chamber 22 is evacuated to a high vacuum of 10 -7 Torr or less, NH 3 gas is supplied into the plasma generation chamber 14 at a rate of 1 to 100 cc / min to reduce the pressure to 10 -5 to 2 × 10 -4 Torr. A gas pressure is applied, and a microwave (2.45 GHz) and a magnetic field (875 Gauss) are applied to generate nitrogen plasma. Set the microwave input to 100-300W. Next, the hydrogen gas passing through the flow rate controller is bubbled into a diethylzinc solution at a temperature of 5 ° C., and a gas containing a saturated vapor of diethylzinc is supplied at a rate of 10 cc / min.
Also, hydrogen selenide gas is 2.5 cc / min and hydrogen sulfide is 0.25 cc / min.
The raw material gas is supplied at a rate of min and introduced into the reaction vessel 1. At this time, the supply molar ratio of NH 3 to the source gas is 5 to 20.
It should be in the range of 0. The distance between the organometallic compound gas inlet 2 and the substrate 10 is set within the range of 5 to 12 cm. In this way, Zn containing nitrogen as a dopant is sprayed onto the GaAs substrate 10 heated to 300 ° C.
A S 0.06 Se 0.94 single crystal film was grown at a rate of 0.5 μm per hour. On the surface of the obtained ZnSSe single crystal film, a good mirror surface was formed and there was no problem in crystallinity. The resistance of the ZnSSe single crystal film showed a low resistance value of 1 Ω · cm or less.
A p-type carrier concentration of up to 10 17 pieces / cm 3 was obtained, and the doping amount could be increased by one digit or more as compared with the conventional case where ammonia was used as a nitrogen raw material. Furthermore, as for the photoluminescence characteristics, extremely good results were obtained in which only blue light emission (around 460 nm) was strong.

また、IIb−VIb族化合物半導体の例としてZnSe,ZnSSe
の場合を例に挙げたが、これ以外の化合物半導体とし
て、ZnTe,CdS,CdSe,CdTeなどやその固溶体の薄膜の成長
においても本発明の方法が適用できることは言うまでも
ない。例えば、窒素をドーパントとして含むZnTeを成長
することを目的として実施例2においてセレン化水素の
代わりにジメチルテルル〔(CHTe〕を供給したと
ころ、得られた膜はp型伝導を示し、緑色発光(550nm
付近)のみが強い良質なフォトルミネッセンス特性が得
られた。さらに、実施例3においてジエチル亜鉛の代わ
りにジエチルカドミウム〔(CCd〕を供給し
たところ窒素をドーパントとして含むCdS0.06Zn0.94
結晶膜が得られ、フォトルミネッセンス特性は緑色発光
(530nm付近)のみが強い良質な結果が得られた。
As an example of the IIb-VIb group compound semiconductor, ZnSe, ZnSSe are used.
However, it is needless to say that the method of the present invention can be applied to the growth of a thin film of ZnTe, CdS, CdSe, CdTe or the like or a solid solution thereof as a compound semiconductor other than the above. For example, when dimethyl tellurium [(CH 3 ) 2 Te] was supplied instead of hydrogen selenide in Example 2 for the purpose of growing ZnTe containing nitrogen as a dopant, the obtained film showed p-type conduction. , Green emission (550nm
Good photoluminescence properties were obtained only in the vicinity. Furthermore, in Example 3, when diethylcadmium [(C 2 H 5 ) 2 Cd] was supplied instead of diethylzinc, a CdS 0.06 Zn 0.94 single crystal film containing nitrogen as a dopant was obtained, and the photoluminescence property was green emission ( Only around 530 nm), good quality results were obtained.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したごとく、本発明によれば、窒素の高
濃度ドーピングによる低抵抗p型伝導性薄膜が得られる
ため、pn接合の形成が可能となる。したがって、従来、
光ディスク、光プリンタ、表示素子など情報処理分野に
おける機器・装置の開発で最も強く望まれていた青色や
緑色など可視光レーザの実現が有望となる。また本発明
に依れば、低ガス、低温プロセスによる高品質エピタキ
シャル薄膜の成長が可能であるとともに、原料ガスの消
費量が少なく、省エネルギーを計り易いので工業化を目
指す上においても有利となる。
As described in detail above, according to the present invention, a low-resistance p-type conductive thin film can be obtained by high-concentration nitrogen doping, so that a pn junction can be formed. Therefore, conventionally,
The realization of visible light lasers such as blue and green, which have been most strongly desired in the development of devices and devices in the information processing field such as optical disks, optical printers, and display elements, is promising. Further, according to the present invention, it is possible to grow a high-quality epitaxial thin film by a low-gas, low-temperature process, the consumption of the raw material gas is small, and it is easy to save energy, which is advantageous for industrialization.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例において用いたZnSe単結晶薄膜
の成長装置の構成を示す系統図、第2図は本発明の成長
装置の反応容器の一実施例図、第3図はZnSe単結晶薄膜
の77Kの温度におけるフォトルミネッセンス特性を示す
図である。 1…反応容器、2…有機金属化合物ガス導入口、3…セ
レン化水素のガスボンベ、4、6、8…ガス流量コント
ローラ、5…水素ガスボンベ、7…バブラー容器、9…
アンモニアガスボンベ、10…GaAs基板、11…基板ホル
ダ、12…基板加熱機構、13…窒素ドープZnSe薄膜、、14
…プラズマ発生室、15…マイクロ波導入導波管、16…磁
界発生コイル、17…プラズマ励起用ガス導入口、18…真
空排気口、19…プラズマ流、20…P濃度1015個/cm3のZ
nSe薄膜の発光スペクトル、21…N濃度5×1016個/cm3
のZnSe薄膜の発光スペクトル、22…真空室、23…マイク
ロ波導入窓。
FIG. 1 is a system diagram showing the structure of a ZnSe single crystal thin film growth apparatus used in an embodiment of the present invention, FIG. 2 is an embodiment of a reaction vessel of the growth apparatus of the present invention, and FIG. It is a figure which shows the photo-luminescence characteristic in the temperature of 77 K of a crystal thin film. DESCRIPTION OF SYMBOLS 1 ... Reaction container, 2 ... Organometallic compound gas inlet port, 3 ... Hydrogen selenide gas cylinder, 4, 6, 8 ... Gas flow rate controller, 5 ... Hydrogen gas cylinder, 7 ... Bubbler container, 9 ...
Ammonia gas cylinder, 10 ... GaAs substrate, 11 ... Substrate holder, 12 ... Substrate heating mechanism, 13 ... Nitrogen-doped ZnSe thin film, 14
... Plasma generation chamber, 15 ... Microwave introduction waveguide, 16 ... Magnetic field generation coil, 17 ... Plasma excitation gas introduction port, 18 ... Vacuum exhaust port, 19 ... Plasma flow, 20 ... P concentration 10 15 pieces / cm 3 Z
Emission spectrum of nSe thin film, 21 ... N concentration 5 × 10 16 pieces / cm 3
Emission spectrum of ZnSe thin film, 22 ... Vacuum chamber, 23 ... Microwave introduction window.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】元素周期律表IIb族元素であるZnおよびCd
よりなる群と、元素周期律表VIb族元素であるS,Seおよ
びTeよりなる群からそれぞれ選ばれた元素を、有機金属
化合物ガスとして反応容器内に導入し、該反応容器内に
設置され所定の温度に加熱された基板上で熱気相分解
し,同時に、プラズマ励起した窒素イオンを前記基板上
に照射することにより、窒素をドーパントとして含むII
b−VIb族化合物半導体の薄膜を得ることを特徴とする
化合物半導体薄膜の成長方法。
1. A group IIb element of the periodic table, Zn and Cd.
And a group selected from the group consisting of S, Se and Te which are elements of Group VIb of the Periodic Table of Elements are introduced into the reaction vessel as an organometallic compound gas and installed in the reaction vessel. Containing nitrogen as a dopant by irradiating plasma-excited nitrogen ions onto the substrate at the same time by thermal vapor phase decomposition on the substrate heated to the temperature II.
A method for growing a compound semiconductor thin film, comprising obtaining a thin film of a b-VIb group compound semiconductor.
【請求項2】プラズマ励起は、電子サイクロトロン共鳴
励起であることを特徴とする請求項1記載の化合物半導
体薄膜の成長方法。
2. The method for growing a compound semiconductor thin film according to claim 1, wherein the plasma excitation is electron cyclotron resonance excitation.
【請求項3】化合物半導体薄膜の成長装置であって、真
空室と、該真空室に窒素イオンを供給するプラズマ発生
室とから反応容器が構成され、前記真空室は、有機金属
化合物ガスを導入するノズルと、基板ホルダと、排気口
とを備え、前記プラズマ発生室は、プラズマ励起用ガス
導入ノズルと、マイクロ波導入導波管と、前記プラズマ
発生室内に静磁界を発生させる磁界発生コイルとを備え
てなることを特徴とする化合物半導体薄膜の成長装置。
3. An apparatus for growing a compound semiconductor thin film, comprising a reaction chamber composed of a vacuum chamber and a plasma generation chamber for supplying nitrogen ions to the vacuum chamber, wherein the vacuum chamber introduces an organometallic compound gas. A nozzle, a substrate holder, and an exhaust port, the plasma generation chamber includes a plasma excitation gas introduction nozzle, a microwave introduction waveguide, and a magnetic field generation coil that generates a static magnetic field in the plasma generation chamber. An apparatus for growing a compound semiconductor thin film, comprising:
JP2539188A 1988-02-05 1988-02-05 Method and apparatus for growing compound semiconductor thin film Expired - Fee Related JPH0666279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2539188A JPH0666279B2 (en) 1988-02-05 1988-02-05 Method and apparatus for growing compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2539188A JPH0666279B2 (en) 1988-02-05 1988-02-05 Method and apparatus for growing compound semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH01200637A JPH01200637A (en) 1989-08-11
JPH0666279B2 true JPH0666279B2 (en) 1994-08-24

Family

ID=12164583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2539188A Expired - Fee Related JPH0666279B2 (en) 1988-02-05 1988-02-05 Method and apparatus for growing compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0666279B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3437863B2 (en) 1993-01-18 2003-08-18 株式会社半導体エネルギー研究所 Method for manufacturing MIS type semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117199A (en) * 1984-11-08 1986-06-04 Nec Corp Method for growing crystal
JPS6270290A (en) * 1985-09-19 1987-03-31 Matsushita Electric Ind Co Ltd Production of semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117199A (en) * 1984-11-08 1986-06-04 Nec Corp Method for growing crystal
JPS6270290A (en) * 1985-09-19 1987-03-31 Matsushita Electric Ind Co Ltd Production of semiconductor

Also Published As

Publication number Publication date
JPH01200637A (en) 1989-08-11

Similar Documents

Publication Publication Date Title
US4422888A (en) Method for successfully depositing doped II-VI epitaxial layers by organometallic chemical vapor deposition
Nishizawa et al. Molecular layer epitaxy
JP3540275B2 (en) P-type ZnO single crystal and method for producing the same
EP1036863B1 (en) Method for synthesizing n-type diamond having low resistance
US5300185A (en) Method of manufacturing III-V group compound semiconductor
US6281099B1 (en) Method for synthesizing single crystal AIN thin films of low resistivity n-type and low resistivity p-type
JPH08172055A (en) Method and equipment for growing nitride semiconductor crystal
JPH10101496A (en) Production of low resistant p-type gallium nitride crystal
Zembutsu et al. Low temperature growth of GaN single crystal films using electron cyclotron resonance plasma excited metalorganic vapor phase epitaxy
JP3410299B2 (en) Method for producing highly doped ZnSe crystal
JPH0666279B2 (en) Method and apparatus for growing compound semiconductor thin film
JPH0553759B2 (en)
JP2942827B1 (en) Method for manufacturing n-type ZnTe semiconductor
JP3232754B2 (en) Method of growing II-VI compound semiconductor
JPH11268996A (en) Method for growing compound semiconductor mixed crystal
Imaizumi et al. Growth of n-and p-ZnSe by gas source molecular beam epitaxy using metal Zn and H2Se
US3746943A (en) Semiconductor electronic device
JPH05267192A (en) Vapor growth method for semiconductor film
JPH0574710A (en) Semiconductor thin film growth method
JPH0629228A (en) Crystal growth method
JPH05234892A (en) Growing method for crystal and radical generator for growing crystal
US6113691A (en) Ultra-low pressure metal-organic vapor phase epitaxy (MOVPE) method of producing II-IV semiconductor compounds and II-VI semiconductor compounds thus produced
JPH0377384A (en) Electronic device using boron nitride
JP2740681B2 (en) Method for manufacturing compound semiconductor thin film
JPH07201891A (en) Growth of ii-vi semiconductor crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees